
IEEE TRANSACTIONS ON AUTOMATIC COhTROL, VOL. AC-29, NO. 10, OCTOBER 1984 931 

Componentwise Asymptotic Stability of Linear 
Constant Dynamical Systems 

MIHAIL VOICU 

Abstrucf-This note deals with a special type of asymptotic stability, 
namely componentwise asymptotic stability with respect to the vector y ( t )  
(CWAS y )  of system S: P = Ax + Bu, t 0, mrhere y (  t )  > 0 (component- 
wiise inequality) and y (  t )  - 0 as f + + m. S is CWAS y if for each to  > 0 
and for each I x ( t o ) l  < y ( t o )  ((x([,)] with the components Ix,(to)l the free 
response of S satisfies I x ( t ) (  < y ( t )  for each t > to. For y ( t ) A  ae-O', 
t > 0, with (2 > 0 and /3 > 0 (scalar), the CWEAS ( E  = exponential) may 
be defined. S is C W A S y  (CWEAS) if and only if q ( r )  & ( r ) ,  f > 0 
(& < 0); A (a;,) and x has the elements a,i and la,,], i f j .  These 
results may be used in order to evaluate in a more detailed manner the 
dynamical behavior of S as well as to stabilize S componentRise by a 
suitable linear state feedback. 

I. INTRODUCTION 

Consider  the standard linear constant dynamical system 

S :  X = A x + B u ,  f > 0 ,  x E R " ,  U E R " '  

with the initial condition x ( t o ) A   x o ,  where A b  ( a i j )  and B are real 
matrices of adequate dimensions. 

In certain applications the dynamical systems (e.g., those arising in 
electrical engineering or in biology) have to satisfy, besides the sine qua 
non condition of asymptotic stability, some more subtle conditions, for 
instance of the form 

l x i ( t ) l < a l e - B z ,  r > t o ,  i = l  ... , n  (1) 

for  each to > 0 and for each lx , ( to) l<  cr;e-B'o, i = l , . . . ,  n ,  where x i ( t )  
are the state components of the free or impulse response of S and a, > 0, 
/3 > 0 have prescribed values. 

Moreover, in engineering design, one may consider (1) ab initio as a 
performance specification, when the state variables are physically differ- 
ent  and/or of different importance for the normal process evolution. 
Obviously, it depends on the ma!rix A whether such a performance 
specification can  or cannot be satisfied. 

The purpose of this note is to define a special type of asymptotic 
stability of S ,  namely the componentwise asymptotic stability [characteri- 
zation of the form  (l)] and  to prove some results which may be useful for 
a more  subtle evaluation of the  free or impulse response of S as well as 
for  the  solution of the problem of componentwise stabilization of S .  

11. MAIN RESULTS 

In order to formulate lapidatily our results we  begin with some basic 
notations.  Let u k (E,) and w A (HI,) be two vectors in R" and let 
M ( m l j )  be a ( n  X n )  real matrix. We denote by JuI the vector with the 
components Iu,( and by a the matrix with the elements m,,  and (m,,(,  
i # j . W e a l s o d e n o t e b y u > w ( u > w ) o r , r w < v ( w < c ) a n d b y M > O t o  
signify u, > w, (u ,  > w;) and m,, > 0 for all i ,  j .  

A. Componentwise  Asymptotic  Stabilig 

Consider y: [O, + 00) -+ R" with the properties: y ( r )  > 0 for t 2 0, y ( t )  
is differentiable and 
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Definition 1: The system S is called componentwise asymptotically 
stable with respect to y ( t )  (CWAS y )  if for each to > 0 and for each 
lxo( < y ( t o )  the free response of S satisfies 

I x ( t ) l < y ( t )  foreach t a t o .  (3) 

Remark I :  Obviously, under condition (2), the inequality (3) holds 
only if S is asymptotically stable. 

Remark 2: Inequality (3) does not evidence only a bound of the 
absolute value of x ( t ) ,  which can be determined for each free response of 
the asymptotically stable S.  It is very important  to remark that CWAS y 
actually belongs to the sphere of stability notion because (3), under (2), 
must  hold for each to > 0 and for each lxol < y ( to ) .  

Remark 3: According to [1]-[6] it follows that CWAS y is equivalent 
to the flow invariance of the time-dependent interval 

for the free response of S on [ to ,  +a)) for each to > 0, Le., on [0, $. 03). It 
is known [4] that I ( r )  is flow invariant for the free response of S on 
[0, + m) if and only if 

lim - d ( z + h A z ;  I ( t + h ) ) = O  
1 

h\O h 

for each f > 0 and for each z E I (  r )  

where d ( u ;  I )  inf d(u;  w )  for w G I is the distance from u E R" to 
I c R". 

Theorem I :  A necessary and sufficient condition such that -S be 
CWAS y is  that 

q ( t ) a x y ( t )  - foreach t > 0 .  (4) 

Proof: According to Remark 3, it follows that CWAS y is equivalent' 
to 

l z + h ( A z ; a ( f 1 ) ) 1 < y ( t + h )  foreachr>O,foreachzEI( t ) ,  

for h > 0, small enough (5) 

and for a certain a:  [0, + oc) + R", with a ( h )  4 0 as h L 0. y ( t )  is 
differentiable. Then there exists r: [0, + 03) + R", with r ( h )  + 0 as f1 \ 0, 
such that 

y ( t + h ) - y ( t ) = h q ( t ) + h r ( h ) ,  t > O .  

Thus, (5) is equivalent to 

I z + h ( A z + a ( h ) ) ) < y ( t ) + h q ( t ) + h r ( h )  foreachr>O, 

for each z E I (  t )  and for h > 0,  small enough. (6) 

Obviously, the vectorial inequality from (6) must also hold for the 
maximum value and for the minimum value of each component of 
z + hAr for h > 0, small enough, for t > 0 and for z E I (  t ) .  Since z + hAz 
is linear  for z and Z( t )  has symmetrical limits, the extrema of the ith 
component of L + hAz for h > 0, small enough, can be reached, respec- 
tively, for 

~ : , = ~ d i a g ( s g n a ~ ~ ; . . , s g n a , , - ~ , l , s g n a , , + l , . . . , s g n a , , ) y ( t ) ~ I ( ~ ) .  

Thus, for z = z:, the ith inequality from (6), after simplificatiofl by 
h > 0, is equivalent to 

n 

j = 1  
j # i  

foreacht>,O,forh>O,smallenougb,i=l,...,n (7) 
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where y , ( t ) ,  c ( h ) ,  and a, (h)  are the components of y ( r ) ,  r ( h ) ,  and 
a ( h ) ,  respectively. 

Now, taking into account that a ( h )  + 0 and r ( h )  + 0 as h \ 0, the 
equivalence between ( 7 )  and (4) is obvious. 

Theorem 2: A necessary and sufficient condition such that S be 
CWASy is that 

y ( t ) > e 7 ( f - O ) y ( g )  foreachQ>Oandforeacht>+.  (8) 

Proof: It is known (Bellman  [7, p. 1721) that e A f  > 0 for r > 0. For a 
continuous  function u :  [0, + m) + R", with u (  f )  > 0 for t 2 0 and chosen 
such that 

- 

L ( t ) = x y ( r ) + u ( t )  fo reachr20 ,  

(i.e., (4) with " = " in place of " > "), one can deduce 

i ( t )  = e ~ r - ~ ) y ( g ) + / f e ~ f - f ' ) u ( y r )  dl' 
Q 

for each + 2 0 and for each t 2 e .  
AS e x ( f - f ' ) u ( t 8 )  o for [g, t ]  it follows that (4) is equivalent to (8). 
Theorem 3: A necessary and sufficient condition for the existence of 

y ( t )  such that S be W A S  y is that A b e  Hurwitzian. 
Proof: 

Sufficignncy: If x is Hurwitzian, then there exists y ( t ) .  for instance 
y ( t )  eA'y(0) ,  for which  (2) and (8) are satisfied. 

Necessity: If (2) and (8) hold, then lim, eA'y(0) < lim, - co y ( t )  = 0. 
Since e x  > 0 for t > 0 and y(0) > 0 it follows that lim, 33 e x  = 0, Le., 
A is Hurwitzian. 

Remark 4: Let r be the Abelian semigroup of the solutions of (4) with x Hurwitzian. Obviously, S is CWAS y for each y E r. Moreover, for 
each  pair yl, y2 E r the W A S  yI is equivalent to W A S  yz. This allows 
us to specialize y (  t )  and to characterize in a more explicit manner the free 
response of S.  

B. Componentwise  Exponential  Asymptotic  Stability 

Consider 

y ( t )  P ae-@,  r >  o (9) 

where a (alr. ' . , a,) and B > 0 (scalar). 
Definition 2: The system S is called componentwise exponential 

asymptotically stable (CWEAS) if there exist a > 0 and /3 > 0 such that 
for each to > 0 and for each lxol G ae-Bfo the free response of S satisfies 

I x ( t ) l <  ae-8' for each t > t o ,  

Theorem 4: A necessary and sufficient condition such that S be 
CWEAS is that 

(Ostrowski, [7, p. 2953). An equivalent definition of an M-matrix is that 
all  its  principal minors be positive. Under these circumstances one may 
formulate  the following. 

Theorem 6: A necessary and sufficient condition such that S be 
CWEAS is  that 

where are  the principal minors of 
Certainly,  the proof follows by the fact that S is CWEAS if and only if - x  is an M-matrix. A direct proof can be also given  by using the 

Gaussian  elimination process, [8]. 
Another similar result [6] may be established by using the theorem of 

the existence of a solution a for the inequaiion 

due  to Dines [9] 

C. Dependence on Vector Basis 

Remark 6: The C W A S y  implies the asymptotic stability in the sense 
of Lyapunov. Consequently, each of Theorems 1-6 is a criterion for 
asymptotic  stability [6]. Thus, a useful result may be the following. 

Theorem 7: The system S is asymptotically stable if (12) holds. 
Proof: Equation (12) implies (11). In the sequel we give a direct 

proof, which is interesting by itself. One can equivalently express (11) as 

j f r  

Consider  the matrix 

A , = d i a g ( a ; ' ; . . , a ~ ' ) A d i ~ ( a l , - . . , a , )  

and note that A ,  is similar to A ,  both having the same spectrum u ( A ) .  
The a-Gershgorin's disks associated to A ,  Le., the Gershgods disks 
associated to A ,  [7, p. 1061 are the subsets 

j + i  

which have the remarkable property u ( A ) c U : = , G , ( A , ) .  According to 
(13) it follows that u ( A )  c { s E C ;  Res  0 } ,  Le., S is asymptotically 
stable. 

Remurk 7: The asymptotic stability does not imply CWASy because 
the latter depends on the particular choice of the state vector of S.  To 
illustrate this let us consider 

To prove this theorem one has to determine the  necessary and sufficient 

Theorem 5: A necessary and sufficient condition such that S be 
condition (10) such  that (9) be a solution of (4). 

CWEAS is that 

Aa < 0. (11) 

The proof follows immediately by the fact that (10) is equivalent to 
ZaQ -Ba<O. 

Remark 5: Referring to (11) we may naturally state the problem of the 
existence of a solution a > 0 for inequation (11).  We recall that all 
elements of x which do not belong to the first diagonal are nonnegative. 
If there exists a > 0 such that (11) holds, then - x is an M-matrix 

A =  [ -a1  -ill 0 

with a1 > 0, a2 z 0 ( A  is Hurwitzian). It is easy to see that x is not 
Hurwitzian, i.e., S cannot be CWAS y. 

A natural  question is that of the existence of a vector basis in R" for 
which an asymptotically stable system is also CWAS y .  

Theorem 8: Consider A Hurwitzian and non-Hurwitzian. There 
exists at least one transformation 2 = Px,  with det P # 0, for S such that 

be CWASy if 

u ( A ) c  ( sEC;Res<O,   l Imsl<   -Res} .  (14) 

Proofi Let us consider P = &', where VR is the modal matrix of A 
o\'er R .  Such being the case 2 = ' A  VR is the (block) diagonal or-the 
(block) Jordan canonical form of A over R.  If (14) is valid, then ,i is 
Hurwitzian. 
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111. EXAMPLE 

Consider 

and determine a, > 0, a2 > 0, and /3 > 0 for which S is CWEAS. 
According to (10) one may write 

which leads to 2 < a, / a z  < 3 and, for 0 < /3 < 1, to 2/(1- 8) < 3 - /3. 
From the latter  one  obtains 0 < /3 Q 2 - 6. For B = 2 - fi one deduces 
a1 = (1 + & ) p  and a2 = p ,  where p > 0. 

IV. CONCLUDING REMARKS 

The CWAS y is a special type of asymptotic stability, depending on the 
vector basis in R“. This represents a row property of the evolution matrix 
A ,  which holds if and only if x is Hunvitzian. Moreover, the CWEAS 
corresponds to a certain dominance of the first diagonal elements of A in 
the row direction, necessarily implying, also for CWEASy, that these 
elements are negative [see (13)]. 

The results concerning CWAS y and c \ l r E A S  are easily applicable and 
they allow a more subtle evaluation of the dynamical behavior of the 
linear  constant systems by means of the free response (muratis nmtundis 
by means of the impulse or step response). This may be necessary 
especially when the  state components are physically different and/or of 
different  importance for the normal process evolution. Such a case can be, 
for instance,  the dc electric motor whose loading torque is constant except 
for some  moments when impulsive components may be added. If so it is 
reasonable  to  impose restrictions regarding the maximum value and the 
decay speed of the variations of loading current and of angular velocity 
for arbitrarily located initial conditions (compatible with the restrictions 
and determined by the impulsive components of loading torque). Another 
example, this time from biology, was considered by Pavel [lo]. 

If a system is not  CWASy, then one may naturally state the compo- 
nentwise stabilization problem, [ll], [12]. From the proof of Theorem 7 it 
follows that its solution consists in the assignment of a-Gershgorin’s disks 
in the half complex plane Res -= 0 by a suitable linear state feedback. 
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Stability of an Exponentially Stabilizable System 

N. LEVAN 

Abstract -Let A be the generator of a C, semigroup T( t ) ,  12 0, and 
denote by S( t ) ,  r 0, the semigroup generated by A - K, mhere K is a 
bounded linear operator  on a Hilbert space. In this note we find n e c e s m  
and sufficient conditions for the original semigroup T ( t ) ,  t > 0, to be 
exponentially stable, gken that  the “feedback” semigroup S ( t ) ,  r > 0, is 
exponentially stable. Applications to feedback stabilization via a steady-state 
Riccati equation mill  then be  made. 

I. INTRODUCTION 

Let A be the generator of a strongly continuous (ix., of the class C,) 
semigroup of bounded linear operators T( r ) ,  t > 0, on an infinite dimen- 
sional  Hilbert  space H with inner product [ .  , ’1 and norm 11.11. Let K be a 
bounded  linear  operator on H and denote by S( t ) ,  > 0, the semigroup 
generated by A - K. In [l], Gibson proves the following theorem. 

Theorem: If T(r ) ,  r > 0, is contractive (IlT(r)ll< 1 for all t > 0), and 
strongly  stable  (for each x in H: IIT(t)xll --f 0, t + m), the operator K is 
compact.  Then, if S ( t ) ,  t > 0, is exponentially stable (I lS( t ) l l< fVe-ur,  
for  some M 2 1 and a > 0), so is T ( t ) ,  t > 0. 

This interesting result implies that if the linear dynamic system 

i = A x + B u ,  

where A is the  generator of a contraction semigroup and B is bounded 
linear  from another Hilbert space U(say) to H ,  is strongly stable but nor 
exponentially  stable. Then it is not possible to exponentially stabilize it, 
using a feedback control u = - Fx, where the state feedback operator F 
is compact. In other words, the resulting system 

i =  ( A -   B F ) x  

is, in this case, not exponentially stable. 
In this note, in view of the above result,.we wish to  study the following 

somewhat general problem: “under what conditions will a Co semigroup 
T ( t ) ,  t >  0,-with generator A-be exponentially stable, given that the 
semigroup S ( t ) ,  t > 0, generated by A - K, is exponentially stable?” This 
is studied in Section 11, first for a “general” operator K, then for the 
important case in which K is “generated” from a steady-state Riccati 
equation (SSRE). A necessary and sufficient condition for t he  semigroup 
T ( t ) ,  r > 0, to be exponentially stable is obtained in h s  case. The  Gibson 
result is then reproved for the case of a completely nonun i tq  contraction 
semigroup T(r ) ,  t > 0. and a compact operator B, assuming that  the 
SSRE admits a nonnegative solution. 

11. MAIN RESULTS 

We begin by recalling the  following results due to Datko [2] which play 

Theorem I :  For a C, semigroup T ( t ) ,  t > 0, on H ,  with generator A ,  
a key role in this section. 

the following conditions are equivalent. 
i) T(r),  t > 0, is exponentially stable. 
ii) There exist a self-adjoint positive operator Q > 0, and a self-adjoint 

strictly positive operator W, i.e., W >  ki for some k > 0, on H such that 
2 R e [ Q A x ,  x]  = - [ W x ,  x], for x in the domain 9 ( A )  of A .  

iii) The integral jgllT(t)xl12 df  is convergent for every x in H. 
Suppose now that the semigroup S(r ) ,  f 2 0, w<th generator A - K, is 

exponentially stable. Then by Theorem 1 ii) 
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