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Preface 

During the academic year 2002-2003, the Faculty of Automatic 
Control and Computer Engineering of Iaşi (Romania), and its 
Departments of Automatic Control and Industrial Informatics and of 
Computer Engineering respectively, celebrated 25 years from the 
establishment of the specialization named Automatic Control and 
Computer Engineering within the framework of the former Faculty of 
Electrical Engineering of Iaşi, and, at the same time, 40 years since the 
first courses on Automatic Control and Computers respectively, were 
introduced in the curricula of the former specializations of 
Electromechanical Engineering and Electrical Power Engineering at the 
already mentioned Faculty of Electrical Engineering. The reader 
interested to know some important moments of our evolution during the 
last five decades is invited to see the Addendum of this volume, where a 
short history is presented. And, to highlight once more the nice 
coincidences, it must be noted here that in 2003 our Technical 
University “Gheorghe Asachi” of Iaşi celebrated 190 years from the 
emergence of the first cadastral engineering degree course in Iaşi 
(thanks to the endeavor of Gheorghe Asachi), which is today considered 
to be the beginning of the engineering higher education in Romania. 

Generally speaking, an anniversary is a celebration meant to mark 
special events of the past, with festivities to be performed solemnly and 
publicly according to a specific ritual. And, if a deeper insight into the 
human nature and the social relations and their symbolism is 
considered, we must recognize in such a celebration an a posteriori 
constitution of an ad hoc rite of passage, which periodically actualize 
founding events marking the advance of some people’s life, of some 
social groups, of some organizations and, corresponding to their 
emerging viability, of concrete and adequate institutions which must 
fulfill some well defined and / or recursively definable intellectual, 
social and economic tasks. 

People celebrate fundamental events in many different ways. Taking 
into consideration that our celebration is the first one of this kind, the 
Faculty of Automatic Control and Computer Engineering and its two 
departments decided to mark their beginning moments by publishing 
two special books respectively. As a part of this double anniversary and 



ADVANCES IN AUTOMATIC CONTROL 

 

viii 

to honor its founding events, the Department of Automatic Control 
Industrial Informatics decided to publish the present volume, titled 
Advances in Automatic Control, meant to comprise also invited papers 
authored by well-known scientists who, in various forms, developed 
collaborative works with this department. 

As it can be seen from the contents, the themes dealt with in the 
papers of this volume cover a large variety of topics which 
correspondingly reflects the very different research interests of the 
authors: stabilization of distributed parameter systems, disturbance 
attenuation in stochastic systems, analysis and simulation of discrete 
event systems, fault detection, characterization of linear periodic 
Hamiltonian systems, stability of time delay systems, flow invariance 
and componentwise asymptotic stability, distributed control, 
parametrization of stabilizing controller, vibration control, predictive 
control, fuzzy control, intelligent decision and control, optimal control, 
computer aided control, robot and CIM control, DVD player control. 
Nevertheless, throughout this variety of interests we can distinguish two 
unifying features: the novelty of the approaches and / or results, which 
can be explicitly perceived by reading the book, and the other one, 
having for us the same importance but acting rather implicitly from the 
first conceptual idea about this book, which mirrors the high quality of 
the human and collaborative relations previously established between 
the invited authors and the members of our department. 

Finally, we wish to thank all the authors for their contributions and 
for their cooperation in making this book a successful part of the 
celebration marking the founding moments and the evolution of the 
Department of Automatic Control and Industrial Informatics. At the 
same time, we express our gratitude to AUTEC GmbH and especially to 
Dr. h. c. Hartmut Stärke, who financially contributed to the dissemination 
of this book and, during the last five years, partially supported the 
mobility of our students and researchers. Our thanks also go to Dana 
Serbeniuc, who electronically prepared the camera-ready manuscript, 
and, in this respect, to Mitică Craus and Laurenţiu Marinovici for their 
benevolent and valuable counseling. At last, but not at least, we express 
our gratitude to Kluwer, especially to Jennifer Evans and Anne Murray 
for their efficient and kind cooperation during the entire process the 
result of which is the present volume. 

It is not only a nice duty but also a great pleasure to acknowledge all 
of these contributions. 

 
       The Editor 



INTERNAL STABILIZATION
OF THE PHASE FIELD SYSTEM

Viorel Barbu
Department of Mathematics
”Al.I. Cuza” University, 6600 Iaşi, Romania
e-mail: vb41@uaic.ro

Abstract The phase-field system is locally exponentially stabilizable by a finite
dimensional internal controller acting on a component of the system
only.

Keywords: internal stabilization, phase filed system

1. Introduction
Consider the controlled phase field system

yt + `ϕt − k∆y = mu in Q = Ω× (0,∞)

ϕt − a∆ϕ− b(ϕ− ϕ3) + dy = 0 in Q

y = 0, ϕ = 0 on ∂Ω× (0,∞)

y(x, 0) = y0(x), ϕ(x, 0) = ϕ0(x) in Ω,

(1.1)

where Ω ∈ Rn, n = 1, 2, 3 is an open and bounded domain with smooth

boundary ∂Ω and a, b, `, k, d are positive constants. Finally, m is the
characteristic function of an open subset ω ⊂ Ω and u is the internal
control input.

This system models the phase transition of physical processes and in
particular the melting or solidification processes. In this latter case y
is temperature and ϕ is the phase function. The Stefan free boundary
problem is a limiting case of problem (1.1).

The local controllability of system (1.1) where internal control inputs
arise in both equations was proved in [1] via Carleman’s inequality for
linear parabolic equations (see [4]).

In [2] it was established the stabilization of null solution to (1.1) via
a Riccati equation approach. The main result obtained here, Theorem
1 below is a sharpening of the results obtained in [2] on the lines of [3].

1
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2. The main result
We set A = −∆ with D(A) = H2(Ω) ∩ H1

0 (Ω). Let {ψi}∞i=1 be an
orthonormal basis of eigenfunctions for the operator a, i.e.,

Aψi = λiψi, i = 1, ....

(Here each eigenvalue λi is repeated according to its multiplicity.)
Denote by As, 0 < s < 1, fractional powers of Q and set H = L2(Ω),

W = D
(
A

1
4

)
, V = D

(
A

1
2

)
, with the usual norms.

For each ρ > 0 denote by Wρ the open ball in W ×W

Wρ =
{

(y0, ϕ0) ∈W ×W ;
∣∣∣A 1

4 y0

∣∣∣2 +
∣∣∣A 1

4ϕ0

∣∣∣2 < ρ2

}
.

Now we are ready to formulate the main result of this paper.

Theorem 1. There are N and RN : D(RN ) ⊂ H×H → H×H, linear,
self–adjoint satisfying

C2

(∣∣∣A 1
4 y
∣∣∣2+ ∣∣∣A 1

4ϕ
∣∣∣2)≤ < RN (y, ϕ), (y, ϕ) > ≤C1

(∣∣∣A 1
4 y
∣∣∣2+ ∣∣∣A 1

4ϕ
∣∣∣2)

(2.1)

‖RN (y, ϕ)‖2
H×H ≤ C3

(∣∣∣A 1
2 y
∣∣∣2 +

∣∣∣A 1
2ϕ
∣∣∣2) (2.2)

and such that the feedback controller

u = −
N∑

i=1

(R11y(t) +R12ϕ(t), ψj)ωψj (2.3)

exponentially stabilizes (1.1) on Wρ. More precisely, for all (y0, ϕ0) ∈
Wρ we have

|y(t)|+ |ϕ(t)| ≤ C4e
−γt(‖y0‖W + ‖ϕ0‖W ) (2.4)

∫ ∞

0

(∣∣∣A 1
4 y(t)

∣∣∣2 +
∣∣∣A 1

4ϕ(t)
∣∣∣2) dt ≤ C5(‖y0‖2

W + ‖ϕ0‖2
W ). (2.5)

Here RN =
∥∥∥∥ R11 R12

R12 R22

∥∥∥∥ , (·, ·)ω is the scalar product in L2(ω) and

‖y‖W =
∣∣∣A 1

4

∣∣∣, | · | is the norm of H. Finally, < ·, · > is the scalar
product of H ×H.
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The idea of the proof already used in [2], [3] is in few words the follow-
ing. One proves first that the linearization system associated with (1.1)
is exponentially stabilizable (Lemma 1) and use this fact to construct a
feedback controller RN satisfying (2.1), (2.2) (Lemma 2). Finally, one
proves that controller (2.3) exponentially stabilizes system (1.1).

3. Stabilization of the linear systems
We shall rewrite system (1.1) as

y′ + kAy − a`Aϕ− `dy + `bϕ− `bϕ3 = mu

ϕ′ + aAϕ− bϕ+ dy + bϕ3 = 0 in Q

y(0) = y0, ϕ(0) = ϕ0 in Ω.

(3.1)

Equivalently,

d

dt

(
y

ϕ

)
+A

(
y

ϕ

)
+ F

(
y

ϕ

)
=
(
mu

0

)
(
y

ϕ

)
(0) =

(
y0

ϕ0

)
,

(3.2)

where

A =

∥∥∥∥∥ kA− `d −a`A+ `b

d aA− b

∥∥∥∥∥ (3.3)

F

(
y

ϕ

)
=

(
−`bϕ3

bϕ3

)
. (3.4)

Consider the linear control system

d

dt

(
y

ϕ

)
+A

(
y

ϕ

)
=
(
mu

0

)
(
y

ϕ

)
(0) =

(
y0

ϕ0

) (3.5)

i.e.,
y′ + kAy − a`Aϕ− `dy + `bϕ = mu

ϕ′ + aAϕ− bϕ+ dy = 0

y(0) = y0, ϕ(0) = ϕ0.

(3.6)

We set XN = span{ψi}N
i=1 and denote by PN the projector on XN .

We set

y = yN + zN , ϕ = ϕN + ζN ,

yN = PNy, ϕN = PNϕ, zN = (I − PN )y, ζN = (I − PN )ϕ



4 ADVANCES IN AUTOMATIC CONTROL

and rewrite system (3.6) as

ẏj
N + (kλj − `d)yj

N − (a`λj + `b)ϕj
N = (PN (mu), ψj), j = 1, ..., N,

ϕ̇j
N + dyj

N + (aλj − b)ϕj
N = 0, j = 1, ..., N,

(3.7)
żj
N+(kλj−`d)zj

N−(a`λj+`b)ζ
j
N=((I − PN (mu), ψj), j=N + 1, ...,

ζ̇j
N + dzj

N + (aλj − b)ζj
N = 0, j = N + 1, ...,

ζN (0) = PNy0, ϕN (0) = PNϕ0,

zN (0) = (I − PN )y0, ζN (0) = (I − PN )ϕ0.
(3.8)

Here

yN =
N∑

j=1

yj
Nψj , ϕn =

N∑
j=1

ϕj
Nψj ,

ζN =
N∑

j=N+1

zj
Nψj , ζN =

N∑
j=N+1

ζj
Nψj .

Lemma 1. There are yj ∈ L2(0,∞), j = 1, ..., N, such that for N large
enough the controller

u(x, t) =
N∑

j=1

uj(t)ψj(x) (3.9)

stabilizes exponentially system (3.6), i.e.,

|y(t)|+ |ϕ(t)|+ |uj(t)| ≤ Ce−γt(|y0|+ |ϕ0|), ∀t ≥ 0. (3.10)

for some γ > 0.

Here | · | denotes the norm in L2(Ω).
Proof. To prove Lemma 1 which is the main ingredient of the proof of
Theorem 1 we shall prove first the exact null controllability of the finite
dimensional system (3.7) for N large enough.

For u given by (3.9) system (3.7) becomes

ẏj
N + (kλj − `d)yj

N − (a`λj + `b)ϕj
N =

N∑
i=1

ui(t)(ψj , ψi)ω,

ϕ̇j
N + dyj

N + (aλj − b)ϕj
N = 0, j = 1, ..., N.

(3.11)

The dual system of (3.7) is the following

ṗj
N − (kλj − `d)pj

N − dqj
N = 0, j = 1, ..., N,

q̇j
N + (a`λj + `b)pj

N − (aλj − b)qj
N = 0.

(3.12)
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We set
BN = ‖(ψj , ψi)ω‖N

i,j=1,

where (·, ·)ω, is the scalar product in L2(ω). Recall that (3.11) is null
controllable on [0, T ] if and only if

B∗
N (pN (t)) = 0, ∀t ∈ (0, T ) (3.13)

implies that
pN (t) ≡ 0, qN (t) ≡ 0. (3.14)

By (3.13) we have

N∑
j=1

(ψj , ψi)ωp
j
N (t) ≡ 0, i = 1, ..., N. (3.15)

On the other hand, det ‖(ψj , ψi)ω‖ = 0 because otherwise system {ψj}N
j=1

is dependent on ω and this implies by unique continuation that {ψj}N
j=1

is linearly dependent on Ω. Hence pN ≡ 0 and by (3.12) it follows that
qN ≡ 0. Hence system (3.11) is null controllable and this implies that
there are {uj}N

j=1 (given in feedback form) such that system (3.11) is
exponentially stable with arbitrary exponent γ, i.e.,

|yj
N (t)|+ |ϕj

N (t)|+ |uj(t)| ≤ Ce−γt|yj
N (0)|+ |ϕj

N (0)|, ∀t ≥ 0. (3.16)

Substituting (3.9) into (3.8) and taking in account (3.16) we get

1
2
d

dt
(|zj

N |
2 + α|ζj

N |
2) + (kλj − `d)|zj

N |
2 − (a`λj + `b)zj

N · ζj
N+

+αdzj
Nζ

j
N + α(aλj − b)|ζj

N |2 = α(I − PN )(mu,ψj)ζ
j
N ,

where α > 0 is arbitrary.
For α suitable chosen (for instance for α ≥ 2a`) and N large enough

we see that

|zj
N (t)|2 + α|ζj

N (t)|2 ≤ e−γN t(|zj
N (0)|2 + |ζj

N (0)|2)+

+
∫ t

0
e−γN (t−s)

N∑
j=1

|uj(s)|2ds ≤ Ce−γ1
N t(|zj

N (0)|2 + |ζj
N (0)|2), ∀t ≥ 0,

where γ1
N > 0.

This completes the proof.
Next consider the optimal control problem
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Min
{

1
2

∫ ∞

0

(∣∣∣A 3
4 y(t)

∣∣∣2 +
∣∣∣A 3

4ϕ(t)
∣∣∣2 + |u(t)|2

)
dt

subject to (3.7), u =
N∑

j=1

uj(t)ψj

 = Φ(y0, ϕ0).
(3.17)

It is readily seen that

Φ(y0, ϕ0) ≤ C

(∣∣∣A 3
4 y0

∣∣∣2 +
∣∣∣A 3

4ϕ0

∣∣∣2) ∀y0 ∈ D
(
A

1
4

)
, ϕ0 ∈ D

(
A

1
4

)
.

(3.18)
Indeed, multiplying (3.6) by A

1
2 y and αA

1
2ϕ, respectively, we get

1
2
d

dt

(∣∣∣A 1
4 y(t)

∣∣∣2 + α
∣∣∣A 1

4ϕ(t)
∣∣∣2)+ k

∣∣∣A 3
4 y(t)

∣∣∣2 − a`
(
A

1
2 y(t), Aϕ(t)

)
−

−`d
(
y(t), A

1
2 y(t)

)
+ `b

(
ϕ(t), A

1
2 y(t)

)
+

+αa
∣∣∣A 3

4ϕ(t)
∣∣∣2 + α

(
A

1
2 y(t), dy(t)− bϕ(t)

)
=
(
mu(t), A

1
2 y(t)

)
.

For α sufficiently large we get

d

dt

(∣∣∣A 1
4 y(t)

∣∣∣2 + α
∣∣∣A 1

4ϕ(t)
∣∣∣2)+ δ

(∣∣∣A 3
4 y(t)

∣∣∣2 +
∣∣∣A 3

4ϕ(t)
∣∣∣2) ≤

≤ C
(
|y(t)|2 + |ϕ(t)|2 + |u(t)|2

)
, t > 0.

Integrating on (0,∞) and using Lemma 1 we get (3.18) as claimed.
Hence there is a symmetric continuous operator RN : W × W →

W ′ ×W such that

Φ(y0, ϕ0) =
1
2
< RN (t0, ϕ0), (y0, ϕ0) > ∀(y0, ϕ0) ∈W ×W. (3.19)

We set

RN =

∥∥∥∥∥ R11 R12

R12 R22

∥∥∥∥∥ .
We have also

Lemma 2. Let (y∗, ϕ∗, u∗) be optimal in (3.17). We have

u∗j (t) = −(R11y(t) +R12ϕ(t), ψj)ω, ∀t ≥ 0, j = 1, ..., N. (3.20)

Moreover,
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|RN (y, ϕ)|H×H ≤ C(‖y‖+ ‖ϕ‖), ∀(y, ϕ) ∈ V (3.21)

and

< RN (y, ϕ)(y, ϕ) >≥ ω(|y|2W + |ϕ|2W ) ∀(y, ϕ) ∈W ×W. (3.22)

Finally, RN is the solution to the Riccati equation

< kAy − `aAϕ− `dy + `bϕ,R11y +R12ϕ > +

+ < aAϕ+ dy − bϕ,R12y +R22ϕ > +

+
1
2

∣∣∣∣∣∣
N∑

j=1

(R11y +R12ϕ,ψj)2ω

∣∣∣∣∣∣ =
=

1
2

(∣∣∣A 3
4 y(t)

∣∣∣2 +
∣∣∣A 3

4ϕ(t)
∣∣∣2) , ∀(y, ϕ) ∈ D(A)×D(A).

(3.23)

The proof of Lemma 2 is exactly the same as that given in [2], [3] and
so it will be omitted.

4. Proof of Theorem 1
Consider the closed loop system

yt + kAy − `aAϕ− `dy + `bϕ− `bϕ3+

+m
N∑

i=1

(R11y +R12ϕ,ψj)ωψj = 0

ϕt + aAϕ− bϕ+ dy = 0, t ≥ 0,

y(0) = y0, ϕ(0) = ϕ0.

(4.1)

It is easily seen that for each (y0, ϕ0) ∈ H ×H this system has a unique
solution (y, ϕ) ∈ L2(0;T ;V ) × L2(0, T ;V ). Multiplying first equation
(4.1) by R11y +R12ϕ the second by (R12y +R22ϕ) and using (3.23) we
obtain after some calculation

d

dt
< R(y, ϕ), (y, ϕ) > +

∣∣∣A 3
4 y(t)

∣∣∣2 +
∣∣∣A 3

4ϕ(t)
∣∣∣2 ≤ C|(R11y+R12ϕ,ϕ

3)|.

On the other hand, we have

|(R11y +R12ϕ,ϕ
3)| ≤ C|R11y +R12ϕ| |ϕ|3L6(Ω) ≤

≤ C(‖y‖+ ‖ϕ‖)|ϕ|3L6(Ω) ≤

≤ C

(∣∣∣A 1
4 y
∣∣∣ 12 +

∣∣∣A 3
4 y
∣∣∣ 12 |ϕ|3L6 +

∣∣∣A 1
4ϕ
∣∣∣ 12 ∣∣∣A 3

4ϕ
∣∣∣ 12 |ϕ|3L6

)
≤
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≤ C

(∣∣∣A 1
4 y
∣∣∣ 12 ∣∣∣A 3

4 y
∣∣∣ 12 ∣∣∣A 1

4ϕ
∣∣∣3 +

∣∣∣A 1
4ϕ
∣∣∣ 12 ∣∣∣A 3

4ϕ
∣∣∣ 12 ∣∣∣A 1

4ϕ
∣∣∣3) ≤

≤ C

(∣∣∣A 1
4ϕ
∣∣∣3 ∣∣∣A 3

4 y
∣∣∣+ ∣∣∣A 1

4ϕ
∣∣∣ ∣∣∣A 1

4ϕ
∣∣∣3) ≤ C

∣∣∣A 1
4ϕ
∣∣∣2(∣∣∣A 3

4 y
∣∣∣2 +

∣∣∣A 3
4ϕ
∣∣∣2)+

+C
(∣∣∣A 3

4ϕ
∣∣∣2 ∣∣∣A 1

4ϕ
∣∣∣2) ≤ CΦ(y, ϕ)

(∣∣∣A 1
4 y
∣∣∣2 +

∣∣∣A 3
4ϕ
∣∣∣2) .

Hence for Φ(y, ϕ) ≤ ρ sufficiently small,

d

dt
< R(y, ϕ), (y, ϕ) > +

∣∣∣A 3
4 y
∣∣∣2 +

∣∣∣A 3
4ϕ
∣∣∣2 ≤ 0.

Finally, if < R(y0, ϕ0), (y0, ϕ0) > ≤ ρ small enough we arrive to con-
clusion.
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continuous and discrete case. The proposed solution is convenient for control 
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indicated. 
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1.  Introduction 
 A completely controllable linear time invariant system is considered 

 x(t) Ax(t) Bu(t)= + , (1) 

where nx R∈ is the state vector, mu R∈ is the control vector and A and B 
are matrices of the appropriate dimensions. 
 The optimal control problem refers to the criterion 

 
f

0

t
T T

t

1J [x (t)Qx(t) u (t)Pu(t)]dt
2

= +∫ , (2) 

TQ Q 0= ≥ , TP P 0= >  (the symbol T denotes the transposition). 
 The problem is to find the control u(t) that transfer the system (1) from 
the initial state 0

0x(t ) x=  to a given final state f
fx(t ) x=  (Anderson and 

Moore, 1991; Athans and Falb, 1966). The usual case that will be considered 
is fx(t ) 0= . The approach for a more general case, when the target set is 

fCx(t ) 0= , C∈R p×n is similar. 
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 A similar problem can be formulated for the discrete-time case (Kuo, 
1992), referring to the system 
 x(k 1) Ax(k) Bu(k)+ = +  (3) 

and to the criterion 

 
f

0

k 1
T T

k k
J x (k)Qx(k) u (k)Pu(k)

2

−

=

τ
= +∑ .  (4) 

 In (3) and (4), x(k) and u(k) denote the vectors x and u at the discrete 
moment kτ, k Z∈ , and τ is the sampling period (we shall consider τ=1). 
Equation (3) can be obtained via discretization of the equation (1). It is preferred 
the same notations for matrices although they have, of course, different values. 
Since the system is time invariant, we may consider t0=0 and k0=0. 
 The argument t or k will be omitted in the following relations if they are 
similar for both continuous and discrete case. 

From the Hamiltonian conditions one obtains 

 1 Tu(t) P B (t)−= − λ , nRλ∈ , (5) 

 
1 T

T

x(t) Ax(t) N (t), N BP B

(t) Qx(t) A (t)

−= − λ =

λ = − − λ
 (6) 

for the continuous case and 

 1 Tu(k) P B (k 1)−= − λ +  (7) 

 T

x(k 1) Ax(k) N (k 1)

(k) Qx(k) A (k 1)

+ = − λ +

λ = + λ +
 (8) 

for the discrete case. 

 If the 2n-order vector 
x 

γ =  λ 
 is introduced, the equations (6) and (8) can 

be written in the form 
 c(t) G (t)γ = γ  (9) 
and  
 d(k 1) G (k)γ + = γ , (10) 

respectively. In the above relations 

 c T

A N
G

Q A

− 
=  

− − 
, 

T T

d T T

A NA Q NA
G

A Q A

− −

− −

 + −
=  

−  
, (11) 

where T 1 TA (A )− −= . 
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 The solution to (9)/(10) can be expressed as 

 0(.) (.)γ = Γ γ , (12) 

where 0γ is the vector γ at the initial instant, and 

 11 12 2nx2n

21 22

(.) (.)
(.) R

(.) (.)
Γ Γ 

Γ = ∈ Γ Γ 
,    Γij  ∈ Rnxn,   i,j = 1,2, (13) 

is the transition matrix for G. 
 It is possible to compute γ(.) from (12) only if the initial value of the co-state 
vector λ is established. For this purpose, we explicit the vector x from (12) 

 0 0
2x(.) (.)x (.)11 1= Γ + Γ λ . (14) 

 Since fx 0= , one obtains 

 0 1 0
12f 11f x−λ = −Γ Γ , (15) 

where 11f 11 f(t ,0)Γ = Γ , 12f 12 f(t ,0)Γ = Γ  for the continuous case and 

11f 11 f(k )Γ = Γ , 12f 12 f(k )Γ = Γ for the discrete case. 
 This solution implies that 12fΓ is a nonsingular matrix. The conditions for 
non-singularity of this matrix will be discussed below. 
 Now, the system (9)/(10) can be solved and the optimal trajectory (14) is 
in the two cases: 

 1 0
11 12 12f 11fx(t) [ (t,0) (t,0) ]x−= Γ − Γ Γ Γ , (16) 

 1 0
11 12 12f 11fx(k) [ (k) (k) ]x−= Γ − Γ Γ Γ . (17) 

 From (12) and (15) it also follows 

 1 0
21 22 12f 11f(t) [ (t,0) (t,0) ]x−λ = Γ −Γ Γ Γ , (18) 

 1 0
21 22 12f 11f(k) [ (k) (k) ]x−λ = Γ −Γ Γ Γ . (19) 

 The optimal control for continuous case is obtained replacing (18) in (5). For 
the discrete case, it has to express λ(k+1) from (8) and then use (19) and (7): 

 1 T T 1 T T 1 0
21 22 21f 11fu(k) P B A Qx(k) P B A [ (k) (k) ]x− − − − −= − Γ −Γ Γ Γ . (20) 

 The control vector u(k) can be computed with (20) or replacing x(k) in 
terms of x0 from (17). In the both cases only the open loop control is 
obtained. In order to obtain the closed loop control, the vector x0 is replaced 
in (20) from (17). But this approach implies a considerable increase of the 
computing difficulties, because it has to compute in real time the inverse of a 
time variant matrix. A similar situation also appears in the continuous case. 
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 The method presented below avoids these difficulties. 
 In the sequel, it will be presented only the proof for the discrete time 
case. For the continuous time case only the final results will be indicated. 
Some of these results for continuous case are indicated in (Botan and Onea, 
1999). 

2. Main results 

2.1. Basic relations  
 The main idea of the method is to perform a change of variable, so that 
one of the nxn matriceal blocks of the system matrix to be a null matrix: 

 (.) U (.)γ = ρ ,   
x(.)

(.)
v(.)
 

ρ =  
 

 (21) 

with  

 2nx2nI 0
U R

R I
 

= ∈ 
 

,  1 I 0
U

R I
−  
=  − 

. (22) 

 I is the n x n identity matrix and R is a n x n constant positive defined 
matrix. 
 From (21) and (22) results 

 (.) Rx(.) v(.)λ = + . (23) 

 The equation for the new variables in the discrete time case is 

 (k 1) H (k)ρ + = ρ , (24) 

where 

 11 121 2nx2n nxn
d ij

21 22

H H
H U G U R , H R , i, j 1,2

H H
−  

= = ∈ ∈ = 
 

, (25) 

 Matrix H21 is 
 21 11 12 22 21H RG RG R G R G= − − + + ,  

where ijG ,i 1,2=   are the n x n matriceal blocks of dG . Using (11), one 
obtains 

 T T
21H (I RN)A R (I RN)A Q RA− −= + − + −   

or  

 T T 1
21H (I RN)A [R Q A (I RN) RA]− −= + − − + .  

 If we impose 
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 T 1R Q A (I RN) RA−= + +  (26) 
then 
 21H 0= . (27) 

 Note that the matrix I+RN is non-singular and also that all the inverse 
matrices which appear in the following relations exist. 
 One remark that (26) is the discrete Riccati equation for the LQ problem 
with infinite final time. 
 Using (26), from (11) and (25) it also follows 

 1 T T T
11 12 12 22 11H (I NR) A; H G NA ; H H (I RN)A− − − −= + = = − = = + . (28) 

 The transition matrix for H is k 2nx2n(k) H RΩ = ∈ . One obtains for Ω(k) 
a similar form as for H 

 

11 12

22

(k) (k)
(k)

0 (k)
Ω Ω 

Ω =  Ω 
 (29)

 
and  

 
k 1

k k i k i 1
11 11 22 22 12 12k 11 12 22

i 0
(k) H , (k) H , (k) H H H H

−
− −

=
Ω = Ω = Ω = =∑ .(30) 

 The transition matrix Γ(k) can be expressed in terms of the transition 
matrix Ω(k) taking into account (22), (25) and (29) and has the form: 

 11 12 121

11 12 22 12 22

(k) (k)R (k)
(k) U (k)U

R (k) R (k)R (k)R R (k) (k)
− Ω −Ω Ω 

Γ = Ω =  Ω − Ω −Ω Ω +Ω 
.(31) 

 The solution of system (24) is  

 
0 0

11 12
0

22

x(k) (k)x (k)v

v(k) (k)v .

= Ω +Ω

= Ω
 (32) 

 The initial vector v0=v(0) results from (15) and (23) for k=0 and it is 

 0 1 0
12f 11fv ( R)x−= − Γ Γ + . (33) 

 Substituting (30), (31) into (33) it results 

 f

f

k0 1 0 1 0
12f 11f 12k 11v x H H x− −= −Ω Ω = − . (34) 

 The optimal control is obtained from (7), (8) and (23) as  

 1 T T 1 T Tu(k) P B A (R Q)x(k) P B A v(k)− − − −= − − − .  

 Replacing (32) and (34) it results 
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 f

f

k1 T T 1 T T k 1 0
22 12k 11u(k) P B A (R Q)x(k) P B A H H H x− − − − −= − − + . (35) 

 One can remark that the optimal control can be expressed as 

 f su(k) u (k) u (k)= + , (36) 
where 
 1 T T

fu (k) P B A (R Q)x(k)− −= − −  (37) 

is the feedback component and 

 f

f

k1 T T k 1 0
s 22 12k 11u (k) P B A H H H x− − −=  (38) 

is a supplementary component that depends on the initial state x0=x(0). 
 Note that in (37) only the term 1 T Tu(k) P B A Rx(k)− −= − is a proper 
feedback component and it is identical with the control vector obtained in 
the LQ problem with infinite final time. 
 Therefore the real time computing of the optimal control u(k) implies to 
establish a usual state feedback component uf(k) and a supplementary  
component us(k). The last one contains only one time variant element: the 
transition matrix k

22H , which evidently can be recursively computed. 
 For the continuous time case, the transformed system can be written as 

 (t) H (t)ρ = ρ , (39) 

with 

 1
c T

F N
H U G U

0 F
− − 

= =  
− 

, (40) 

where  
 F A NR= − . (41) 

 The form (40) is obtained if we impose 

 TRNR RA A R Q 0− − − = , (42) 

that is R satisfies the Riccati algebraic equation that appears in the 
continuous LQ problem with infinite final time. 
 The transition matrix corresponding to H is 

 12(t, ) (t, )
(t, )

0 (t, )
Ψ τ Ω τ 

Ω τ =  φ τ 
, (43) 

where (.)Ψ  and (.)φ  are the transition matrices for F and -FT, respectively and 

 12 t
(t, ) (t, )N ( , )d

τ
Ω τ = Ψ θ φ θ τ θ∫ . (44) 
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 Since 1(.) U (.)U−Γ = Ω , one obtains 

 12 12

12 12

(.) (.)R (.)
(.)

R (.) R (.)R (.)R (.) R (.)
Ψ −Ω Ω 

Γ =  Ψ − Ω − φ φ + Ω 
. (45) 

 The solution to the system (39) is 

 
0

0

x(t) x
(t,0)

v(t) v

  
= Ω   

    
, (46) 

where 
 0 1 0 1 0

12f 11f 12f f f fv x x , (t ,0)− −= −Ω Ω = −Ω Ψ Ψ =Ψ  (47) 

with 

 12f 12 f(t ,0)Ω =Ω  and 11f 11 f f(t ,0) (t ,0)Ω =Ω = Ψ .  

 From (46) and (47) it follows 

 
1 0

12 12f f
1 0

12f f

x(t) [ (t,0) (t,0) ]x

v(t) (t,0) x .

−

−

= Ψ +Ω Ω Ψ

= −φ Ω Ψ
 (48) 

 The optimal control u(t) is 
 f su(t) u (t) u (t)= + , (49) 

where the feedback component is 

 1 T
fu (t) P B Rx(t)−= −  (50) 

and the supplementary component is 

 1 T 1 0
s 12f fu (t) P B (t,0) x− −= − φ Ω Ψ  (51) 

and depends on the initial state x0. 
 As in the discrete case, the last component contains only one time variant 
element, namely the transition matrix (t,0)φ ; this matrix can be recursively 
computed. 

Remark 1. It is usually desired to maintain x(t) = 0 for t > tf. For this 
purpose it is necessary to adopt u(t) = 0 for t > tf.□ 

Remark 2. The performed simulation tests have indicated that a significant 
increase of the sampling period only for the supplementary component leads 
to a small difference in the system behavior. This aspect is important 
because offers the possibility of the decrease of the real time computing 
volume. □ 
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2.2  The existence of the solution 
 As results from the previous relations, the problem has solution if the matrix 

12f 12fΓ = Ω  is non-singular. Indeed, one remarks from (15) that there is a 
unique initial vector 0 (0)λ = λ  for a given 0x x(0)=  if the matrix 

12f 12 f(t ,0)Γ = Γ  is non-singular and then the formulated problem has solution. 
The condition for non-singularity of the matrix 12fΓ is given by the following 

Theorem  If the pair (A,B) is completely controllable, then matrix 12fΓ  is 
non-singular. 

Proof. For the continuous time case, from (31) and (44) one obtains 

 
f

T
f f

t
F(t ) F (t )1 T

12 f 12 f f
0

(t ,0) (t ,0) e BP B e d (t ,0)−θ −θ−Γ = Ω = − θφ∫ . (52) 

 Since the transition matrix f(t ,0)φ  is non-singular, 12 f(t ,0)Γ is non-

singular if the matrix 
Tft F 1 T F

f 0
(t ,0) e BP B e dσ − σΠ = σ∫  is non-singular. One 

can prove (Botan, 1991) that f(t ,0) 0Π >  if (A,B) is completely controllable 
and thus the theorem is proved.□ 
 For the discrete time case, the proof is similar, but some supplementary 
transformations are necessary because the matriceal block 

T n
12H NA R−= − ∈  of the matrix 2nx2nH R∈  contains the factor A–T. 

 Firstly, we will establish another expression for the matriceal blocks Hij, 
i,j=1,2, given by (28). From (28) one obtains 

 1 1 1
11H A (R N)R− − −= + . (53) 

 Let us denote the matrix 

 1 1 1 1 TX R N R BP B− − − −= + = + . (54) 

 Multiplying (54) with X and then with R, it results  

 1 TR X XBP B R−= + . (55) 

 Multiplying (55) with B, one obtains 

 1 TRB XBP (P B RB)−= + .  

 This relation is multiplied with T 1(P B RB)−+ , then with TB R and then 
we subtract from R: 

 T 1 T 1 TR RB(P B RB) B R R XBP B R− −− + = − . (56) 
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 Let us denote 
 TP P B RB= +  

 1 TN BP B−= . 
(57)

 
 Using these notations and (55), relation (56) becomes 

 X R RNR= − . (58) 
 From (54) and (58) one obtains 

 1 1(R N) R RNR− −+ = −  (59) 
and then 
 1 1 1

11H R (R N) A (I NR)A− − −= + = −  (60) 

or  

 11H A BK F= + = , 1 TK P B RA−= − . (61) 

 From (28) one obtains 

 T T
22 11H H F− −= = , (62) 

 T T T T T T T T
12H NA NA F F NA A (I RN)F (N NRN)F− − − − − −= − = − = − − = − − . 

 But from (59) it follows N NRN N− = , so that 

 T
12H NF−= − . (63) 

 Having in view (61), (62) and (63), the matrix H can be written in the form 

 
T

T

F NF
H

0 F

−

−

 −
=  
  

.  

 Now we introduce the nonsingular matrix 

 T

I 0

0 F−

 
χ =  

 
  

and carry out the transformation 

 1
T

F N
D H

0 F
−

−

 −
= χ χ =  

  
  

and analogous for the corresponding transition matrix 

 11k 12k1

2k
(k) (k)

0
− ∆ ∆ 

∆ = χΩ χ =  ∆ 
, (64) 
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 k
11k F∆ = , T k

22k (F )−∆ = , 
k 1

i k i 1
12k 11 12 22

i 0
D D D

−
− −

=
∆ =∑ .  

 For k=kf 

 

f
f

f
f f

k 1
k 1i i

12f 12 f 11 12 22 22
i 0

k 1
k 1 k 1i T i T T

i 0

(k ) D D D D

F N(F ) (F ) (F ) ,

−
−−

=
−

− −− −

=

∆ = ∆ = =

= − = −Π

∑

∑  (65)
 

where  

 
fk 1

i 1 T i T

i 0
F BP B (F )

−
−

=
Π = ∑ .  

 We shall prove now that Π is a positive defined matrix (Π>0) if the pair 
(A,B) is completely controllable. Indeed, if (A,B) is controllable, (F,B) is 
controllable, with F=A+BK. 
 Since P>0 and R>0, P  given by (57) is also positive defined, and also 1P 0− > ; 
in this case, there is a unique positive defined matrix V such as T 1VV P−= . 
 We can express 

 
fk 1

i T i T

i 0
F BV(BV) (F )

−

=

Π = ∑   

 n 1 n 1
V

[BV FBV ... F BV] [B FB ... F B] ...
V

− −
 
 =  
  

.  

 Since the last matrix is nonsingular and n 1[B FB ... F B]−  is of rank n, 
the matrix n 1[BV FBV ... F BV]−  is of the same rank, thus the pair 
(F,BV) is completely controllable and the matrix Π is positive defined. Since 
F-T is nonsingular, from (65) it follows that 12f∆  is nonsingular. 
 From the transformation (64) we obtain T

12f 12f F∆ = Ω . Since 12f∆  and 
FT are nonsingular, 12fΩ  is nonsingular and 12f 12fΓ = Ω is nonsingular and 
the theorem is proved also for the discrete case. ■ 

3. Simulation results 
 Some simulation tests were performed for different conditions and different 
weight matrices in the criterion for both continuous and discrete case. The 
results presented bellow refer to a continuous system (1) with 
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0 20 0

A , B
3.5 19 6

   
= =   − −   

 

and to the criterion (2) with Q = diag (1, 3)  and  P=p=0.7. 
 The corresponding matrices obtained via discretization were adopted for the 
discrete case. The sampling period is τ=0.002 s. The terminal moments are t0=0 
and tf=0.3 s (and corresponding kf=150). The initial state is x(t0) = [50  0]T . 
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Figure 1. The behavior of the system for continuous and discrete cases 

 Figure 1 presents the behavior of the system for both continuous and 
discrete cases; one can remark that the curves are practically the same in the 
two cases. The more significant differences between continuous and discrete 
case appears if the sampling period is increased. Figure 2 presents the same 
situation for the discrete case, but indicates in addition the behavior for k>kf, 
when the control u(k)=0 is adopted (see Remark 1).  
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x 1  

x 2  
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Figure 2. The behavior of a system before and after the final time 

 Figure 3 presents a comparison between the basic discrete case and the 
case when the sampling period τ was increased by ten times only for the 
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supplementary component (see Remark 2); one can remark that the 
differences are not significant, especially referring to the states variables.  

0 0 . 05 0. 1 0 .1 5 0 .2 0 .2 5 0 . 3
-4 0

-3 0

-2 0

-1 0

0

1 0

2 0

3 0

4 0

5 0

x 1  

x 2  

u  

 
Figure 3. The effect of the sampling period increase for the supplementary component 

 It was performed a comparison with the similar linear quadratic problem but 
with free end-point. The difference is that in the last case the state vector does not 
arrive in zero at the final time, but the control variable is significantly smaller.  

4. Conclusions 
 The linear quadratic optimal problem for continuous and for discrete case 
is studied; the results are presented especially for the discrete case. 
 A new method is presented and it is obtained a very convenient form for 
the feedback optimal control law. 
 Some considerations about the existence of the solution are presented. 
 The theoretical and simulation results indicate a similarity between the 
continuous and discrete time cases. 
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– A DISTINCT DIRECTION IN INTELLIGENT 
CONTROL 

Emil Ceangă and Laurenţiu Frangu 
University "Dunărea de Jos" of Galaţi  
Str. Domnească 111, 2200 Galaţi, Romania 
E-mail: Emil.Ceanga@ugal.ro 

Abstract This paper presents an alternative approach of intelligent control: the pattern 
recognizing systems. The main idea is to endow the control system with the 
ability to learn from the experience generated by the interaction with the 
environment (the control object and the external world). Learning implies 
generalization and abstraction, through recognition of synthetic entities, which 
concentrate the essence of the past experience. The notions allowing learning, 
used in this approach, are called "control situations". The historical evolution of 
these notions is briefly exposed and they are analytically defined. Some results 
of the authors, presented in the paper, concern: the usefulness of each control 
situation in the hierarchical structure of intelligent control, the properties of the 
clusters, the learning automaton and the connections with other control 
techniques. For illustrating the approach, some applications of the pattern 
recognition control systems are presented. 

Keywords: intelligent control, pattern recognition, control situations, hierarchy, adaptive 
control, strategy 

1. Introduction 
 A fundamental property of the intelligent control systems is their ability 
to extract, through learning, the relevant information from the environment. 
This action implies generalization and abstraction, which are frequently 
performed through pattern recognition (PR). 
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 The use of the PR methods, in the space of the observations on the 
controlled process, started at the end of the '50s [Widrow, 1962, 1964]. A 
remarkable application of this period was the pattern recognition control 
system (PRCS) for an inverted pendulum; the neural learning automaton was 
built using the technology of those years (memistors). PR techniques for 
control purposes were also used in [Taylor, 1963], [Waltz and Fu, 1966]. In 
the paper [Nikolic and Fu, 1966], a milestone in the field, the control of a 
dynamic system with unknown properties is performed by a PRCS. Learning 
is driven by an uncertain teacher, who learns simultaneously with the PR 
controller. The paper presents the first theoretical and qualitative results, 
regarding the convergence of the learning processes. 
 In some papers of the '60s, the generic term of "situation" was used 
instead of "pattern", having the meaning of an abstract entity, relevant for the 
control and diagnosis of the systems. The term was mainly adopted by the 
researchers in the field of automatic control, such as Aizerman, in the papers 
that theoretically founded the method of potential functions [Aizerman et al., 
1965, 1966]. A refinement of this concept appears in the papers [Drăgan and 
Ceangă, 1968], [Ceangă, 1969a, 1969b], [Ceangă et al., 1971a, 1971b]. 
 A paper that had an important influence on the evolution of the intelligent 
control is [Saridis, 1979]. Saridis revealed that intelligent systems are able to 
perform behavioral learning, i.e. they classify the information and take 
decisions through PR. This means that the intelligent systems perform 
generalization, through learning, in order to recognize some synthetic 
concepts, concerning the environment they are interacting with. The detailed 
description of such synthetic concepts, referred to with the generic term of 
"control situations", was approached in [Ceangă et al., 1981, 1984, 1985a, 
1985b, 1991]. Recent papers, like [Seem and Nesler, 1996], [Ronco and 
Gawthrop, 1997a, 1997b], [Grigore, 2000], [Frangu, 2001], make use of the 
PRCS, in neural implementation. In general, the present approaches in 
intelligent control (including the PRCS approach) aim at the analogy with 
the human mind: [Frangu, 2001], [Truţă, 2002]. In the above mentioned 
papers, the PR techniques are used to form abstract concepts, hierarchically 
structured, according to the principle "Increasing Precision on Decreasing 
Intelligence" (IPDI) [Saridis, 1988, 1989]. 
 The purpose of this paper is to present some recent results of the authors 
in the field of PRCS. The connections with previous results are also 
mentioned, in order to highlight algorithms and techniques that maintain 
their up-to-dateness. By structuring in a hierarchy the concepts of control 
situations, it will become clearer how PRCS perform the essential functions 
of the intelligent systems. According to Albus ([Albus, 1991]), these are: 
perception, model of the world, value judgment and behaviour generation. 
Some unsolved aspects will also be presented; in the opinion of the authors, 
they are important for the evolution of the field. 
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2. Control situation approaches 
 Let us consider a control structure, such as that presented in figure 1, 
where the controlled process is a sampled dynamic system, with unknown or 
partially known properties. The particular variants of the generic concept of 
"Control Situation" depend on the function performed by the PRCS. They 
are described in the sequel. 

 
Figure 1. Control of the process, through the learning PR system 

 1. Output situation. Let yi, i=1,...,p, y ∈ Yd, be the discrete values of the 
output variables, out of the set Yd of admissible values, which represent 
significant effects of the input variables v (measurable disturbance) and u 
(command). It is called output situation the set Si of the variables observed 
from the "environment", w, that determine the discrete value yi of the output, 
according to f, the causal input-output relationship of the controlled process: 

 }  ;  ;{ dii
f

i YyywwS ∈→= . (1) 

 Let  
  ),(),...,1(),(),...,1([)1( ba nktuktuntytytw −−−−−−=−  

 ( 1),..., ( )]Tcv t k v t k n− − − −   (2) 

be the vector of the observations from the environment, which is used to 
predict the value y(t), where k is the dead time. The output situation Si is: 

})(  ;)]()1([)()]1([  );1({ djij
j

i YtytytwytytwyMintwS ∈−−=−−−= .(3) 

 The membership of the vectors, with respect to the output situations, is 
given by the data recorded in the process (the discrete value of the output, at 
the moment t). For this reason, a supervised learning is possible, requiring no 
human teacher. The recognition of the output situations may be used for the 
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predictive evaluation of the effects of the commands addressed to the 
controlled process. 
 2. Command situation. Let us assume there are p admissible values of 
the command input. They form the set Ud of the discrete admissible 
commands: ui, i=1,...,p. Using the output, the command and the measurable 
disturbances, the vector of observations is defined: 

 a b c( ) [ ( ),..., ( 1), ( 1),..., ( ), ( ),..., ( )]Tz t y t y t n u t k u t k n v t k v t k n= − + − − − − − − − ,(4) 
where na, nb and nc are finite integers and k is the dead time (expressed in 
sampling periods). The learning system has to make use of the "experience" 
accumulated up to the moment t, with the purpose of determining the 
function that assigns to any vector of observations, z(t), the discrete 
command, ui(t), i=1,...,p, that maximizes the indicator Φ. It is called 
command situation the set Si of the vectors z, for which the discrete 
command ui is optimum, regarding the fulfillment of the objective: 

 }),,(),(Max:{ djij
j

i UuzuzuzS ∈Φ=Φ= . (5) 

 Consequently, to determine the control law means to deduce, through 
learning, the discriminant functions of the command situations Si. The 
essential problem is to build the teacher of the PR controller. In some cases, 
the teacher may be a human expert or a decision system, based on pre-
existing control systems. However, in the general case, the teacher can be a 
predictor that recognizes output situations. 
 Teaching the teacher and teaching the controller are performed 
simultaneously, in the frame of a dual control procedure. This one will be 
presented with the assumption that k=0, in order to simplify the expressions. 
At the current moment, j, the following operations are performed: 
 a – The generation of a first approximation of the current command by 
recognition of the command situation. The reference for the next moment, 
j+1, is already known: )1( +jyr . The vector 

( ) [ ( 1), ( ), ..., ( 1), ( 1), ..., ( ), ( ), ..., ( )]Tr a b cz j y j y j y j n u j u j n v j v j n= + − + − − − (6) 

will be assigned (by recognition) to one of the classes c
c
i piS ,...,1  , = . Let 

suju =)( , ds Uu ∈ , be the discrete command associated to the recognized 
command situation. The recognition controller did not yet learn, so the 
chosen command su  is considered to be the answer of the "student" that has 
to be compared to that of the "teacher". 
 b – Based on the experience accumulated up to the current moment, j, the 
predictor recognizes output situations. It assigns the vectors  
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 ( ) [ ( ),..., ( 1), , ( 1),..., ( ), ( ),..., ( )]Ti a i b cw j y j y j n u u j u j n v j v j n= − + − − −  (7) 

( 1,..., c i p= ) to the classes o
kS , opk ,...,1= , corresponding to the discrete 

values ky  of the prediction )1(ˆ +jy . Making use of these predictions, the 
answer of the teacher is determined, according to the decision rule: 

 mrmri
i

ujujyjwyjyjwyMin =⇒+−=+− )(||})1())((||||)1())((||{ . (8) 

 c – The responses of the PR controller ( c
sSjz ∈)( , that is suju =)( ) and 

of the teacher ( muju =)( ) are used for enriching the instruction set of the 
controller and for teaching it. 
 d – The command muju =)(  is effectively applied to the process and the 
response )1( +jy is recorded. This response is used to enrich the instruction 
set of the teacher, for predicting the output situations. 
 The PRCS can be applied to controlled processes having unknown, 
nonlinear (possible variant) dynamics, whose objective is to minimize a 
quadratic criterion ([Ceangă et al., 1984, 1985a]. It can have the expression: 

 }/)())()({( 22 ttukyktyEJ r ρ+−+= , (9) 

where ρ is a weighting factor for the command effort. As previously, the 
block for the evaluation of the objective fulfillment (see figure 1) contains a 
PR predictor. This one recognizes the output situations and teaches the 
learning controller, that recognizes the command situations.  
 3. Adaptation situation. Let us consider an environment that changes its 
properties slowly. The fulfillment of the control objective requires the use of 
a control law 

 ))(( tzu Ψ= , (10) 
where z(t) is defined by (4). The command (10) corresponds to particular 
properties of the controlled process. When the environment evolves, it is 
necessary to adapt the control law, by a finite number of adjustments, 

)]([ zAi Ψ . The efficiency of the control law is determined by a set of 
measurable variables that form the "influence" vector, q. It is called 
adaptation situation ([Ceangă et al., 1991]) the set Si of vectors q, 
corresponding to the particular adjustment of the control law, Ai(.), which 
allows maintaining the control efficiency: 

 ]}),([]),([   :{ qzAqzAMaxqS ik
k

i Φ=Φ= . (11) 

 Adaptation through recognition of such situations belongs to the family 
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of multi-model techniques ([Narendra and Balakrishnan, 1997], [Dumitrache 
and Mărgărit, 1999]). It represents an alternative to the classical adaptive 
control solutions, which frequently require complex and risky recursive 
computations. 
 4. Strategic situation. Let us consider a control system that can use, 
depending on the properties of the environment, more control strategies: 

 ( ) ( ( )), 1,...,j
ju t T z t     j r= =  , (12) 

where the function Tj(.) defines the j-th command strategy and z(t) is the 
vector of observations (for instance, that in (4)). It is called a strategic 
situation (from [Ceangă, 1969a, 1985b]) the set of vectors of observations 
z(t), corresponding to the best control strategy, out of the r possible 
strategies: 

 ))]}(([))](([max /)({ tzTtzTtzS jk
k

j Φ=Φ= , (13) 

where Φ(.) measures the fulfillment of the objective. 
 The strategic situations may be defined mainly for complex systems, 
having various interactions and constraints, such as the biotechnological, 
economical or production systems. Every strategy concerns a particular 
tactical objective, which temporary gets the priority in order to fulfill the 
global objective. 
 5. Diagnosis situation. The behaviour of the dynamic systems may be 
evaluated by a set of indicators, called local criteria, which can make use of 
discrete information extracted by PR techniques. A global evaluation 
criterion may also be added, for the entire system. Let r be the vector of local 
criteria. It is called diagnosis situation the set of vectors in the space of local 
criteria, corresponding to a particular global evaluation of the controlled 
process. Some examples of discrete evaluations, defining the diagnosis 
situations, are: "admissible", "warning situation i", "emergency situation j", 
"damage regime", etc., where i or j have particular meanings for the 
supervised process. 
 Figure 2 presents the hierarchical structure of a control system, based on 
control situations recognition (adapted from [Saridis, 1989]). Every 
hierarchical level requires the fulfillment of a different objective, expressed 
in concepts with different levels of abstraction. The abstraction level 
increases along with the hierarchy level because, according to the IPDI 
principle, superior levels do not require precision. The elimination of the 
details (reducing the entropy) may be performed by processes similar to 
those implied by the formation of general concepts, starting from a set of 
less general ones. In the following two chapters, the reasons for using PRCS 
and their particular learning algorithms will be presented separately, for the 
execution level and for the upper levels. 
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Figure 2. Hierarchical structure of a control system, recognizing control situations 

3. Control situations for the upper hierarchical levels 

3.1.  Systems based on control situation recognition 
 The control techniques based on adaptation, strategic or diagnosis 
(supervision) situations are already used in some papers. They appear 
explicitly or implicitly (that is, without using the terms introduced in this 
paper). 
 A. The control structures that make use of the adaptation situation 
recognition have the advantage of a fast adaptation of the controller. 
[Frangu, 2001] presents two applications where the structure of adaptation 
through situation recognition corresponds to that in figure 3. Let  

 Xxntutuntytytx T
ba ∈−−+−=     ,)](),...,1(),1(),...,([)( , (14) 

be the vector of observations, assigned by the recognition automaton to one 
of the adaptation situations , 1,...,a

iS   i p= . The result of the classification 
aims at selecting the best fit controller, according to the recognized situation. 
 In one of the mentioned applications, the controlled object is an elastic 
mechanical transmission, built at Laboratoire d'Automatique de Grenoble 
(figure 4). It is used as benchmark for robust and adaptive control 
techniques, in [Landau et al., 1995]. Depending on the mechanical load, the 
multiresonant frequency response modifies considerably its shape (figure 5). 
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This behaviour limits the performances obtained by robust and adaptive 
control techniques. Instead, the recognition of the adaptation situation is 
proposed. 

 
Figure 3. Pattern Recognition Adaptation Structure (analogous with gain-scheduling) 

 
Figure 4. Structure of the position control system 

 
Figure 5. Frequency response of the controlled system, for three different dynamics 

 The vector of observations is: 

 Ttututytytytytx )]3(),2(),3(),2(),1(),([)( −−−−−=  (15) 
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and the classification algorithm is based on the minimum distance to the 
prototypes of the classes. In addition, the selection automaton requires a 
supervisor, based on diagnosis situation recognition. When the supervisor 
detects the stationary regime, it doesn't allow the controller switching (the 
adaptation situations overlap in this regime, so the selection automaton runs out 
of information, as in any identification problem, when the identified dynamic 
object lacks excitation). 
 In [Ronco, 1997a, 1997b] a "Local Model Network" (LMN) structure is 
used. It contains local linear models and corresponding local controllers, one 
pair for each functioning regime of the process. The recognition of the local 
model and, implicitly, that of the controller, is based on the vector Φ∈Φ X , 
which is part of the vector of observations (14). Within this method, the 
adaptation situations correspond to a pre-established partition. The recognition is 
performed by a set of RBF neurons, centered in a uniform net of points of ΦX . 
A different approach, proposed in [Jordan and Jacobs, 1994], is called "Adaptive 
Mixture of Experts". Here, the partition of the space ΦX  is performed through 
learning, by a multilayer perceptron. Consequently, the domains of the classes 
(adaptation situations) are not equal, but depend on the approximation ability of 
each local model. 
 B. The idea of switching the strategies, which justifies the concept of 
strategic situation, assumes that the current control objective can change, 
during the control of the process. The objective can change as a result of the 
evolution of the subprocesses (for instance: changes in behaviour, failure of the 
local control loops or even failure of the superior level) or of the interaction with 
the higher organized environment (for instance: human). This change can 
require to switch the controller, at the execution level, or to switch the method 
for the coordination of the subprocesses, at the middle (coordination and 
adaptation) level. Intuitively, the strategies may be switched through instructions 
like: "switch to a survival strategy, because a local loop is temporarily 
unavailable", "switch from cooperation with other agents to competition", 
"switch from stimulation of the bioreactor population to the rejection of the 
parasitic population", "switch from emergency medical care to the 
convalescence recovery method". The corresponding switching decisions may 
belong to the upper level (organization and scheduling) or to the middle level. 
There already are some well grounded papers, which investigate the properties 
of such systems, possibly in uncertain conditions. Among these, [Kuipers, 1994] 
studies the validation of heterogeneous control laws and [Johansson, 1996, 
1997] present an analysis method for the stability of the heterogeneous 
controlled systems, regardless the type of the controller. The method makes use 
of piecewise defined Lyapunov functions, one for each validity domain of local 
controllers. The result obtained in this approach is also useful for the analysis of 
the systems based on adaptation situation and strategic situation recognition. 
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 Among the problems raised by the heterogeneous command, those 
concerning the switching decision lead to using a strategic situation 
recognition automaton. The advantages of including such a subsystem are: 
 - The automaton is a learning one, meaning it has the ability to learn from 
the examples, including unsupervised learning. In this variant, the 
recognition decision requires no information provided by the human expert, 
but uses the similarity of the examples, based on a measure of the objective's 
fulfillment. 
 - It can model complex discrete approximation functions, whose 
analytical computation may be unreachable. To materialize these functions, 
both classical recognition algorithms and discrete output neural networks can 
be used. 
 A simple example of using the strategic situations is presented in 
[Frangu, 2002], starting from the known benchmark, the “backer truck”. 
Obviously, there are initial positions of the truck who don’t accept solutions, 
such as the positions where the backside of the truck faces the wall, at low 
distance (figure 6). If starting from these positions, the backwards docking 
fails, regardless the chosen controller. In order to find out whether the initial 
position allows a solution or not, a recognition automaton will learn from the 
experience accumulated during the previous docking attempts (including the 
unsuccessful ones). The objective of the automaton is to predict if the current 
controller succeeds to dock, using the information of the initial position. If 
the automaton predicts the failure, the control system has to switch to a 
controller having a different objective than immediate docking (in this case, 
to drive forward, to the distance that allows secure docking). 

  

Figure 6. Docking with start from initial positions (2, 1, 0) and (2, 1, π/2) 

 The initial position contains the truck backside coordinates: x (along the 
wall), y (distance to the wall) and orientation angle with respect to the wall, 
θ. Figure 6 presents two docking attempts, whose initial coordinates x and y 
are identical, but presenting different initial angles and different docking 
results. The vector of observations is the initial position: 

 Tyxz ],,[ θ= . (16) 

 The strategic situation to be recognized is the success or failure of the 
docking process, starting from that initial position. Using simulation 
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experiments, the learning set was formed. The data structure analysis 
showed that the boundary between classes has not a simple shape. 
Consequently, the classification was made through the potential functions 
method [Aizerman, 1964]. 
 C. The diagnosis (or supervision) situations are currently used to 
diagnose the systems. However, the field of using the diagnosis situations is 
even larger (for instance, the detection of the stationary regime, in [Frangu, 
2001]). In [Bivol et al., 1976], a complex energetic boiler plant, which 
includes more interconnected control loops, is considered. The evaluation of 
the quality of the dynamic regimes of the system considers more local 
criteria in the individual control loops, such as: overshot, damping factor, 
etc. The diagnosis situation called “normal” is defined in the space of local 
criteria, based on a recorded set of states, previously diagnosed by human 
operators. An automaton learns to recognize this situation and its opposite; it 
will be used to real-time diagnosis of the plant. 
 On the other hand, each diagnosed state is associated to the known vector 
of parameters of the multivariable controller. Through learning, the situation 
“normal” in the space of local criteria is assigned to a domain defined in the 
space of parameters. The discriminant function of this domain may be 
understood as the membership function of the fuzzy set “normal”, in the 
space of parameters. It is used to solve the problem of optimization with 
constraints in the space of parameters (during the design stage). 

3.2.  Clusters' anatomy and learning algorithms 
 In the case of adaptation situations, the data structure is similar to that of 
the output and command situations (will be analyzed next section). In the 
case of strategic and diagnosis situations, the data structure can be complex, 
with unconnected clusters, etc. Consequently, strong and general recognition 
methods, able to work with poor initial information, are necessary. One of 
these is the potential functions method, developed in the '60s by the team of 
Aizerman [Aizerman, 1964], at the Control Institute of the Moscow 
Academy. The adaptation and use of this method to the recognition of 
control situations appeared in [Drăgan and Ceangă, 1968], [Ceangă, 1969b]. 
The method is based on memorizing the "alien prototypes" or "poles", i.e. 
the vectors differently classified by the PRCS and by the teacher. A potential 
function ),( xxK  is assigned to each of the memorized poles, x . 
 Despite its generality and efficiency qualities, the method of potential 
functions cannot be used when the structure of clusters changes in time, 
because the adaptation of the discriminant functions would indefinitely 
increase the number of memorized poles. This drawback was noted in 
[Ceangă, 1969b] and two new recognition structures were proposed. They 
are also based on potential functions; they preserve the general character of 
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the initial method and provide the ability of adapting to slow changes of the 
data structure. 
 The first method, called the method of floating poles ([Ceangă, 1969b]), 
contains a first stage of pre-learning, using the method of potential functions 
for the configuration of the learning system structure. In this stage, M poles 
are memorized. They mainly lie near the boundaries of the classes, where the 
recognition automaton is usually wrong. The continuation of the learning 
and the adaptation of the PRCS to the changes in boundaries are performed 
by adjusting the position of the poles, according to the "floating poles 
algorithm (FPA)". Essentially, this algorithm is similar to that presently used 
by the Kohonen neural networks. 
 In the second method, presented in [Ceangă, 1969a, 1969b], [Bumbaru, 
1970], the potential functions form the input layer of a recognition 
automaton (during the next decade, the structure was called RBF, when it 
was implemented by neural networks). As in the previous case (FPA), a first 
learning stage is used, when the poles xj, j = 1, M, are memorized. The poles 
are assigned the potential functions K (xj, x), j = 1, …, M, which form the 
input layer of the recognition automaton. During the second stage, the 
learning implies adjusting the weights of each potential function. 
 In many papers, strategic and diagnosis situations are implicitly 
recognized, using neural networks (such as multilayer perceptrons). The 
drawback of the neural networks is the lack of transparency (no explanation 
about the clusters is provided). The advantage of the presented methods 
(disregarding the classical or neural implementation) consists in the selection 
of relevant poles; their position suggests the structure of the clusters, without 
disturbing the properties of generality and efficiency of the recognition 
algorithm. 

4. Control situations for the execution level 

4.1. Arguments for using recognition systems at the 
inferior level 

 In order to prove that controllers who recognize output and command 
situations are suitable, the informational approach for intelligent systems is 
useful. The concepts introduced by Saridis in [Saridis, 1989] (machine 
intelligence, knowledge flow, etc.) are used in [Frangu, 2001] to demonstrate 
the following property: for a system with a known level of uncertainty, there 
is a limit of the resolution of the discrete command, beyond which the 
entropy of the knowledge flow cannot increase. The same property applies to 
the recognition of discrete values of the output. Some practical examples, 
involving uncertainty, are presented in the sequel. 
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1. The actuator is, in most cases, the lowest precision element of a 
control loop. Excepting some particular cases, this affects the 
precision of mechanical positioning in the industry processes. Because 
of the important uncertainty, adopting a discrete set of values for the 
command becomes natural. If the distance between the discrete values 
is comparable to the uncertainty level, this operation does not lower 
the positioning precision. 

2. The reference of the loops is often chosen according to uncertain 
technological requirements. In this case, maintaining the controlled 
object within the boundaries determined by the uncertainties of the 
reference is a satisfactory objective. 

 The two mentioned examples are also reasons for another modern control 
approach: hybrid systems, with continuous/discrete interface (HSCDI, 
[Antsaklis, 1994]). The comparative analysis of the two approaches in 
[Frangu, 2001] (PRCS and HSCDI) led to the following conclusions: 

1. In HSCDI the partition is applied to the state space of the controlled 
object; the PR approach is based on the partition of the space of 
observations (see section 2). 

2. The HSCDI approach requires the analytical state model of the 
controlled process, whereas the PR approach considers this model 
partially or totally unknown. 

3. The synthesis of HSCDI requires the partition chosen by the human 
designer; the PRCS do not require predefined boundaries, because 
these result by learning. 

4. There is not much knowledge about how to choose the partition of the 
continuous state space, in HSCDI. The number of discrete states is not 
equal to that of the discrete commands. This raises some particular 
problems, such as: how to determine the resolution of the partition, 
how to determine the masked states and absorbing states, etc. 
([Oltean, 1998]). In PRCS, the number of classes is equal to the 
number of discrete commands, but the classes may contain more 
clusters. The learning solves this problem, assigning the same 
command to the clusters belonging to a class. 

5. The HSCDI synthesis requires a complex sequence of design 
operations. Instead, the PR approach determines by learning the 
function that assigns the vectors of observations to the discrete 
commands. 

4.2. Clusters' anatomy and learning algorithms 
 The clusters' structure for the output and command situations have a 
stripe-like shape: the clusters lie in compact and adjacent domains of the 
space of observations, with similar boundaries. There is an order of the 
clusters, corresponding to the order of the discrete values of the variable that 
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generated the classes (the output or the command input). Some of the 
observed properties of the clusters are mentioned in [Frangu, 2001] (some of 
them are even demonstrated, for Hammerstein type systems). Among these: 

- if the controlled system is linear, the boundaries of the clusters are 
parallel hyperplanes, the clusters are adjacent and disposed in order; 

- the boundaries may be hyperplanes even for a larger class of nonlinear 
systems; to illustrate this property, four examples are presented in 
figure 7a-d, in a two-dimensional space of observations; the structure 
7b appeared in a control problem for a biotechnological process, 
developed in a bioreactor [Frangu, 2001a]; 

- if the system does not contain hysteresis or discontinuous functions, 
every cluster is connected; in the contrary case, the clusters may 
become unconnected, subjects of some sort of space shearing (fig. 7c); 

- there is a unique curve in the space of observations, which 
corresponds to the stationary regime and crosses all the classes; the 
low frequency excitation of the controlled process determines 
observation vectors lying in the neighborhood of this curve, whereas 
the vectors determined by a richer dynamics of the process are 
situated farther; 

- if the noise disturbing the output is zero averaged, the boundaries 
obtained by learning converge to cluster’s true position, even if the 
noise is not white. 

 For the presented types of clusters, the appropriate recognition algorithms 
are those based on the minimum distance with respect to the skeleton of the 
clusters. If the boundaries are linear, the skeleton is the own regression line, 
obtainable through batch processing, which has guaranteed convergence. 

       
   a      b               c     d 

Figure 7. Possible shapes of the clusters, for the output situations 

5. Conclusions and new research directions 
 Intelligent control implies generalization and abstraction operations, 
which lead to synthetic concepts, necessary for operating in uncertain 
conditions or for the superior levels of the hierarchical control structure. 
These operations are performed through learning and aim at forming patterns 
with different levels of abstraction. In this work, the patterns generically 
called “control situations” are: output, command, adaptation, strategic and 
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diagnosis situations. They allow obtaining solutions of the control problems 
through situation recognition, in classical or neural implementation. Some of 
them are illustrated in the paper. 
 Some new research directions in PRCS, in the opinion of the authors: 

1. The investigation of the systems' stability, when the recognition of the 
adaptation situation determines the switching of the control laws or of 
their parameters. Considering this approach as a more general 
multimodel method can be the starting point [Ronco, 1997a, 1997b]. 

2. The investigation of the structure in figure 1, where a PR system is 
taught to recognize command situations, by a learning teacher, who 
recognizes output situations (teaching the controller by an uncertain 
teacher). The beginning was made by Nikolic and Fu, in 1966, when 
they analyzed the convergence of the learning algorithms, for the 
controller and for the uncertain teacher, but for a particular variant of 
the problem.  

3. Reconsidering the PRCS approach, according to [Goertzel, 1993], 
where a new mathematical model of the intelligence is proposed. It 
integrates specific operations, like perception, induction, deduction, 
analogy, etc., within a network (the "master network") that operates 
with patterns. Induction is defined as “the construction based on the 
patterns recognized in the past, of a coherent model of the future”. 
The perception is introduced as “the network of pattern recognition 
processes through which an intelligence builds a model of the world” 
and “the perceptual hierarchy is composed of a number of levels, each 
one recognizing patterns in the output of the level below it”. 
Deduction is also introduced by pattern recognition theory. Based on 
the previous concepts, “intelligence is defined as the ability to 
optimize complex functions of unpredictable environments”. The 
theoretical framework of Goertzel’s model of mind can generate new 
ideas and research directions in the field of intelligent control.  
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Abstract The aim of this paper is to present a solution to the disturbance attenuation 
problem for stochastic systems subjected both to multiplicative white noise and 
to Markovian jumps. Based on a Bounded Real Lemma type result for the 
considered class of stochastic systems, necessary and sufficient solvability 
conditions are derived in terms of the solutions of a specific system of matrix 
inequalities.  
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1. Introduction and problem formulation 
 The disturbance attenuation problem plays an important role in a wide 
variety of control applications. It is a well-known fact that the sensitivity 
reduction, the robust stabilization with respect to various type of uncertainty, 
tracking and filtering problems, to mention only a few of such applications, 
can be converted into disturbance attenuation problems. In the deterministic 
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framework this problem is solved by various H ∞  control techniques (see 
e.g. (Doyle, et al., 1989; Gahinet and Apkarian, 1994) and their references). 
In the stochastic case, corresponding state-space solutions have been also 
derived. Thus, for systems with multiplicative white noise such results can 
be found for instance in (Boyd, et al., 1994; Hinrichsen and Pritchard, 1998) 
and (Dragan and Morozan, 1997) for the time-varying case. The disturbance 
attenuation problem for systems with Markov jumps has been addressed, 
too. Corresponding theoretical developments in this case are given for 
example in (Dragan and Morozan, 2001; Dragan, et al., 1998; Stoica and 
Yaesh, 2002).  
 The aim of this paper is to present a solution to the disturbance 
attenuation problem for stochastic systems subjected both to multiplicative 
white noise and to Markovian jumps. Before stating the problem, some 
notations are introduced and some preliminary results are briefly recalled. 
Consider the stochastic system subjected both to multiplicative white noise 
and to Markov jumps: 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )0
1

r

k k
k

dx t A t x t dt A t x t dw t
=

= η + η∑ , (1) 

where ( ) , 0n n
kA i R k r×∈ ≤ ≤ are given, ( ) ( ) ( )( )*

1 , , rw t w t w t= …  is a 

standard Wiener process (see e.g. (Friedman, 1975)) and ( ) , 0t tη ≥  is a 
right continuous homogeneous Markov chain with the state space the set 

{1, , }d= …D  and the probability transition matrix ( ) QtP t e= , where 

ijQ q =   , 
1

0,
d

ij
j

q i
=

= ∈∑ D  and 0ijq ≥  if i j≠ . The σ -algebras 

( ( ), [0, ])t w s s t= σ ∈F  and ( ( ), [0, ])t s s t= σ η ∈G are assumed independent for 
all 0t ≥ . By tH  it is denoted the smallest σ -algebra containing tF  and tG . 
Throughout the paper ( )2

, [0, ),wLη ∞ RA  stands for the space of all functions 

( )u t  measurable non-anticipative with respect to the family of the σ -

algebras tH  with values in RA  and with ( ) 2

0
E u t dt

∞  < ∞  ∫ , where E  

denotes as usual the expectation. By [ | ( ) ]E x t iη =  it is denoted the 
conditional expectation on the event ( )t iη = . The space of all ( )n n×  
symmetric matrices is denoted by nS , d

nS  represents the space of all 

( ) ( )( )1 , ,H H H d= …  with ( ) ,nH i i∈ ∈S D  and ,
d

n mM  stands for the 

space of ( ) ( )( )1 , ,A A A d= …  where ( ) ,n nA i i×∈ ∈R D . 
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Definition 1. The zero solution of the stochastic system (1) is called 
exponentially stable in mean square (ESMS), or equivalently ( )0 , , ;rA A Q…  
is stable if there exist 0α >  and 1β ≥  such that  

 ( ) ( ) ( )0
2 2

0 0 0 0, , | t tE x t t x t i e x−α − η = ≤ β  
 

for any 0 00, ,nt t x i≥ ≥ ∈ ∈R D , where ( )0 0, ,x t t x  denotes the solution of 
the system (1) with the initial condition 0

nx ∈R  at 0t .□ 
 Consider the stochastic controlled system: 

 

( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

0 0

1

,

r

k k k
k

dx t A t x t B t u t dt

A t x t B t u t dw t

y t C t x t D t u t
=

 = η + η 

 + η + η 

= η + η

∑  (2) 

where ( ) mu t ∈ R  is the control variable and ( ) py t ∈ R  denotes the output. If 
( )0 , , ;rA A Q…  is stable then one can consider the input-output operator T  

associated to (2), defined on ( )2
, [0, ),Rm
wLη ∞  with values on 

( )2
, [0, ), p
wLη ∞ R ,  as ( )( ) ( )uu t y t=T , where  

 ( ) ( )( ) ( ) ( )( ) ( )u uy t C t x t D t u t= η + η , 

( )ux t  denoting the solution of the first equation (2) with the initial condition 

( )0 0ux = . The norm of this linear bounded input-output operator is denoted 
by T . 
 With the above notations and definitions, one can now state the 
disturbance attenuation problem. Consider the two-input, two-output 
stochastic system: 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( )
( ) ( )( ) ( ) ( )( ) ( )

0 0 0

1

0 0 ,

r

k k k k
k

z zv zu

dx t A t x t G t v t B t u t dt

A t x t G t v t B t u t dw t

z t C t x t D t v t D t u t

y t C t x t D t v t

=

 = η + η + η 

 + η + η + η 

= η + η + η

= η + η

∑  (3) 

where the input variable ( ) 1mv t ∈ R denotes the exogenous signals, 
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( ) 2mu t ∈R  denotes the control variable, ( ) 1pz t ∈R  is the regulated output 
and ( ) 2py t ∈R  represents the measured output. The matriceal coefficients 

( ) ( ) ( ), , ,0k k kA i G i B i k r≤ ≤ , ( ) ( ) ( ) ( ) ( )0 0, , , , ,z zv zuC i D i D i C i D i i ∈D , are 
given matrices of appropriate dimensions. The class of admissible 
controllers has the state-space equations: 

 
( ) ( )( ) ( ) ( )( ) ( )

( ) ( )( ) ( ) ( )( ) ( ) ,

c c c c

c c c

dx t A t x t B t y t dt

u t C t x t D t y t

 = η + η 
= η + η

 (4) 

where ( ) cn
cx t ∈R  with 0cn >  being a given integer. When coupling the 

controller (4) to the system (3) one obtains the resulting closed-loop system: 

 

( ) ( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

0 0

1

,

cl cl cl cl

r

kcl cl kcl k
k

cl cl cl

dx t A t x t G t v t dt

A t x t G t v t dw t

z t C t x t D t v t
=

 = η + η 

 + η + η 

= η + η

∑  (5) 

where 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

0 0 0 0
0

0

0

0 0 0
0

0

0

0

0

,

,1 ,
0 0

,

,1 ,
0

,

,

c c
cl

c c

k k c k c
kcl

c
cl

c

k k c
kcl

cl z zu c zu c

cl zv zu c

A i B i D i C i B i C i
A i

B i C i A i

A i B i D i C i B i C i
A i k r

G i B i D i D i
G i

B i D i

G i B i D i D i
G i k r

C i C i D i D i C i D i C i

D i D i D i D i D i i

 +
=  

 
 +

= ≤ ≤ 
 
 +

=  
 
 +

= ≤ ≤ 
 

 = + 
= + ∈ .D

 (6) 

 Then the disturbance attenuation problem is formulated as follows: given 
0γ >  find necessary and sufficient conditions for the existence of a 

controller (4) of prescribed order cn  such that ( )0 , , ;cl rclA A Q…  is stable and 
the input-output operator clT  associated with (5) has the norm less than γ . 
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2. Stochastic Bounded Real Lemma 
 The following result proved in (Drăgan et al., 2003) is a stochastic 
version of the well-known Bounded Real Lemma of the deterministic 
framework and it plays a key role for the main result presented in the next 
section. 

Theorem 1 (Bounded Real Lemma) The following are equivalent: 
 (i) The system ( )0 1, ,..., ;rA A A Q  is stable and < γT ; 

 (ii) It exists ˆ ˆ ˆ ˆ( (1),..., ( )) , ( ) 0d
nX X X d X i= ∈ >S  satisfying the following 

LMI on d
n m+S : 

 ˆ( , ) 0,X γ <N  

ˆ( , )X γN  denoting the generalized dissipation matrix associated with the system  
(2) and with the parameter γ , namely 1( ) ( ( , ), ..., ( , ))dX X X= γ γN N N , where 

 ( )
( ) ( )

( ) ( ) ( )
11 12

*

12 22

, ,
, ,

, ,

i i

i i i

X X
X

X X

 γ γ
 γ =
 γ γ 

N N
N

N N
 

with: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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11 0 0

* *

1 1

* *
12 0

1

2 * *
22

1

,

,

, .

i

r d

k k ij
k j

r
i

k k
k

r
i

m k k
k

X A i X i X i A i

A i X i A i q X j C i C i

X X i B i A i X i B i C i D i

X I D i D i B i X i B i

= =

=

=

γ = +

+ + +

γ = + +

γ = −γ + +

∑ ∑

∑

∑

N

N

N

 

 (iii) There exists ( ) ( )( )1 ,..., , 0d
nY Y Y d Y= ∈ >S  such that 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0,0 0, 0, 1 0, 2

*
0, , , 1 , 2

* *
0, 1 , 1 1, 1 1, 2

* * *
0, 2 , 2 1, 2 2, 2

, , , ,

, , , , 0
, , , ,
, , , ,

r r r

r r r r r r r

r r r r r r r

r r r r r r r

Y i Y i Y i Y i

Y i Y i Y i Y i
Y i Y i Y i Y i
Y i Y i Y i Y i

+ +

+ +

+ + + + + +

+ + + + + +

 
 
 
  <
 
 
 
 

"
# % # # #

"
"
"

W W W W

W W W W

W W W W

W W W W

, (7) 

i ∈D , where 
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( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
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0,0 0 0 0 0

* *
0, 0

* *
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,

*
,

, / 2 / 2

, , 1,...,

,

, ,..., ,..., ,
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, , 1 ,

ii n ii n

k k k

r

r i i i i i i d

l k l k

l l l l

Y i A i q I Y i Y i A i q I B i B i

Y i Y i A i B i B i k r

Y i Y i C i B i D i

Y i q Y i q Y i q Y i q Y i

Y i B i B i l k r l k

Y i B i B i Y i l r

+

+ − +
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= +
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= ≤ ≤ ≠
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0
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W

W

W

W
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( )
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*
, 1

* 2
1, 1

, 2

2, 2

, , 1 ,

,

, 0,1 1

, diag 1 ,..., 1 1 ,..., .

l r l

r r p

l r

r r

Y i B i D i l r

Y i D i D i I

Y i l r

Y i Y Y i Y i Y d

+

+ +

+

+ +

= ≤ ≤

= − γ

= ≤ ≤ +

= − − − − + −

W

W

W

 

3. Main result 
 In this section the disturbance attenuation problem with an imposed level 
of attenuation γ > 0 is considered. The developed approach is based on an 
LMI technique and it extends to the stochastic framework the existing results 
in the deterministic context. The following known fact (see e.g. (Boyd et al., 
1994)) will be used to derive necessary and sufficient conditions 
guaranteeing the existence of a γ -attenuating controller. 

Lemma 1 (Projection Lemma) Let 1*, , ν ×νν×ν∈ = ∈R RZ Z Z U  and 
2ν ×ν∈RV  with 1 2, ,ν ν ν  positive integers. Consider the following basic 

linear inequality: 

 * * * 0+ Θ + Θ <Z U V V U  (8) 

with the unknown variable 1 2ν ×νΘ∈R . Then the following are equivalent: 
(i) There exists 1 2ν ×νΘ∈R  solving (8); 

(ii) * 0<U UW ZW  (9) 

and  * 0<V VW ZW , (10) 

where UW  and VW  denote any bases of the null spaces KerU  and KerV , 
respectively. 

 The next result provides necessary and sufficient conditions for the 
existence of a controller of type (4) solving the disturbance attenuation 
problem for the system (3). 
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Theorem 2  For a 0γ > , the following are equivalent: 
(i) There exists a controller of order 0cn >  solving the disturbance 
attenuation problem with the level of attenuation 0γ >  for the system (5); 

(ii) There exist: 

 ( (1),..., ( )) , ( ) 0,d
nX X X d X i i= ∈ > ∈S D ,  

 ( (1),..., ( )) , ( ) 0,d
nY Y Y d Y i i= ∈ > ∈S D , 

 ( (1),..., ( )) , ( ) 0,d
nS S S d S i i= ∈ > ∈S D , 

 ( ) ( )( ) ,1 ,..., ,
c

d
n nN N N d N= ∈M  

such that: 
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0 1

1
0,i

V i
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V i
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N  (11) 
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Π −γ 
 
− −  < 

 
− − 

 
Π Π  

"

"

"
# # # % # #

"

"

 (12) 

 
( )

( ) ( )
( ) ( )*

0
rank

0

n

n c

X i I
I Y i N i n n

N i S i

 
  = + 
  

, (13) 

where 

 
( )
( )

0

1

V i
V i

 
 
 

 

is a basis of ( ) ( )0 0Ker ,C i D i    

 
( )

( )

0

1r

U i

U i+

 
 
 
  

#  

denotes a basis of ( ) ( ) ( )* * *
0Ker r zuB i B i D i  " , 
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( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

11 12
*

12 22

* *
11 0 0

1

*

1

* *
12 0

1

2 * *
22

1

* *
0,0 0 0 0 0

, ,
, ,

, ,

,

,

,

i

r

k k
k

d

ij z z
j

r

k k z zv
k

r

m zv zv k k
k

ii

X i X i
X i

X i X i

X i A i X i X i A i A i X i A i

q X j C i C i

X i X i G i A i X i G i C i D i

X i I D i D i G i X i G i

i U i A i Y i Y i A i q Y i U i

=

=

=

=

 
= 

 

= + +

+ +

= + +

=−γ + +

 Π = + + 

∑

∑

∑

∑

N N
N

N N

N

N

N

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )[ ] ( ) ( ) ( ) ( )

( ) ( )

* * * *
0 0 1

1

* *
1 0 0

1

* *
1 1

1

* *
0,1 1

0

*
0, 1 0 1 , 1 , 1 ,

1, 1

,

,

0

diag 1

r

k k z r
k

r

r z k k
k

r

k k r r
k

r

k k r zv
k

r n i i i i i i d

r r

U i Y i A i U i U i Y i C i U i

U i C i Y i U i U i A i Y i U i

U i Y i U i U i U i

i U i G i U i D i

i U i I q Y i q Y i q Y i q Y i

i Y Y i

+
=

+
=

+ +
=

+
=

+ − +

+ +

+ +

+ +

− −

Π = +

 Π =  

Π =−

∑

∑

∑

∑

� � � �" "

� �" ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( )*

1 , 1 ,

, .

Y i Y d

Y i N i
Y i i

N i S i

− +

 
= ∈ 

 

� �"

� D

 

Proof. The outline of the proof is similar with the one in the deterministic 
framework. The stochastic feature of the considered system does not appear 
explicitly in the following developments of the proof. This feature appears 
only in the specific formulae of the Bounded Real Lemma.  
(i)⇒ (ii) Assume that it exists a controller of form (4) stabilizing the system 
(3) such that cl < γT . Using the implication (i)⇒ (ii) of Theorem 1 
(Bounded Real Lemma) for the closed loop system it results that there exist: 

 ( (1),..., ( )) , ( ) 0
c

d
cl cl cl n n clX X X d X i+= ∈ >S  

such that  
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 Ni ( Xcl , γ) < 0 , (14) 

where 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

* * *

* *
0

*

1 1

* * *
0

1

2 *

1

, ,

,

,

.

cl cl cl cl i cl
i cl

i cl i cl

cl cl cl cl cl cl

r d

kcl cl kcl ij cl
k j

r

i cl cl cl kcl cl kcl cl cl
k

r

i cl m kcl cl kcl
k

X i C i C i X
X

X X

X i A i X i X i A i

A i X i A i q X j

X G i X i G i X A i D i C i

X I G i X i G i

= =

=

=

 +
γ =  

  

= +

+ +

= + +

= −γ +

∑ ∑

∑

∑

L P
N

P R

L

P

R

 

 Based on Schur complement arguments it is easy to see that (14) is 
equivalent with: 

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

1

1

* * * *
0 1

* * * *2
0 1

1 1 0 0 0

0 0
0 0

cl cl ocl cl cl rcl cl cl

cl cl m cl cl rcl cl cl

cl cl cl cl cl

cl rcl cl rcl cl

cl cl p

X i X i G i A i X i A i X i C i

G i X i I G i X i G i X i D i

X i A i X i G i X i

X i A i X i G i X i
C i D i I

 
 
 −γ 
 − < 
 
 − 

−  

L "

"
"

# # # % # #
"
"

,(15) 

where ( )( ) ( ) ( ) ( ) ( ) ( )* *
0 0 0

1

.
d

cl cl cl cl cl ij cl
j

X i A i X i X i A i q X j
=

= + + ∑L  

 Let us introduce the following notations: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

0
0

0
0

0
, , 0 ,

0 0 0

0 0
, , 1 ,

0 0 0

0
, 0 ,

0

c

c

k k
k k

k
k

n

n
z z

A i G i
A i G i k r

B i B i
B i B i k r

I

I
C C i C i

C i

   
= = ≤ ≤   

   
   

= = ≤ ≤   
    

 
 = =   

  

� �

� �

� �

 



ADVANCES IN AUTOMATIC CONTROL 48

 
( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( )

0
0

0
0 , ,

, .

zu zu

c c
c

c c

D i D i D i
D i

A i B i
i i

C i D i

 
 = =   

 
 

Θ = ∈ 
 

� �

D

 

 Using (6) one obtains: 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

0

0

0

, 0 ,

, .

kcl k k c

kcl k k c

cl z zu c

cl zv zu c

A i A i B i i C i

G i G i B i i D i k r

C i C i D i i C i

D D i D i i D i i

= + Θ

= + Θ ≤ ≤

= + Θ

= + Θ ∈D

� ��

� � �

� ��

� �

 

 With the above notations one can easily see that (15) can be rewritten in 
the basic linear matrix inequality form: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )** * 0,c ci i i i i i i i+ Θ + Θ < ∈Z U V V U D , (16) 

where 

( )

( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

1

1

2 1

* * * *
0 1

* 2 * * *
0 1

1 1

* *
0 1

0 0

0 0
0 0

0
c

cl cl o cl r cl z

cl m cl r cl zv

cl cl cl

cl r cl r cl

z zv p

c clm n m

X i X i G i A i X i A i X i C i

G i X i I G i X i G i X i D i

X i A i X i G i X ii

X i A i X i G i X i
C i D i I

i B i X i B i X+ ×

 
 
 −γ
 

− =  
 
 −
 −  

=

� � � � �"
� � �"

� "
# # # % # #
� � "

� "

� �

L

Z

U ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )2 1

* *

0 0 0 , ,
c c

r cl zu

p n p r n n

i B i X i D i

i C i D i i + × + + 

 
 

 = ∈  

� �"

� �V D

(17) 

and  

 ( )( ) ( ) ( ) ( ) ( ) ( )* *
0 0 0

1

d

cl cl cl cl cl ij cl
j

X i A i X i X i A i q X j
=

= + + ∑L� � � . 

 Therefore the existence of a stabilizing γ -attenuation controller for (3) is 
equivalent with the solvability of (16). Based on Lemma 1, (16) is feasible if 
and only if there exist: 
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 ( ) ( ) ( )* 0i i i <U UW Z W  (18) 

 ( ) ( ) ( )* 0,i i i i< ∈V VW Z W D , (19) 

where ( ) ( ),i iU VW W  denote bases of the null spaces of ( )iU  and of ( )iV , 
respectively. It is easy to see that a basis of the null space of ( )iU  is: 

 ( ) ( ) ( )1 ,i i i−= �U U
W X W  (20) 

where  

 
1 1

( ) diag( ( ), , ( ),..., ( ), )cl m d cl pi X i I X i X i I=X  

and ( )iU
W�  is a basis of the null subspace of the matrix: 

 ( ) ( ) ( ) ( ) ( ) ( )
2 1

* * * *
0 10 .

c r zum n mi B i B i B i D i+ ×
 =  U� � � � �"  

 A basis of the null subspace of ( )iU�  is 

 ( )

( )

( )

( )
( )

1

0

1

1

0 0 0
0 0 0

0 0

0 0
0 0 0

m

r

r

T i
I

T i L
i

T i L
U i+

 
 
 
 
 =
 
 
 
  

U
W�

"
"
"

# # # % #
"
"

, (21) 

where  

 ( ) ( ) 0
: , 0 ,

0 c

k
k

n

U i
T i k r L

I
  

= ≤ ≤ =   
   

 

and  

 
( )

( )

0

1r

U i

U i+

 
 
 
  

#  

is a basis of the null subspace of the matrix: 

 ( ) ( ) ( ) ( )* * * *
0 1 .r zuB i B i B i D i 

 "  
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 A suitable choice for ( )iVW  is the following: 

 ( )

( )

( )
( )1

0

1

0
0 0

0
0

cp r n n

V i

i V i
I + +

 
 
 =  
 
  

VW , (22) 

where 
( )
( )

0

1

V i
V i

 
 
 

 is a basis of the null subspace of the matrix ( ) ( )0 0C i D i   . 

Consider the partition of ( )clX i : 

 ( ) ( ) ( )
( ) ( )*cl

X i M i
X i

M i X i
 

=  
 

�  

with ( ) n nX i ×∈R . Then by direct computations one obtains: 

 ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )

1

0,0 0,1 0, 0, 1
*

0,1
*

*
0,

*
0, 1

0 0

0 0

0 0

r r

cl

r cl

r p

i i i i

i X i

i i i
i X i

i I

+

+

 Ψ Ψ Ψ Ψ
 

Ψ − 
 =  
 Ψ −
 
 Ψ − 

V VW Z W

"

"
# # % # #

"

"

, (23) 

where  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )

* *
0,0 0 0 0 0

1

* * * 2 *
0 0 1 1 0 0 1 1

* * * *
0, 0 1

,

0 , 1 ,

d

ij
j

k k k cl

i V i A i X i X i A i q X j V i

V i X i G i V i V i G i X i V i V i V i

i V i A i V i G i X k r

=

 
Ψ = + + 

  
+ + − γ

 Ψ = + ≤ ≤ 

∑

� �
 

 ( ) ( ) ( ) ( ) ( )* * * *
0, 1 0 1 .r z zvi V i C i V i D i+Ψ = +  

 Using again Schur complement arguments it follows that condition (19) 
together with (23) is equivalent with: 

 ( ) ( ) ( ) ( ) ( ) ( )1 * *
0,0 0, 0, 0, 1 0, 1

1

0.
r

k cl k r r
k

i i X i i i i−
+ +

=

Ψ + Ψ Ψ + Ψ Ψ <∑  

 Detailing the coefficients in the above inequality, (11) directly follows.  
 In order to explicit the condition (18) one first computes: 
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( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1

1

1 1

* * * *
0 0 1

* 2 * * *
0 1

1 1 0 0

0 0
0 0

r z

m r zv

r r

z zv p

i i i

Y i G i Y i A i Y i A i Y i C i

G i I G i G i D i

Y iA i Y i G i

A i Y i G i Y i
C i Y i D i I

− − =

 
 
 −γ
 

− 
 =
 
 
 

− 
 −  

� � � �� � � �"
� � �"
� � ��

"

# # # % # #
� �� �"
� � "

X Z X

L

, (24)
 

where  

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* * 1
0 0 0

1

d

ij
j

Y i A i Y i Y i A i q Y i Y j Y i−

=

= + + ∑L � �� � � � � �  (25) 

 ( ) ( )1
clY i X i−=� . (26) 

 Introduce the following notation: 

 ( ) ( ) ( )
( ) ( ) ( )* , .n nY i N i

Y i Y i R
N i S i

×
 

= ∈ 
 

�  

 Using (21), (24), (25) and (20), (18) becomes: 

 

( ) ( ) ( ) ( ) ( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( )
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0,0 0,1 1

* 2
0,1

*
1

*
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r

m

r

i i U i N i U i N i

i I

N i U i S i

N i U i S i
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 

Π −γ 
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 
 
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� "

"

"
# # # % #

"

, (27) 
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0 1 1

1 1
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U i Y i A i U i U i Y i C i U i U i C i Y i U i

U i A i Y i U i U i Y i U i U i U i

−

=

+ +
=

+ +
= =
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∑
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 By Schur complement arguments it follows that (27) is equivalent with 
(12) Further, taking into account that: 

 

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( )

*

11 *

1 *

0
rank

0

0 0

rank 0 0 ,
0 0

X i I
I Y i N I =

N i S i

X i Y i N i S i N i

Y i N i S i N i
S i

−−

−

 
 
 
  
 − −
 
 −
 
  

 

( ) 0S i >  and ( ) ( ) ( ) ( )1 * 0Y i N i S i N i−− > , it follows that (26) gives 

 ( ) ( ) ( ) ( ) ( )( ) 11 *X i Y i N i S i N i
−−= − , 

from which (13) directly follows. 
 (ii) ⇒ (i) Assume that there exist ( ) ( ) ( ), ,X i Y i N i  and ( )S i  verifying 
(11)-(13). By (12) it follows that ( )1, 1 0r r i+ +Π <  namely 

 ( ) ( ) ( )
( ) ( )* 0

Y i N i
Y i

N i S i
 

= > 
 

�  

and therefore ( )Y i�  is invertible. Moreover ( )1Y i−�  has the structure 

 ( )X i ∗
 ∗ ∗ 

, 

where by ∗  the irrelevant entries have been denoted. From the developments 
performed to prove the implication (i) ⇒ (ii) it follows that (18) and (19) are 
verified by  
 ( ) ( )1

clX i Y i−= �  
and hence (16) has a solution which fact guarantees the existence of a 
stabilizing and γ -attenuating controller. Thus the proof ends.■ 
 When the existence conditions stated in part ii) are accomplished, the 
construction of the γ -attenuating controller of imposed order cn  is made 
according with the proof of part ii) ⇒ i), by solving (16) with respect to 

( ) , .c i iΘ ∈D  

4. Conclusions 
 In this paper the disturbance attenuation problem for stochastic systems 
subjected both to multiplicative white noise and to Markovian jumps has 
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been considered. The solution of this problem is determined in the set of 
deterministic controllers of fixed order. Necessary and sufficient solvability 
conditions are derived in terms of some specific matrix inequalities which 
solution allows computing the γ -attenuating controller. 
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CONCEPTUAL STRUCTURAL ELEMENTS 
REGARDING A SPEED GOVERNOR FOR 
HYDROGENERATORS 
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Abstract: This paper was conceived in the circumstances that literature references 
regarding speed governors for hydro-generators are either qualitative when 
come from producers, or uppermost theoretical when come from academic 
environment. The paper applies to governors produced by U.C.M. Reşiţa that 
are in operation since many years, designed jointly with Dep. of Automation 
from “Politehnica” University in Timişoara. Are presented base elements that 
allowed designing of governor that stands on actual international norms, and 
elements regarding a previous analysis using simplified models for external 
blocks. 

Keywords: hydro-generator, speed governor, structure, design 

1. Introduction 
 In principle, the speed control relies on two kinds of mechanic-electric 
interactions that concern the turbine-generator group: interactions that 
originate in changing of mechanical power (opening of blades and impact 
process with water) and interactions that originate in exchanging the 
electrical power with exterior. Hereby: 

 The turbine blades opening-closing operation, performed by wicked 
gates has, from a systemic point of view, the meaning of control 
action. It determines the changing of power both carried to group pm 
as a result of interaction with exterior, and transmitted inside the 
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group pG. The control variable is the stroke y of wicked gates. 
 The changing of electrical power pG exchanged by the generator with 

exterior, as a result of the external processes of the generator, can be 
considered a disturbing, measurable action of load type. 

 In order to maintain the speed variations of turbine-generator group, 
determined by the electrical stress of generators, i.e. the variation of power 
pG, between normal limits, the automatic change of the position of stator 
blades is performed. The operation is accomplished by a control system that 
automatically strikes in the position of stator blades, with the aid of wicked 
gates. A simplified block diagram of such system is depicted in fig.1. 

 

Figure 1. Fundamental block diagram for speed control by power compensator 

 The automatic intervention of electro-hydraulic controller (REH) is 
performed, on one side, depending on the rotational speed, (sensed as 
changing in frequency f from prescribed value f*), and on other side, 
depending on the changing of power pG (measured) from prescribed value 
p*. The intervention depending on power has two characteristics: the first is 
an anticipative compensator characteristic, used for attenuation and damping 
of the effects of rotational speed variations, the second is the locking of 
power variations in a vicinity of prescribed value for it. 
 In the steady state regime, the two deviations that determine the control 
of wicked gates, i.e. frequency deviation ∆f = f-f* and the issued power 
deviation ∆p = pG - p*, are in equilibrium. The ratio of deviations is 
characterized by a proportionality coefficient bpp. 

 1
ppp b f−∆ = − ∆ .  (1) 

 The relation (1) reflects the compensation effect mentioned before: ∆p 
represents the deviation of power issued from prescribed value, due to the 
deviation ∆f of frequency in energetic network from prescribed value. For 
speed control, the possibility of adjusting bpp and maintaining the 
proportionality (1) are of fundamental importance. Within this context, 
power speed droop is considered. 
 In accordance to fig.1, the automatic interventions depending on 
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frequency / rotational speed deviations and power deviations can be 
achieved with the aid of feedbacks brought from the group shaft, 
respectively from generator bars. At the start-up, up to the moment of 
connecting the generator to network, because there is no power issued, the 
feedback after the blades position is used instead of power feedback (fig.2). 
In this case, the problem of droop is considered relatively to  

 py b f∆ = − ∆  (2) 

between frequency deviation and the variation of blades position ∆y = y - y∗. 
The opening speed droop is considered in this case. 

 
Figure 2. A structure of speed control system with compensating block after opening 

 The usual structures are variable; they switch from a start-up structure, 
with an opening speed droop, to a permanent structure, with power speed 
droop. In principle, is possible to maintain both feedbacks even after start-
up, the contribution of opening feedback being much reduced that power 
feedback.  
 In order to increase transient performances of the controller with variable 
structure, i.e. the accelerating of feedback, the signals ∆f and y are 
additionally processed. The result is a so-called tachometric with transient 
droop structure. They present, besides the permanent speed droop, an extra 
dynamic feedback, proportional to the stroke of wicked gates of main 
servomotor. Its effect exponentially dumps, reaching a zero value in steady 
state. The output of this block (temporary droop signal) is used for dynamic 
correction of the position of electro-hydraulic servo-system. In fig.3 the 
corresponding extension of fig.2 is presented. The simplest implementation 
block diagram for opening temporary speed droop is presented in fig.4. 
 In accordance to (IEC, 1970), (IEC, 1997), the opening temporary speed 
droop coefficient bt is the slope of static characteristic of speed depending on 
opening of the controller, in a point of operation, when permanent droop is 
zero. In steady state regime, the diagram in fig.5 accomplishes:  

 1( )y −∆ = +t pb b ∆f  (3) 



ADVANCES IN AUTOMATIC CONTROL 58

and for bp=0 it becomes 

 =
t

-1∆y b ∆f . (4) 

 In diagram, Td represents the temporary time constant. 

 
Figure 3. Tachometric structure with opening temporary speed droop 

 
Figure 4. Speed control structure with opening permanent and temporary speed droop 

 
Figure 5. Block diagram of the ensemble speed governor-stabilized servomotor 

 Due to practical reasons for correct adaptation of group to particular 
conditions in working node, is compulsory for the coefficients bp, bt, and Td 
to be adjustable. This represents a complex problem in analogical 
implementations, but yet simple in digital implementations. 
 In (Nanu, 2003) is represented a broad analysis of speed controller’s 
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structure, expanded more or less detailed in bibliographic sources as: 
international standards and norms, company ads and offers, articles. The 
approaches vary from principles, general structures to detailed, theoretical or 
particular structures, but irrelevant due to their simplicity or linearization 
considered. 
 Within this context, a presentation of some conceptual aspects of a speed 
governor structure, developed in “Politehnica” University of Timişoara 
together with UCM Resiţa is considered useful. The structure was used for 
hydro-generators in 3 MVA – 7 MVA and 35 MVA – 55 MVA domains of 
power. Initially it was implemented in analogical variant that is already in 
use since 4 years. Consequently, it was developed in digital variant. The 
purpose of this paper is to present the ensemble of the controller, together 
with some details, containing original elements. 

2. The main structural conceptual elements 

2.1. Design hypothesis 
 The basic hypothesis the speed governor structure was designed on (the 
structure contains the blocks that realizes the opening permanent droop, 
opening temporary droop and power permanent droop), are: 

 Electro-hydraulic servo-system is stabilized with a schematic like in 
fig.3. The details of block “Servo-system stabilizer” do not represent 
the purpose of this paper. In steady state, the stabilized servo-system 
is corresponding to a schematic like in fig.5, constituted by two 
proportional elements with gain KS and Ky. The input signal Uy

* is the 
reference from speed governor REG-V, and the feedback Uy is the 
output from measurement element for y. 

 The REG-V structure has to allow the independent adjustment of bpp, 
bp, bt, and Td parameters. 

 The dependency between the opening of wicked gates and power at 
constant speed has the aspect in fig.6. In reality, there is a family of 
complex non-linear characteristics. The idealization like in fig.6 
permits the understanding of phenomena. 

 
Figure 6. Dependency between the power issued by generator and stroke 
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 No constructive elements that protect (technical and partially 
conceptual) the governor and control system are detailed: the limiting 
elements on different channels of governor, anti-wind-up elements, 
the protective element for bumps when switching from a structure to 
another (e.g. from the manual to automatic regime, from opening 
permanent droop to power permanent droop structure). 

2.2. Integrator type-loop and droop providing 
 The governor structure developed is presented in fig.7. (Vancea, 1998). 
Following will be explained how this structure ensures, for the loop 
containing block c2, an integrator behavior that means in steady state 
automatically Ua = 0. Practically, the value of Ua will be very small and 
hence the (1), (2) and (3) conditions will be carried out. 

 
Figure 7. Implemented governor structure 

 An integrator type system behaves in principle like an integrator block, 
and the idea of using them in this application is due to the necessity of 
fulfilling the IEEE steady-state conditions. (IEC, 1997). The integrator 
character can be accomplished in different manners. One of this starts from 
structure in fig.8a, where the blocks S1 and S2 are each stable and have the 
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transfer coefficients K1 and K2 so that   

 1 2 1K K K= = . (4)  

K1 and K2 are constants if S1 and S2 are linear. If the systems are non linear, 
then K1 and K2 depend on the point of operation. Hence, if the S1 and S2 
have the characteristics y1=f1(u1), respectively y2=f2(u2), then, in order to 
fulfill condition (4), f2 will be the inverse of f1 (f2=f1

-1). Must be observed 
that the feedback is positive (a more detailed elaboration is in (Dragomir, et 
al., 2001), (Dragomir, 2002)). 

 
Figure 8. Integrator type connection between two blocks 

 Qualitatively, the integrator character is associated to the fact that gain K 
of the loop in fig.8a is 1, and, consequently, when an external signal u is 
applied like in fig.8b or 8c, the loop can reach an equilibrium state, or can be 
in a steady state only if the input u is zero. Otherwise, theoretically, the 
signals in system can vary with infinite amplitude, but practically- in case of 
physical systems- they will determine the saturation of the output of at least 
one system S1 or S2. Quantitatively, the problem can be treated more general, 
more or less harshly, as the systems are linear or non-linear. 
 The loops with integrator character can be used, in principle, to control 
any v signal that contributes to serial transfer of information within the loop. 
The principle is depicted in fig.9a where S1 and S2 are the systems in fig.8b 
or 8c, v = y1 is the signal that must be controlled and w is the prescribed 
signal. In this case, the difference w-v plays the role of u.  

 u = w – v (5) 

 If, with the feedback from y1, the scheme obtained is stable, then for K = 
1 it automatically fulfils, in steady state, the condition: 

 v = y1 = w, (6) 

and v takes exactly the prescribed value. Practically, K≠1 so that the 
schematic accomplishes in steady state 

 
1−

 −
= = − 

 
1

1

1 Kv y 1 w
K

, (7) 

that means a control error in steady state 
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1K
1K −

=
−

=
w
vwε v . (8) 

 

 
a b 

Figure 9. Integrator character loops for stationary control of a signal in serial chain 

 In fig.9b there is an extension of idea from fig.8 used for building the 
governor in fig.7. S3 is a stable, inertial subsystem, with the steady state 
transfer characteristic  

 )(yfy 133 = . (9) 
 The structure serves to control either v = y3 to value 

 (w)fyv 1
3

−==  (10) 
using a command 

 )(yfy 3
1

31
−=  (11) 

generated by integrator type S1-S2 loop, or y1 to value 

 (w))(ffy 11
31

−−= . (12) 
 In the same time, the extension in fig.9b appends to structure in fig.9a the 
derivative system S1', intended to accomplish the opening temporary droop. 
With this structure the dynamic of integrator type loop is modified while the 
dependencies (10) and (11) or (12) are maintained. A qualitative analysis of 
these structures is provided by (Nanu, 2003)  
 In accordance to IEE standard and equation (2), the opening permanent 
droop is calculated with the formula: 

 
1

p
n n

f yb ∆ ) ∆( )
f y

−
   

= − (   
   

. (2') 
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 The controller in fig.7 allows the controlled adjustment by operator of the bp 
droop with the formula (13) where p% pb 100 b= , and p% n nα b 1.6 f ∆y⋅ = . 

 ∆f
p%

1∆y u
α b

= −
⋅

. (13)  

 This formula depicts the dependency between the voltage variation ∆fu at 
the output of frequency measurement block, which calculates the network 
frequency variation, and the stroke ∆y of the wicked gates servomotor. 
Within this dependency, the bp% droop is adjustable and it influences in 
inverse proportion the variations of y. The values of bp% were {1,2,10} in the 
application. 
 Alike formula (13) and in accordance to definition (4) of bt% the diagram 
in fig.7 accomplishes, for bp% = 0 and Td → ∞, for the steady state 
dependency t% tb 100 b= : 

 
∆f

t%

1∆y ∆u
α b

= − ⋅
⋅  

. (14)
 

 Here, t% tb 100 b= . In accordance to main operation regimes (loaded and 
unloaded) that require different dynamic for speed governor, in the 
applications  

 btg,s %∈{5%, 10%, ...,50%} and Td ∈ {0.1, 0.2, ..., 4.9s} for loaded 
operation mode,  

 btg,s %∈{ 10%, 20%, ..., 100%} and Td ∈ {0.1, 0.2, ..., 9.9s} for 
unloaded operation mode. 

 The block that achieves the power droop was designed after the following 
principle: the power issued by generator is a function of opening y, in 
accordance to a functional dependency p(y), which is specific for every dam 
(fig.6). Considering that the characteristic can be practically identified with a 
proper precision in order to be inversed over the active domain, the inverse 
dependency y=f-1(p) can be used to carry out an extra power feedback, that 
compensate the opening permanent droop, no matter about its value. Using 
this feedback together with power droop feedback, a diagram is obtained that 
ensures either the power droop as per standards, and allows the shockless 
switching of governor from opening droop to power droop. The switching is 
performed at the moment the loading of generator is started. The system has 
the structure in fig.10. The behavior of scheme as a structure with only 
power droop is obtained by proper design of Kpp (parting into two branches, 
one for power droop and the other for opening droop).  
 Kmp is the gain of the power measuring element and Kpp is the gain inside 
governor for power. Starting point in building Kpp is the use of schematic in 
fig.11 instead of fig.10 due to the use of p = f(y) dependency. With K(•) 
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different gains were marked. In order to emphasize the fact that in real 
system there is no physical connection ∆y→p a dotted line was used.  

 

Figure 10. Structure of REG-V with opening and power feedback 

 

Figure 11. The structure of REG-V with opening and power feedback using p=f(y) 

 In (Nanu, 2003) is shown that with  
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K

%b
KK

K p
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pp ⋅

α
⋅

⋅
−⋅

⋅
α

= , (15)
 

where  

 pp%pp b100b ⋅= ,  (16)
 

and considering the interactions inside the speed control system, the 
structure in fig.12 is obtained. 
 In this structure appear only the channels that carry out the power droop 
according to (17) (and the opening transient droop). It is adjusted through 
coefficient bpp%. 

 
%

1
f

pp
u

bα ∆= − ∆
⋅

∆y . (17) 
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 The values of bpp% are in the set {1%, 2%, ..., 12%}. 

 

Figure 12. Structure of Kpp block 

3. The analysis of speed (frequency) control system 
 In order to simulate the operating of speed governor, its model was 
included into the control system presented in fig.13. In this figure, the 
following abbreviations were used: SSEH- stabilized servo-system, SAT- 
adduction-turbine system, GS-synchronous generator. Other notations: Cm – 
active torque, Cr-component of resistant torque corresponding to interaction 
with electro-energetic system, Cr1- component of resistant torque 
corresponding to local consumers, U- the voltage at generator bars, ω- the 
angular frequency of U, uwy and uwp  - references for y and p, issued by 
“opening assignment” and “power assignment” in fig.7. 

 

Figure 13. Structure used for studying of REG-V behavior 

 In fig.14 is presented a Simulink model used for simulation of system in 
fig.13. Obviously, it is a simplified model. The signals accompanied by symbol 
„ ^ ” are represented in norm values. The signal uwx   corresponds to references 
uwy and uwp. The block REG-V and SSEH includes both the structure REG-V 
presented before and stabilized electro-hydraulic servo-system.  
 The Simulink model of SSEH is presented in fig.15. The block SAT is 
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dived into two parallel channels SAT-1 and SAT-2. It is a non-minimum 
phase system and the division offered simulations facilities. The consumer 
and local load are included in blocks Ext.Net., Inertia and Ext.Net. and Elas 
(elastically). Signal df^v represents the frequency shocks that can appear in 
system and wdf signal is the frequency reference. “Norm” block is meant to 
norm the signal y, while “G.S.-Inertia” block characterizes the rotor inertia. 
The electro mechanic time constant considered is 6.9 seconds. 

 
Figure 14. Simulink model used for simulation of structure in fig.13 

 The structure in fig.15 depicts the stabilization manner of electro-
hydraulic servo-system. The model, as the one in fig.14, is strong non-linear. 
The significance of parameters is like in (Dragomir, et al., 1996). In 
comparison to this paper, some changes concerning integrator blocks not 
connected to wind-up phenomena were performed (Nanu, 1997). 

Figure 15. Simulink model of SSEH 
 In next figures some results obtained by simulation are presented. They corres-
pond fully qualitative and most quantitative to real behavior of control systems. 
 Fig.16 and fig.17 depicted the behavior of the system when bpp% = 11%, 
respectively bpp% = 10% and the power reference changes from 44MW to 
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47MW at t=0 sec. and back to 44 MW at t=30 sec. Are recorded the issued 
power (p), norm of frequency (f∧), and the opening of wicked gates (y). 
Some highlights: non-minimum phase character, hysteretic effect at SSEH 
level (fig. 16a and 17a), appearance of steady state errors (fig. 16b and 17b) 
due to considering an external power system comparable to the generator, 
capability of SSEH to bear the stress without touching the saturation (fig.16c 
and fig.17c) [-0.18 m, 0.18 m].  

- a - 
 

- a - 

- b - 
 

- b - 

- c - 
Figure 16. System behavior for bpp = 11% 

 
- c - 

Figure 17. System behavior for bpp = 10% 

 Fig.18 and fig.19 show the behavior of system in following conditions: 
initially, system operates at equilibrium, at nominal power of 44MW and 
frequency 49.984 Hz. At t=0 moment, the prescribed power changes to 47 
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MW and at t=30 sec a rapid change is produced in network frequency with 
1Hz (fig.18) or –0.5Hz (fig.19). Up to 30 seconds, the behavior is already 
known. Following-up, can be noticed, aside from non minimum phase 
system behavior, the capability of group to contribute to frequency 
correction (the group has no the capability to correct by itself the frequency 
deviation) and also the changes of y away from saturation, that means its 
ability to maintain speed to variations even greater of network frequency. 

- a - 

- b - 

- c - 
Figure 18. System behavior for  

+1 Hz change 

 
- a - 

 
- b - 

 
- c - 

Figure 19. System behavior for 
-0.5 Hz change 
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4. Conclusions 
 In order to obtain a speed controller for small medium power hydro 
generators, different structures of governors are used. Generally, they are 
qualitatively reasoned and companies protect information. 
The paper presents a structure of governor used in application by U.C.M. 
Reşiţa DCP in two hydroelectric power plants in Romania and Turkey. 
Structure is based on stabilizing the electro-hydraulic servo-system and on 
the principle of integrator type main loop. This principle allows the control 
of every parameter imposed by norms: power speed droop, opening 
permanent speed droop, opening transient speed droop. 
 The design results were validated in practice. For theoretical validation, 
governor was simulated through a model very near to practical one. The 
adduction-turbine, synchronous generator and external (load) system have an 
approximate model. The simulation scenarios show an allowed behavior. 
Acknowledgements 
 The authors want to acknowledge the team from U.C.M. Reşiţa –DCP, 
especially Mr. Ioan Grando and Stefan Lozici, for the possibility offered to 
cooperate in achieving (design, production, testing, calibration) the speed 
governors, respectively for the special quality of communication. 

References 
Dragomir, T.L., Dranga, O., and Nanu, S. (1996). About an Electro hydraulic speed governor 

structure, In Proceedings of National Conference on System Theory, SINTES 8, 87-95, 
Craiova. 

Dragomir, T.L.and Nanu, S. (2001). About some integrator feature structures, In Buletinul 
Stiintific al UPT, Seria Automatica si Calculatoare, 46 (60),, 11-16. 

Dragomir, T.L. (2002). Proportional Elements And Proportional Feedbacks, Periodica 
Politechnica, Transactions on AC & CS, 47 (61), 89-92. 

International Electrotechnical Commission IEC, (1970). International code for testing of 
speed governing systems for hydraulic turbines, Bureau Central de la Commision 
Electrotechnique Internationale, Geneve, Suisse. 

International Electrotechnical Commission, IEC61362 (1997). Guide to specification of 
hydroturbine control system, Final Draft International Standard, International code for 
testing of speed governing systems for hydraulic turbines, Bureau Central de la 
Commision Electrotechnique Internationale, Geneve, Suisse. 

Nanu, S. (1997). Double integrator element with limitation protected against reset wind-up, 
Buletinul Stiintific UPT, 42 (56), 91-97. 

Nanu, S. (2003). Contribuţii la dezvoltarea unor structuri de regulatoare de viteză pentru 
hidrogeneratoare, Phd Thesis, UPT. 

Vancea, F. (1998). Digital speed governor for hydro-generators, Diploma Thesis, UPT. 





TOWARDS INTELLIGENT REAL-TIME 
DECISION SUPPORT SYSTEMS FOR 
INDUSTRIAL MILIEU 

F. G. Filip, D. A. Donciulescu 
The National Institute for R&D in Informatics-ICI 
Bucharest, Romania  

Cr. I. Filip 
Academy of Economic Studies, School of Management, Bucharest 
Bucharest, Romania  

Abstract Decision support systems (DSS) are human-centered information systems meant 
to help managers placed on different authority levels to make more efficient and 
effective decisions for problems evincing an imperfect structure. These systems 
are very suitable information tools to apply to various management and control 
problems that are complex and complicated at the same time. Several issues 
concerning the modern trends to build anthropocentric systems are reviewed. 
Then the paper surveys several widely accepted concepts in the field of decision 
support systems and some specific aspects concerning real-time applications. 
Several artificial intelligence methods and their applicability to decision-making 
processes are reviewed next. The possible combination of artificial intelligence 
technologies with traditional numerical models within advanced decision 
support systems is discussed and an example is given. 

Keywords: artificial intelligence, decision, human factors, manufacturing, models 

1. Introduction 
 The role and place of the human operator in industrial automation 
systems started to be seriously considered by engineers and equally by 
psychologists towards the middle of the 7th decade. Since then, this aspect 
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has been constantly and growingly taken into consideration in view of 
famous accidents of highly automated systems and of incomplete fulfillment 
of hopes put in CIM systems [Martenson, 1996; Johanson, 1994]. 
 The evaluation of the place of man in the system has known a realistic 
evolvement, triggered not only by practical engineer experience but also by 
the debates from academia circles. A long cherished dream of automatic 
engineers, that of developing “completely automated systems where man 
would be only a consumer” or “unmanned factories”, tends to fade away – not 
only due to ethical or social motivations, but more important because the 
technical realization of this dream proved to be impossible. 
 A possible solution seems to be the use of artificial intelligence methods 
(such as knowledge based systems) in the control of industrial systems, since 
these methods minimize the thinking effort in the left hemisphere of the 
human brain. Artificial neural networks, functioning similar with the right 
hemisphere of the human brain, became since 1990 also increasingly 
attractive, especially for problems that cannot be efficiently formalized with 
present human knowledge. Even so, “on field”, due to strange combinations 
of external influences and circumstances, rare or new situations may appear 
that were not taken into consideration at design time. Already in 1990 Martin 
et al showed that “although AI and expert systems were successful in solving 
problems that resisted to classical numerical methods, their role remains 
confined to support functions, whereas the belief that evaluation by man of 
the computerized solutions may become superfluous is a very dangerous 
fallacy”. Based on this observation, Martin et al (1991) recommend 
“appropriate automation”, integrating technical, human, organizational, 
economical and cultural factors.  
 This paper aims at surveying from an anthropocentric perspective several 
concepts and technologies for decision support systems with particular 
emphasis on real time applications in manufacturing systems. 

2. Anthropocentric systems 

2.1.  Anthropocentric manufacturing systems 
 Anthropocentric manufacturing systems (AMS) emerged from 
convergent ideas with roots in the social sciences of the ‘50s. Kovacs and 
Munoz (1995) present a comparison between the anthropocentric approach 
(A) and the technology-centered approach (T) along several directions: a) 
role of new technologies: complement of human ability, regarding the 
increase of production flexibility, of product quality and of professional life 
quality (A), versus decrease of worker number and role (T); b) activity 
content at operative level: autonomy and creativity in accomplishing 
complex tasks at individual or group level (A), versus passive execution of 
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simple tasks (T); c) integration content and methods: integration of 
enterprise components through training, development of social life, of 
communication and co-operation, increased accesses to information and 
participation in decision taking (A), versus integration of enterprise units by 
means of computer-aided centralization of information, decision and control 
(T); d) work practice: flexible, based on decentralization principles, work 
multivalence, horizontal and vertical task integration and on participation 
and co-operation (A), versus rigid, based on centralization, strict task 
separation at horizontal and vertical level associated with competence 
specialization (T). 

2.2. Human-centered information systems 
 Johanson (1994) shows that “failure and delay encountered in the 
implementation of CIM concepts” must be sought in organizational and 
personnel qualification problems. It seems that not only CIM must be 
considered but also HIM (human integrated manufacturing)”. In a man-
centered approach integration of man at all control levels must be considered 
starting with the early stages of a project. 
 In Filip (1995), 3 key questions are put from the perspective of the “man 
in system” and regarding the man – information tool interaction: a) does the 
information system help man to better perform his tasks? b) what is the 
impact of man- machine system on the performance of the controlled object? 
c) how is the quality of professional life affected by the information system? 
 Most of the older information systems were not used at the extent of 
promises and allocated budget because they were unreliable, intolerant 
(necessitating a thread of absolutely correct instructions in order to fulfill 
their functions), impersonal (the dialogue and offered functions were little 
personalized on the individual user) and insufficient (often an IT specialist 
was needed to solve situations). It is true that most of this problems have 
been solved by IT progress and by intense training, but nevertheless the 
problem of personalized systems according to the individual features of each 
user (such as temperament, training level, experience, emotional state) 
remains an open problem especially in industrial applications. 
 The second question requires an analysis of effectiveness (supply of 
necessary information) and efficiency (supply of information within a clear 
definition of user classes – roles – and real performance evaluation for 
individuals – actors – who interact with the information tool along the 
dynamic evolution of the controlled object). In the case of industrial 
information systems, the safety of the controlled object may be more 
important than productivity, effectiveness or efficiency. As Johanson (1994) 
pointed out, “in a technology-oriented approach the trend to let the 
information system take over some of the operator tasks may lead to 
disqualification and even to boredom under normal conditions and to 
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catastrophic decisions in crisis situations”. 
 This last observation is also a part of the answer to the last question, 
which answer holds an ethical and social aspect besides the technical one. 
Many years ago, Briefs (1981) stated, rather dramatically, that the 
computerization of intellectual work seem to imply “a major threat to human 
creativity and to the conscious development”. This remark was motivated by 
"the trend to polarize people into two categories. The first one groups IT 
specialists, who capitalize and develop their knowledge and creativity by 
making more and more sophisticated tools. The second one represents the 
broad mass of users, who can accomplish their current tasks quickly and 
easy, without feeling tempted to develop an own in-depth perception of the 
new and comfortable means of production". 
 As Filip (1995) noticed, “it is necessary to elaborate information systems 
that are not only precise, easy to use and attractive, all at a reasonable cost, 
but also stimulating to achieve new skills and knowledge and eventually to 
adopt new work techniques that allow a full capitalization of individual 
creativity and intellectual skills”. The aim to develop anthropocentric 
information systems applies today as well, but the designer finds little use in 
generally formulated objectives with no methods to rely on. It is possible to 
formulate derived objectives representing values for various attributes of 
information systems: a) broad service range (not “Procustian”) – for the 
attribute “use ”; b) transparency of system structure in regard to its 
capability to supply explanations – for the attribute “structure ”, and c) 
growing adaptability and learning capabilities – for the attribute 
“construction” 

3. DSS - basic concepts 
 The DSS appeared as a term in the early '70ies, together with managerial 
decision support systems. The same as with any new term, the significance 
of DSS was in the beginning a rather vague and controversial notion. While 
some people viewed it as a new redundant term used to describe a subset of 
MISs, some other argued it was a new label abusively used by some vendors 
to take advantage of a term in fashion. Since then many research and 
development activities and applications have witnessed that the DSS concept 
definitely meets a real need and there is a market for it (Holsapple and 
Whinston, 1996; Power, 2002) 

3.1.  Decision- making process 
 Decision- making (DM) process is a specific form of information 
processing that aims at setting- up an action plan under specific 
circumstances. There are some examples: setting-up an investment plan, 
sequencing the operations in a shop floor, managing a technical emergency 
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a.s.o. Several models of a DM are reviewed in the sequel.  
 Nobel Prize winner H. Simon identifies three steps of the DM process, 
namely: a) “intelligence”, consisting of activities such as data collection and 
analysis in order to recognize a decision problem, b) “design”, including 
activities such as problem statement and production and evaluation of various 
potential solutions to the problem, and c) “choice”, or selection of a feasible 
alternative to the implementation. 
 If a decision problem cannot be entirely clarified and all possible decision 
alternatives cannot be fully explored and evaluated before a choice is made 
then the problem is said to be “unstructured “ or “semi-structured”. If the 
problem were completely structured, an automatic device could have solved 
the problem without any human intervention. On the other hand, if the 
problem has no structure at all, nothing but hazard can help. If the problem is 
semi-structured a computer-aided decision can be envisaged.  
 The ‘econological’ model of the DM assumes that the decision-maker is 
fully informed and aims at extremizing one or several performance 
indicators in a rational manner. In this case the DM process consists in a 
series of steps such as: problem statement, definition of the criterion 
(criteria) for the evaluation of decision alternatives, listing and evaluation of 
all available alternatives, selection of the “best” alternative and its execution.  
 It is likely that other DM models are also applicable such as: a) the 
“bounded rationality” model, that assumes that decision-making considers 
more alternatives in a sequential rather than in a synoptic way, use heuristic 
rules to identify promising alternatives and make then a choice based on a 
“satisfying” criterion instead of an optimization one; b) the “implicit 
favorite” model, that assumes that the decision-maker chooses an action plan 
by using in his/her judgment and expects the system to confirm his choice 
(Bahl, Hunt, 1984). 
 While the DSS based on the “econological” model are strongly 
normative, those systems that consider the other two models are said to be 
“passive”. 
 In many problems, decisions are made by a group of persons instead of 
an individual. Because the group decision is either a combination of 
individual decisions or a result of the selection of one individual decision, 
this may not be “rational” in H. Simon's acceptance. The group decision is 
not necessarily the best choice or combination of individual decisions, even 
though those might be optimal, because various individuals might have 
various perspectives, goals, information bases and criteria of choice. 
Therefore, group decisions show a high “social” nature including possible 
conflicts of interest, different visions, influences and relations (De Michelis, 
1996). Consequently, a group DSS needs an important communication 
facility. 
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4. DSS technology 

4.1. General issues 
 A distinction should be made between a specific (application-oriented) 
DSSs (SDSS) and DSS tools. The former is used by particular decision-
makers (“final users”) to perform their specific tasks. Consequently, the 
systems must possess application-specific knowledge. The latter are used by 
“system builders” to construct the application systems. There are two 
categories of tools: integrated tools and basic tools. The integrated tools, 
called DSS “generators” (DSSG), are prefabricated systems oriented towards 
various application domains and functions and can be personalized for 
particular applications within the domain provided they are properly 
customized for the application characteristics and for the user's specific 
needs. The DSS basic construction tools can be general-purpose or 
specialized information technology tools. The first category covers hardware 
facilities such as PCs, workstations, or software components such as 
operating systems, compilers, editors, database management systems, 
spreadsheets, optimization libraries, browsers, expert system shells, a.s.o. 
Specialized technologies are hardware and software tools such as sensors, 
specialized simulators, report generators, etc, that have been created for 
building new application DSSs or for improving the performances of the 
existing systems. An application DSS can be developed from either a system 
generator, to save time, or directly from the basic construction tools to 
optimize its performances. 
 The generic framework of a DSS, first proposed by Bonczek, Holsapple, 
and Whinston (1980) and refined later (Holsapple and Whinston, 1996), is 
quite general and can accommodate the most recent technologies and 
architectural solutions. It is based on three essential components: Language 
[and Communications] Subsystem (LS), b) Knowledge Subsystem (KS) and 
c) Problem Processing Subsystem (PPS 
 Recently, Power (2002) expanded Alter's DSS taxonomy and proposed a 
more complete and up-to-date framework to categorize various DSS in 
accordance with one main dimension (the dominant component) and three 
secondary dimensions (the target user, the degree of generality, and the 
enabling technology) 

4.2.  Real time DSS for manufacturing 
 Most of the developments in the DSS domain have addressed business 
applications not involving any real time control. In the sequel, the real time 
decisions in industrial milieu will be considered. Bosman (1987) stated that 
control problems could be looked upon as a "natural extension" and as a 
"distinct element" of planning decision making processes (DMP) and 
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Sprague (1987) stated that a DSS should support communication, 
supervisory, monitoring and alarming functions beside the traditional phases 
of the problem solving process. 
 Real time (RT) DMPs for control applications in manufacturing are 
characterized by several particular aspects such as: a) they involve 
continuous monitoring of the dynamic environment; b) they are short time 
horizon oriented and are carried out on a repetitive basis; c) they normally 
occur under time pressure; d) long-term effect are difficult to predict 
(Charturverdi et al, 1993). It is quite unlikely that an "econological" 
approach, involving optimization, be technically possible for genuine RT 
DMPs. Satisfying approaches, that reduce the search space at the expense of 
the decision quality, or fully automated DM systems (corresponding to the 
10th degree of automation in Sheridan’s (1992) classification), if taken 
separately, cannot be accepted either, but for some exceptions. 
 At the same time, one can notice that genuine RT DMPs can come across 
in "crisis" situations only. For example, if a process unit must be shut down, 
due to an unexpected event, the production schedule of the entire plant might 
turn obsolete. The right decision will be top take the most appropriate 
compensation measures to "manage the crisis" over the time period needed 
to recomputed a new schedule or update the current one. In this case, a 
satisfying decision may be appropriate. If the crisis situation has been 
previously met with and successfully surpassed, an almost automated 
solution based on past decisions stored in the information system (IS) can be 
accepted and validated by the human operator. On the other hand, the 
minimization of the probability of occurrences of crisis situations should be 
considered as one of the inputs (expressed as a set of constraints or/and 
objectives) in the scheduling problem. For example in a pulp and paper mill, 
a unit plant (UP) stop may cause drain the downstream tank (T) and 
overflow the upstream tank and so, shut/slow down the unit plants that are 
fed or feed those tanks respectively. Subsequent UP starting up normally 
implies dynamic regimes that determine variations of product quality. To 
prevent such situations, the schedule (the sequence of UP production rates) 
should be set so that stock levels in Ts compensate to as large extent as 
possible for UP stops or significant slowing down (Filip, 1995). 
 To sum up those ideas, one can add other specific desirable features to 
the particular subclass of information systems used in manufacturing control. 
An effective real time DSS for manufacturing (RT DSSfM) should support 
decisions on the preparation of "good" and "cautious" schedules as well as 
"ad hoc”, pure RT decisions to solve crisis situations (Filip, 1995). 

5. AI based decision- making 
 As discussed in the previous section, practical experience has shown 
that, in many cases, the problems are either too complex for a rigorous 
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mathematical formulation, or too costly to be solved by using but 
optimization and simulation techniques. Moreover, an optimization-based 
approach assumes an “econological” model of the DM process, but in real 
life, other models of DM, such as “bounded rationality” or “implicit 
favorite” are frequently met. To overcome these difficulties several 
alternatives based on artificial intelligence are used (Dhar and Stein, 1997, 
Filip, 2002). The term Artificial Intelligence (AI) currently indicates a 
branch of computer science aiming at making a computer reason in a 
manner similar to human reasoning.   

5.1.  Expert systems 
 The Expert System (ES) is defined by E. Feigenbaum (the man who 
introduced the concept of “knowledge engineering”) as “intelligent 
computer programs that use knowledge and inference procedures to solve 
problems that are difficult enough to require significant human expertise 
for their solution”. As in the case of the DSS, one can identify several 
categories of software products in connection with ES: application ES or 
“Knowledge Based Systems” (KBS), that are systems containing adequate 
domain knowledge which the end user resorts to for solving a specific type 
of problem; system “shells”, that are prefabricated systems, valid for one 
or more problem types to support a straightforward knowledge acquisition 
and storage; basic tools such as the specialized programming languages 
LISP, PROLOG or object-oriented programming languages. 
 One can easily notice the similarity of the ES and DSS as presented in 
Section 4. Also several problem types such as prediction, simulation, 
planning and control are reported to be solved by using both ESs and 
traditional DSSs. At the same time, one can notice that while there are 
some voices from the DSS side uttering that ESs are only tools to 
incorporate into DSSs, the ES fans claim that DSS is only a term denoting 
applications of ESs. Even though those claims can be easily explained by 
the different backgrounds of tool constructors and system builders, there is 
indeed a fuzzy border between the two concepts. However a deeper 
analysis (Filip and Barbat, 1999) can identify some real differences 
between typical ESs and typical DSSs such as: a) the application domain is 
well-focused in the case of ES and it is rather vague, variable, and, 
sometimes, unpredictable in the case of the DSS; b) the information 
technology used is mainly based on symbolic computation in the ESs case 
and is heavily dependent on numerical models and database, in traditional 
cases; c) the user's initiative and attitude towards the system are more 
creative and free in the DSs case in contrast with ESs case, when the 
solution may be simply accepted or rejected. 
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5.2.  Case-based reasoning 
 The basic idea of Case-Based Reasoning (CBR) consists in using 
solutions already found for previous similar problems to solve current 
decision problems. CBR assumes the existence of a stored collection of 
previously solved problems together with their solutions that have been 
proved feasible and acceptable. In contrast with the standard expert systems, 
which are based on deduction, CBR is based on induction. 
 The operation of CBR systems basically includes the first or all the three 
phases: a) selection from a knowledge base of one or several cases (decision 
situations) similar to the current one by using an adequate similarity measure 
criterion; b) adaptation of the selected cases to accommodate specific details 
of the problem to solve. This operation is performed by an expert system 
which is specialized in adaptation applications; "differential” rules are used 
by the CBR system to perform the reasoning on differences between the 
problems; c) storing and automatically indexing of the just processed case 
for further learning and later use. 

5.3. Artificial neural networks 
 Artificial Neural Networks (ANN), also named connectionist systems, are 
apparently a last solution to resort to when all other methods fail because of 
a pronounced lack of the structure of a decision problem. The operation of 
ANN is based on two fundamental concepts: the parallel operation of several 
independent information processing units, and the learning law enabling 
processors adaptation to current information environment  
 Expert systems and ANNs agree on the idea of using the knowledge, but 
differ mainly on how to store the knowledge. This is a rather explicit (mainly 
rules or frames), understandable manner in the case of expert systems and 
implicit (weights, thresholds) manner, incomprehensible by the human in 
case of connectionist systems. Therefore while knowledge acquisition is more 
complex in case of ES and is simpler in case of ANN, the knowledge 
modification is relatively straightforward in case of ES but might require 
training from the very beginning in case a new element is added to ANN. If 
normal operation performance is aimed at, ANNs are faster, more robust and 
less sensitive to noise but lack “explanation facilities”. 

6. Knowledge based DSS 

6.1.  Combined technologies 
 It has been noticed that some DSS are “oriented” towards the left 
hemisphere of the human brain and some others are oriented towards the 
right hemisphere. While in the first case, the quantitative and computational 



ADVANCES IN AUTOMATIC CONTROL 80

aspects are important in the second, pattern recognition and the reasoning 
based on analogy prevail. In this context, there is a significant trend towards 
combining the numerical models and the models that emulate the human 
reasoning to build advanced DSS. 
 Over the last three decades, traditional numerical models have, along 
with databases, been the essential ingredients of DSS.  From an information 
technology perspective, their main advantages (Dutta, 1996) are: 
compactness, computational efficiency (if the model is correctly formulated) 
and the market availability of software products. On the other hand, they 
present several disadvantages. Because they are the result of intellectual 
processes of abstraction and idealization, they can be applied to problems 
that possess a certain structure, which is hardly the case in many real-life 
problems. In addition, the use of numerical models requires that the user 
possesses certain skills to formulate and experiment the model. As it was 
shown in the previous section, the AI-based methods supporting decision-
making are already promising alternatives and possible complements to 
numerical models. New terms such as “tandem systems”, or “expert DSS-
XDSS” were proposed to name the systems that combine numerical models 
with AI based techniques. A possible task assignment is given in Table 1 
(inspired from Dutta, 1996). Even though the DSS generic framework 
(mentioned in Section 4.2) allows for a conceptual integration of AI based 
methods, for the time being, the results reported mainly refer specific 
applications and not general ones, due to technical difficulties arising from 
the different ways of storing data or of communicating parameters problems, 
and from system control issues (Dutta, 1996). 

Table 1. A possible task assignment in DSS 
 H NM ES ANN CBR 

Intelligence 
Perception of DM situation 
Problem recognition 

 
I/E 
I/P 

 
 

 
P 

 
 

 
 
I 

Design 
• Model selection 
• Model building 
• Model validation 
• Model solving 
• Model experimentation 

 
M/I 
M 
M 
 

I/M 

 
 
 
 

E 
 

 
I 
I 
 
 

M/I 

 
 

P 
 

P 
 

 
I 
 
 
 
 

Choice 
Solution adoption and release 

 
E 

  
P 

  

Legend for Table 1. NM - numerical model, ES - rule based expert system, ANN - artificial 
neural network, CBR - case based reasoning, H - human decision-maker, P - possible, M - 
moderate, I - intensive, E - essential 

6.2.  Example 
 DISPATCHER is a series of DSSs, developed over a twenty-year time 
period, to solve various decision-making problems in the milieu of continuous 
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‘pure material’ process industries. The system initially addressed the short-
term production-scheduling problem. Then it evolved in both function set 
supported and new technologies used in order to satisfy users’ various 
requirements (see Figure 1). New supported functions such as tank sizing, 
maintenance planning and even acceptance and planning of raw materials 
or/and utility purchasing allow a certain degree of integration of functions 
within the [extended] enterprise (Filip, Bărbat, 1999). 

NEW ITS 
• Expert Systems 
• Object Orientation 
• DSS concepts 

ENTERPRISE 
REQUIREMENTS 

• Integration 
• Low Cost Solution 
• New Applicationsi 
• New Functions funcţii 

HUMAN FACTOR 
• Decision Styles 
• Knowledge Enrichment  
• Higher Resposabilities 
• WTSC 

1980 1982 1987 1990 1994 1997 

Optimisation Sparse Models 

Multilayer 
Modelling  

Scheme 

Extended 
Enterprise 

Models 

Adaptive service

GUI 
DMKO 

What if ... ? 

 

Figure 1. The evolution of the DSS DISPATCHER line [Filip, Barbat,1999)] 

 Numerous practical implementations of the standard version of 
DISPATCHER helped draw interesting conclusions. First, the system has 
been considered by most users as being flexible enough to support a wide 
range of applications and, in some cases, its utilization migrated from the 
originally intended one. It has been used in crisis situations (mainly due to 
significant deviation from the schedule, to equipment failures or other 
emergencies) as well as in normal operation or in training applications. 
However, though the system is somehow transparent, and the users have 
sound domain ("what"- type) knowledge (DK), they have behaved in a 
"wise" or even "lazy" (Rasmunsen, 1983) manner, mainly trying to keep 
their mental load under an average willing to spend capacity (WTSC). This 
can be explained by the initial lack of tool ("how"-type) knowledge (TK) as 
well as by insufficient work motivation. 
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 To fight the lack of TK and to stimulate users’ creativity and quest for 
new skills, a declarative model of an "ambitious" and knowledgeable 
operator (DMKO) was proposed (Filip, 1993). DMKO is one component of 
a multilayer, modeling scheme that also includes: the external model 
(formulated in user’s terms, b) the conceptual model (addressing the system 
builder’s needs), and c) internal (performance model (meant for the use of 
the “toolsmith” programmer. It supports a) model building for various 
decision contexts, b) problem feasibility testing to propose corrective 
measures (for example limit relaxation or transformation of fixed/known 
perturbations into free variables etc.), c) automatically building the internal 
model from the external description, choosing the appropriate solving 
algorithm, d) experimenting the problem model, for example by producing a 
series of alternatives through modifying various parameters in answer to 
qualitative assessments (made by the user) of the quality of simulated 
solutions, followed by due explanations. To handle the complexity and 
diversity of the technologies used, object orientation has been adopted. 
 Efforts have been made to introduce new intelligence into the system, 
especially for evaluating user’s behavior so that DMKO (originally meant 
for supporting a certain "role") could dynamically adapt to specific needs of 
particular "actors", in an attempt at rendering the system less impersonal. 
 Of course, there are other reported results combining traditional numeric 
methods with KBS to build "hybrid" or "tandem" DSSfM. Apparently such 
systems are primarily meant for making numerical computation easier, 
including heuristics so that the space search for optimization/simulation 
algorithms is adapted / reduced. It should be noted that the approach 
presented here is mainly human factor- centered and aims at increasing 
system acceptance rather than improving its computational performance. 

7. Conclusions 
 Several important issues on the design of anthropocentric modern 
information systems were reviewed. DSS, as a particular kind of human- 
centered information system, was described with particular emphasis on 
real-time applications in the industrial milieu.  The possible integration of 
the AI-based methods within DSS with the view to evolve DSS from simple 
job aids to sophisticated computerized decision assistants was discussed 
 Several further developments have been foresighted such as: 

• Incorporation and combination of newly developed numeric models 
and symbolic/sub-symbolic (connectionist) techniques in advanced, 
user-friendly DSS will continue; also the use of “fuzzy logic” methods 
are expected to be intensively used in an effort to reach the 
“unification” of man, numerical models, expert systems and artificial 
neural networks; 
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• Largely distributed group decision support systems that intensively 
use new, high-performance computer networks will be created so that 
an ever larger number of people from various sectors and geographical 
locations are able to communicate and make “co-decisions” in real-
time in the context of new enterprise paradigms; 

• Mobile communications and web technology will be ever more 
considered in DSS, thereby people will make co-decisions in “virtual 
teams”, no matter where they are temporarily located; 

• Other advanced information technologies such as virtual reality 
techniques (for simulating the work in highly hostile environments) or 
“speech computers” are likely to be utilized. 
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Abstract The paper deals with the treatment of modeling uncertainties in model-based 
fault detection and isolation (FDI) systems using different kinds of non-
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1. Introduction 
 All real systems in nature – physical, biological and engineering systems 
– can malfunction and fail due to faults in their components. The chances for 
failures are increasing with the systems’ complexity. The complexity of 
engineering systems is permanently growing due to the growing size of the 
systems and the degree of automation, and accordingly increasing are the 
chances for faults and aggravating their consequences for man and 
environment.  
 Therefore, increased attention has to be paid to reliability, safety and fault 
tolerance in the design and operation of engineering systems. But obviously, 
compared to the high standard of perfection that nature has achieved with its 
self-healing and self-repairing mechanisms in complex biological organisms, 
the fault management in engineering systems is far behind the standards of 
their technological capabilities and is still in its infancy, and much work is 
left to be done. 
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 In automatic control systems, defects may happen in sensors, actuators, 
components of the controlled object, or within the hardware or software of 
the control framework. A fault in a component may develop into a failure of 
the whole system. This effect can easily be amplified by the closed loop, but 
the closed loop may also hide an incipient fault from being observed until a 
situation is reached in which failing of the whole system is unavoidable. 
Even making the closed loop robust or reliable (by using robust or reliable 
control algorithms) can not solve the problem in full. It may help to make the 
closed loop continue its mission with the desired or a tolerable degraded 
performance, despite the presence of faults, but when the faulty device 
continues to malfunction, it may cause damage to man and environment due 
to the persistent impact of the faults (i.e., leakage in gas tanks or in oil pipes 
etc.). So, both robust control and reliable control exploiting the available 
hardware or software redundancy of the system may be efficient ways to 
maintain the functionality of the control system, but it can not guarantee 
safety or environmental compatibility. 
 A realistic fault management has to guarantee dependability which 
includes both reliability and safety. Dependability is a fundamental 
requirement in industrial automation, and a cost-effective way to provide 
dependability is fault-tolerant control (FTC). The key issue of FTC is to 
prevent local faults from developing into system failures that can end the 
mission of the system and cause safety hazards for man and environment. 
Because of its increasing importance in industrial automation, FTC has 
become an emerging topic of control theory.  
 Fault management in engineering systems has many facets. Safety-
critical systems, where no failure can be tolerated, need redundant hardware 
to accomplish fault recovery. Fail-operational systems are insensitive to any 
single component fault. Fail-safe systems perform a controlled shut-down to 
a safe state with graceful degradation when a critical fault is detected. Robust 
and reliable control ensures stability or pre-assigned performance of the 
control system in the presence of continuous or discrete faults, respectively. 
Fault-tolerant control (FTC) provides online supervision of the system and 
appropriate remedial actions to prevent faults from developing into a failure 
of the whole system. In advanced FTC systems, this is attained with the aid 
of fault detection and isolation (FDI) in order to detect the faulty 
components, followed by appropriate system reconfiguration. 
 Not only that FDI has become a key issue in FTC, it is also the core of 
fault-tolerant measurement (FTM). The goal of FTM is to ensure reliability 
of the measurements in a sensor platform by replacing erroneous sensor 
readings by reconstructed signals due to the existing analytical redundancy. 
FDI has also become a basic tool for offline tasks such as condition-based 
maintenance and repair carried out according to the information from early 
fault monitoring. 
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 The backbone of modern FDI systems is the model-based approach, 
where the model contains what is known under the term analytical 
redundancy. Making use of dynamic models of the system under 
consideration allows us to detect small faults and perform high-quality fault 
diagnosis by determining time, size and cause of a fault during all phases of 
dynamic system operations. The classical approach to model-based FDI 
makes use of functional models in terms of an analytical (“parametric”) 
representation. 
 A fundamental difficulty with analytical models is that there are always 
modeling uncertainties due to unmodeled disturbances, simplifications, 
idealizations and parameter mismatches which are basically unavoidable in the 
mathematical modeling of a real system. They may be subsumed under the 
term unknown inputs and are not mission-critical. But they can obscure small 
faults, and if they are misinterpreted as faults they cause false alarms which 
can make an FDI system totally useless. Hence, the most essential requirement 
for an analytical model-based FDI algorithm is to provide robustness w. r. t. 
the different kinds of uncertainties. This problem is well recognized in the 
control community, and analytical approaches to robust FDI schemes that 
enable the detection and isolation of faults in the presence of modeling 
uncertainties have attracted increasing research attention in the past two 
decades, and there is both a great number of different solutions of this problem 
with a good theoretical foundation [11, 12, 14, 32, 33, 38]. More relevant 
literature on analytical approaches to robust FDI can be found in the books of 
Patton, Frank and Clark [30, 31], Gertler [16] and Chen and Patton [7].  
 Surprisingly, much less attention has been paid to the use of qualitative 
models in FDI systems, also known as knowledge-based redundancy 
methods, in which case the parameter uncertainty problem does inherently 
not appear. The appeal of the qualitative approaches lies in the fact that 
qualitative models permit accurate FDI decision making even under 
imperfect system modeling and imprecise measurements. Moreover, 
qualitative model-based approaches may end up in less complex FDI 
systems than comparably powerful analytical model-based approaches. At 
present, increased research is going on in this field of FDI using non-
analytical modeling including computational intelligence, and there is a good 
deal of publications with most encouraging results, see, for example, [1, 10, 
11, 13, 15, 21, 23, 24, 25, 26, 33, 37, 39, 46]. 
 In this paper, we focus our attention on how to cope with modeling 
uncertainties and imprecise measurements by using non-analytical, i.e., 
qualitative, structural, data-based and computationally intelligent models. 
Our intention is to stress the fact that modeling abstraction enables us to 
make accurate decisions for FDI with less complexity even in the face of 
large modeling uncertainty, measurement imprecision and lack of system 
knowledge. 
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2. The model-based approach to FDI 

2.1.  Diagnostic strategy 
 The basic idea of the model-based approach to FDI is to compare the 
behavior of the actual system with that of its functional model. The 
diagnostic strategy can follow either of the two policies:  

1) If the measurements of outputs are inconsistent with those of a fault-
free model with the same input, this indicates that a fault has 
occurred. 

2) If the measurements are consistent with the model behavior 
corresponding to a certain fault scenario, fi, then the fault scenario, fi  
is declared. 

 The diagnostic strategy depends on the kind of model used. In the first 
case the nominal, fault-free behavior of the system is modeled, and the 
inconsistency of the actual system behavior with that of the model indicates 
a fault. Alternatively one can model a faulty behavior for a particular pre-
assigned fault scenario; if such a fault model is used the consistency of the 
actual system with the model indicates that the assumed fault scenario has 
occurred. In this paper we will only discuss the more common approach of 
using a fault-free (“nominal”) reference model.  
 In general, the FDI task is accomplished by the following two-step 
procedure (Fig.1): 

1) Residual/symptom generation. This means to generate residuals/ 
symptoms that reflect the faults of interest from the measurements or 
observations of the actual system. If the individual faults in a set of 
faults are to be isolated, one has to generate properly structured 
residuals or directed residual vectors. 

2) Residual/symptom evaluation. This is a logical decision making 
process to determine the time of occurrence of faults (fault detection) 
and to localize them (fault isolation). If, in addition, faults are to be 
identified, this requires the determination of the type, size and cause 
of a fault (fault analysis). 

 

Figure 1. The two-step process of residual generation and evaluation 
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2.2. Types of models for residual generation 
 It has been mentioned earlier that any kind of model that reflects the faults 
can be used for residual generation. The most appropriate model is the one 
which allows a accurate fault decision at a minimum false alarm rate and low 
complexity. There is a variety of different kinds of non-analytical models that 
can be used for this task. The types of models can roughly be classified into 
four categories, namely analytical (quantitative), qualitative, knowledge-
based (statistical, fuzzy, computationally intelligent), data-based (fuzzy, 
neural), structural. The classification of the corresponding residual 
generation methods is shown in Figure 2.  

SYMPTOM GENERATION
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TICAL
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DATA-
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PARITY
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FUZZY NEURAL
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Figure 2. Classification of different model-based approaches to residual generation 

 Analytical models with usual uncertainties are problematic for FDI unless 
one can do without those parts of the model which carry substantial 
uncertainty. To get rid of the uncertain part is the main problem of all robust 
FDI strategies. It means that finally one has to concentrate on the certain part 
of the model which reflects the faults of interest, and neglect the uncertain 
part.  

3. FDI with non-analytical models 

3.1.  The power of abstraction 
 The best way to overcome model uncertainties is to avoid them from the 
very beginning. That is to say, to use such kinds of models that are not 
precisely (analytically) defined in terms of parameters. The use of non-
analytical models, such as qualitative or structural models, and dealing with 
symptoms rather than signals means an increase of the degree of abstraction, 
which plays a fundamental role, however, in reaching accurate results for 
FDI. Logically, achieving accurateness in FDI implies that the check of the 
reference model must be accurate, i.e., it must be in agreement with the 
observations of the fault-free system even if these observations are 
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imprecise. This is possible with an according degree of abstraction of the 
model. In addition, abstraction may reduce the complexity of the model and 
consequently of the resulting FDI system. 
 Figure 3 shows the typical relationship between model complexity, 
measurement imprecision and modeling uncertainty of an accurate model 
for FDI depending on different kinds of modeling. It can be seen that, to 
reach accuracy, the required complexity is maximum for precise, i.e. 
quantitative analytical models, and it decreases considerably with the degree of 
abstraction obtained by the use of non-analytical models. This means that 
accurate decisions are possible even in case of imprecise observations if 
abstract (non-analytic) modeling is applied, or, in other words:  
 A reduction of complexity of robust FDI algorithms can be obtained by 
increasing the degree of abstraction of the model 

 
Figure 3. Complexity of an accurate model for FDI versus uncertainty and imprecision 

3.2. FDI based on qualitative models 

3.2.1. Qualitative approaches to FDI 

 Qualitative models reduce the resolution of the representations by 
introducing tolerances in order to emphasize relevant distinctions and ignore 
unimportant or unknown details. Under imprecise observations this 
description represents the systems accurately if a set of values rather than 
single values become the primitives of representation.  
 In the last decade, the study of applying qualitative models to system 
monitoring and FDI received much attention, see, e.g., [10, 21, 22, 23, 34], 
and the concept of qualitative (knowledge based) observer was introduced 
[13]. Typical qualitative descriptions of variables are signs [9], intervals 
[20], [23] or fuzzy sets [35]. As a fuzzy set can be divided into a series of 
intervals, the use of the α -cut identity principle proposed by Nguyen [29] 
allows to reduce fuzzy mappings into interval computations. Therefore, 
intervals are the fundamental representations in qualitative modeling. The 
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rough representation of variables leads to the imprecision of the qualitative 
model which relates the variables to each other.  
 According to the available information about a system, there are different 
possibilities for a qualitatively representation of the information of the 
dynamic process. Basically, a qualitative simulation method should be 
responsible for retaining the accuracy of the represented system behavior (so 
called soundness property following the definition of Kuipers [20]), so that 
the FDI approaches based on them can avoid false alarms. The most 
important types of representation known are: 

• Qualitative differential equations (QDE) [20, 35] 
• Envelope behavior (e.g.), [5, 18] 
• Stochastic qualitative behavior [23, 46].  

 Other relevant methods to qualitative models for fault diagnosis are, e.g., 
signed directed graphs [22], logical based diagnosis [24] and structural 
analysis [36]. Dynamic behaviors are not emphasized in these methods, their 
main concern is the causality or correlativity among various parts of the 
systems, which are useful for performing fault isolation and fault analysis. 

3.2.2. FDI using qualitative observers based on QDE 

 Conceptually, a qualitative differential equation can be considered as the 
extension of an ordinary differential equation 

 ( , , )x g x u= θ , (1) 

where x, u and θ  denote the vectors of state variables, known inputs and 
parameters with the dimension of n, r and s, respectively. However, in a 
QDE, the variables take intervals as their values and the variant of the non-
linear function g(.) is allowed to include various imprecise representations: 
e.g., interval parameters, non-analytical functions empirically represented by 
IF-THEN rules and even, in the algorithm QSIM of Kuipers [18], unknown 
monotonic functions. If the non-linear function g(.) is rational, its 
corresponding QDE can be readily derived from it by using the natural 
interval extension of the real function [28]. Qualitative simulation 
procedures that are composed of the two main steps “generation” and 
“test/exclusion” are basically different from the numerical ones. The 
behavior of continuous variables is discretely represented by a branching 
tree of qualitative states.  
 The resulting qualitative observer (QOB) based on QDE is an extension 
of a qualitative simulator, and it functions in further reducing the number of 
irrelevant behaviors (including spurious solutions) to the system under 
consideration [39] as illustrated in Fig. 4. The principle of observation 
filtering is that the simulated qualitative behavior of a variable must cover its 
counterpart of the measurements obtained from the system itself; otherwise 
the simulated behavioral path is inconsistent and can be eliminated. Since 
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these procedures do not lead to the violation of the accuracy of the 
qualitative behavior under fault free condition, the output of QOB is the 
refined prediction behavior in this case.  

 
Figure 4. Qualitative observer 

 However, when a fault occurs and causes a significant deviation of the 
system output such that no consistent predicted counterpart of the output 
could be generated, the output of the QOB becomes an empty set, which 
indicates the fault occurrence. Following this principle, fault detection and 
sensor fault isolation can be implemented [39]. It is important to note that, in 
exchange with the advantage of requiring weaker process knowledge in this 
method, one has to put up with an increase in computational complexity and 
less sensitivity to small faults. 

3.2.3. Fault detection based on envelope behaviors 

 A key issue of improving the small fault detectability when applying 
qualitative methods is that the qualitative system behavior should be predicted 
as precisely as possible. Different from the qualitative model and the 
simulation method presented above, the model considered in this and the next 
sections is of less ambiguity. In other words, imprecision in equation (1) is 
caused only by interval parameters and interval initial states, the structure of 
g(.) is considered to be fully known. While qualitative behaviors here are 
interval values of system variables against time, qualitative simulation aiming 
at producing all possible dynamic behaviors means the generation of their 
envelope. Once the envelope is generated, the fault detection task is a direct 
comparison between the envelope and the measurements. In fault-free case, 
the measurements are contained in the envelope; otherwise, it indicates a fault.  
 Recently, many efforts have been made to increase the efficiency of 
classical qualitative simulation, i.e., to avoid unnecessary conservativeness. 
More quantitative information is brought into the model representation [3], 
and simulation methods tend to be more constructive. Kay and Kuipers [18] 
and Verscovi et al. [38] propose approaches based on standard numerical 
methods to obtain the bounding behavior. In [5, 19] Bonarini et al. and 
Keller et al. treat the interval parameters and the state variables as a super-
cube, whose evolution at any time is specified by its external surface. 
Armengo et al. [1] present the computation of envelopes making use of 
modal interval analysis. 
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3.2.4. Residual generation via stochastic qualitative behaviors 

 Another qualitative representation of system behaviors is the stochastic 
distribution under partitioned state and output spaces. Beginning with the 
similar model assumptions as in section 3.3.1, the parameter vector is in θ  
and the initial state is uniformly distributed within a prescribed area, say cell 
0. Xi(t) and Yi (t) denote the probabilities that the trajectories of the 
respective state and output variables, which start from all initial states in cell 
0, fall into the i-th cell at any time t. The behavior can be approximately 
represented by a Markov chain [46]. It turns out that the new state and output 
variables X and Y can be described by the following discrete hidden Markov 
model (HMM): 

 )()(),()1( kVkXuAkX +=+ θ  (2) 

 )1()()1( +=+ kXCkY θ ,  (3) 

where V represents the influence of spurious solutions. 
 A fault detection scheme based on the HMM is shown in Fig. 5 [46]. A 
qualitative observer (QOB) aiming at attenuating the effect of V and 
watching over the possible abnormal behavior of measurements is applied. 
The residual r and its credibility ν can be calculated, the latter reflects the 
degree of spurious solutions. 

 

Figure 5. Observer-based residual generation using HMM 

3.3.  Residual generation employing computational 
intelligence  

 In the case of fault diagnosis in complex systems, one is faced with the 
problem that no or insufficiently accurate mathematical models are 
available. The use of data-model-based (neural) diagnosis expert systems or 
in combination with a human expert, is then a much more appropriate way to 
proceed. The approaches presented in the following section employ 
computational intelligence techniques such as neural networks, fuzzy logic, 
genetic algorithms and combinations of them in order to cope with the 
problem of uncertainty, lacking analytical knowledge and non-linearity [15]. 
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3.3.1. Neural observer-based residual generation 

 Neural networks can be used as non-linear multiple-input single-output 
(MISO) models of ARMA type to set up different kinds of observer schemes 
[15, 27]. The neural networks replace the analytical models of observer-
based FDI. If instead of a single multiple-input multiple-output structure a 
separate neural network is taken for each output, a set of smaller neural 
networks can be used for each class of system behavior. 
 The type of neural network employed for this task is of a mixed structure 
called dynamic multi-layer perceptron (DMLP-MIX) integrating three 
generalized structures of a DMLP [25]. These three are: the DMLP with 
synaptic generalized filters, which have each synapse represented by an 
ARMA filter with different orders for denominator and numerator, the DMLP 
with internal generalized filters [2] integrating an ARMA filter within the 
neurons before the activation function, and the DMLP with a connectionist 
hidden layer, which has a partially recurrent structure interconnecting only 
the hidden units. The mixed structure is implemented selecting either a basic 
architecture or a combination of them. The training of the DMLP-MIX neural 
network is performed by applying dynamic back propagation, the problem of 
structural optimization is solved with the help of a genetic algorithm [26]. 
Two types of observer schemes for actuator, component and instrument fault 
detection have been proposed by Marcu et al. [27]: the neural single observer 
scheme (NSOS) and the neural dedicated observer scheme (NDOS).  

3.3.2. Fuzzy observer-based residual generation 

 There are many ways of using fuzzy logic to cope with uncertainty in 
observer-based residual generation [15]. The resulting type of fuzzy observer 
depends upon the type of the fuzzy model used. Fuzzy modeling can roughly 
be classified into four categories: fuzzy rule-based, fuzzy qualitative, fuzzy 
relational and fuzzy functional (Tagaki-Sugeno type).  

3.3.3. Residual generation with hierarchical fuzzy neural networks 

 Here the fault diagnosis system is designed by a knowledge-based 
approach and organized as a hierarchical structure of fuzzy neural networks 
(FNN) [6]. FNNs combine the advantage of fuzzy reasoning, i.e. being 
capable of handling uncertain and imprecise information, with the advantage 
of neural networks, i.e. being capable of learning from examples. The neural 
nets consist of a fuzzification layer, a hidden layer and an output layer. Fault 
detection is performed through the knowledge-based system, where the 
detection rules are generated from knowledge obtained from the structural 
decomposition of the overall system into subsystems and operational 
experience. After detecting a fault the diagnostic module is triggered, which 
consists of a hierarchical structure (usually three layers) of FNNs. The 
number of FNNs is determined by the number of faults considered. The 
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lower level only contains one FNN, which processes all measured variables. 
The FNNs on the medium level are fed by all measurements but also by the 
outputs of the previous level. The upper level consists of an OR operation on 
the outputs of the medium level. This hierarchical structure can cope with 
multiple simultaneous faults under highly uncertain conditions. 

3.3.4. Fuzzy residual evaluation 

 Fuzzy logic is especially useful for decision making under considerable 
uncertainty. The three main categories of current residual evaluation methods 
are: classification (clustering) or pattern recognition, inference or reasoning, 
and threshold adaptation. Although all approaches employ fuzzy logic, the 
first one is actually data-based while the other two are knowledge-based. 

3.3.5. Fuzzy clustering  

 The approach of fuzzy clustering actually consists of a combination of 
statistical tests to evaluate the time of occurrence of the fault and the fuzzy 
clustering to provide isolation of the fault [8]. The statistical tests are based 
on the analysis of the mean and the variance of the residuals, e.g., the 
CUSUM test [17]. The subsequent fault isolation by means of fuzzy 
clustering consists of the two following steps: In an online phase the 
characteristics of the different classes are determined. A learning set which 
contains residuals for all known faults is necessary for this online phase. In 
the online phase the membership degree of the current residuals to each of 
the known classes is calculated. A commonly used algorithm is the fuzzy C-
means algorithm [4]. 

3.3.6. Fuzzy reasoning  

 The basic idea behind the application of fuzzy reasoning for residual 
evaluation is that each residual is declared as normal, high or low with 
respect to the nominal residual value [8, 37]. These linguistic attributes are 
defined in terms of fuzzy sets, and the rules among the fuzzy sets are derived 
from the dynamics of the system. For fault detection, the only relevant 
information is whether or not the residual has deviated from the fault free 
value, and hence it is only necessary to differentiate between normal and 
abnormal behavior. However, if isolation of faults is desired, it may be 
necessary to consider both the direction and magnitude of the deviation.  

3.3.7. Fuzzy threshold adaptation 

 Fuzzy reasoning has been applied with great success to threshold 
adaptation [13, 33]. In the case of poorly defined systems it is difficult or 
even impossible to determine adaptive thresholds. In such situations the 
fuzzy logic approach is much more efficient. The relation for the adaptive 
threshold can be defined as a function of input u and output y by 
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 0( , ) ( , )T u y T T u y= + ∆  (4) 

 Here To = T0(u0, y0) denotes a constant threshold for nominal operation at 
the operational point (uo, y0) where only the effects of the stationary 
disturbances including measurement noise are taken into account. The 
increment ( , )T u y∆  represents the effects of u(t) and y(t) caused by the 
modeling errors. These effects are described in terms of IF-THEN rules and 
the variables by fuzzy sets (e.g. SMALL, MIDDLE, LARGE, etc.) that are 
characterized by proper membership functions.  
 As a typical example of an industrial application we consider the residual 
evaluation via fuzzy adaptive threshold of a six-axis industrial robot (Manutec 
R3) [13, 33]. Let the goal be to detect a collision of the robot by checking the 
moments of the drives. A model of the robot is available, but without 
knowledge of the friction of the bearings, which is highly uncertain. It is 
known, however, that the residual of the moment is heavily distorted by the 
friction which strongly depends on the arm acceleration. This knowledge can 
be formulated by rules. For example for the third axis the following rules apply: 

IF{speed small}, THEN{threshold middle} 
IF{acceleration high}, THEN{threshold large} 
IF{acceleration very high}, THEN {threshold very large} 
IF {acceleration of any other axis very high}, THEN {threshold middle}.  

 The linguistic variables small, middle, high, very high, large, very large 
are defined by proper membership functions [33], they are assigned 
intuitively based on the experience of the operators or the manufacturers of 
the robot. 
 Figure 6 shows the time shape of the threshold together with the shape of 
the residual of axis 3 for a particular maneuver of the robot. Note that at t = 
4,5 sec the heavy robot which can handle 15 kg objects in its gripper, hits an 
obstacle which causes a momentum of about 5 Nm. As can be seen, this 
small fault can be detected at high robustness to the uncertainty caused by 
the neglected unknown friction.  

 

Figure 6. Obstacle detection of a robot with fuzzy adaptive threshold 
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3.4. FDI based on structural models 
 The use of structural system models together with structural analysis is 
another way of abstraction of the modeling of the system behavior in order 
to increase the robustness of the FDI algorithm to model uncertainties. Here 
we only consider the structure of the constraints, i.e., the existence of links 
between variables and parameters rather than the constraints themselves 
[36]. The links are usually represented by a bi-partite graph, which is 
independent of the nature of the constraints and variables (quantitative, 
qualitative, equations, rules, etc.) and of the values of the parameters. 
Structural properties are true almost everywhere in the system parameter 
space. 
 This represents indeed a very low-level easy-to-obtain model of the 
system behavior, which is logically extremely insensitive to changes in the 
system parameters but, of course, also to parametric faults. The important 
tasks of structural analysis are solved with the aid of the analysis of the 
system structural graph and its canonical decomposition. An important factor 
in the canonical decomposition is the property of causality which 
complements the bi-partite graph with an orientation. FDI is performed with 
the aid of analytical redundancy relations based on a structural analysis and 
the generation of structured residuals. 
 Note that the use of structural models together with the strong decoupling 
approach solves automatically the robustness problem in structurally 
observable systems. 

4. Conclusion 
 The paper reviews the methods of handling modeling uncertainties, 
incomplete system knowledge and measurement imprecision in model-based 
fault detection and isolation by using non-analytical models. It is pointed out 
that abstract non-analytical models may be superior over analytical models 
with respect to uncertainty, imprecision and complexity. The paper outlines 
the state of the art and relevant on-going research in the field approaching the 
modeling uncertainty and measurement imprecision problem in FDI by 
various types of non-analytical models. 
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Abstract Large scale systems often consist of several relatively autonomous subsystems 
sharing common resources, material or energy flows, and informational 
networks. Distributed control of such systems requires the use of some 
decomposition, modeling and analysis techniques in order to stabilize the global 
system and to fulfill further design requirements. In the paper some techniques 
based on structural investigations trying to infer the properties of the 
interconnected system (eigenvalues and fixed modes) from the properties of its 
constituent subsystems are discussed. 

Keywords: structural analysis, system decomposition, interconnected systems, 
decentralized control 

1.  Centralized VS distributed control systems 

 Consider the centralized control problem of a given plant P 

 : , ( ), ,P U Y y f u u U y Y→ = ∈ ∈ , (1) 

where u, y are their input and output, respectively. Finding a (single) control 
unit is required, whose main tasks are i) to ensure asymptotic stability of the 
closed loop system for a given class of command signals and disturbances, 
and ii) to meet dynamical I/O behavior of the system as specified. This 
approach turns out to be not suitable for many of the modern plants at 
present. Today’s plants are highly integrated systems based on the 
cooperation between several machines and industrial robots. All these 
constituents are more or less interconnected by information networks, 
material and energy flows, or share common resources. 
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 Such large scale systems are characterized by at least one of the following 
properties: i) large size and high dimension of the plant model; ii) presence of 
uncertainties regarding the model and the plant structure; iii) restrictions 
concerning the information access due to the geographical distribution of 
several component subsystems; iv) an interconnection structure that links 
together the constituent subsystems, either directly (at the subsystems level) 
or indirectly, by means of a common subsystem or by common resources (at 
the system level). Each of these properties causes a centralized control unit of 
the large scale system to be hard to find at reasonable costs. 
 A distributed control approach of such a large scale system is more 
appropriate due to the intrinsic isomorphism that can be established between 
the structure of the controlled system and the structure of the distributed 
control unit. This way the global control problem splits into several smaller 
but still interrelated control problems that are easier to solve by smaller 
control units providing communication capabilities. 
 This is the so called “off-line” phase of decentralized control. It can be 
the subject of some decomposition techniques applied to the global system, 
as well as to the global control problem. Also, redefining of the control 
problem has often to be made at this level, to take into account new 
properties such as flexibility, reliability, or robustness of the control unit. 
Such aims may become more important than a limited, short term optimum 
behavior, and they have not been addressed primarily by the classical 
multivariable control theory. 
 A certain methodology is needed in order to deal with large scale systems: 
i) specification of the system objectives; ii) system decomposition in N 
interconnected subsystems; iii) analysis of the isolated subsystems to reveal 
their qualitative and quantitative properties; iv) inferring the overall system 
properties from those of the isolated subsystems taking into account the 
interconnection structure. 

1.1. Decomposition of large scale systems 
 Let S be a large scale system defined by 

 
{ , , , , , }

, ,f g

S U X Y f g t

U X X X Y

=

× → →
 (2) 

where U, X, and Y are the input, state, and output sets, respectively. 
 The system S is to be decomposed in N sub-systems Si , i=1, N , 

 
{ , , , , , }

,i i

i i i i i
f g

i i i i i

S U X Y f g t

U X X X Y

=

× → →
 (3) 

with Ui ⊂ U, Xi ⊂ X, Yi ⊂ Y. 
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 There are two ways to have the system S split in subsystems: i) 
horizontally, and ii) vertically, respectively. Horizontal decomposition can 
be made based on structural criteria as well as based on mathematical 
conversions followed by partitioning and parametric decomposition (Lunze, 
1992). When direct coupling links between subsystems are used, the result of 
the horizontal decomposition phase is an interconnected system as shown in 
Figure 1. Its interconnected structure can be expressed as 
 s = H(z) = Lz, (4) 

where L is the interconnection matrix, L=[lij], lij∈{0,1}, ∀i,j= N,1 . 

z1

z1
z2

zN

u1 y1

s1

s1 . . .z2

u2 y2

s2 zN

uN yN

sN SN

Couplings
s=Lz

S2S1

s2

sN

 
Figure 1. System decomposition into several directly coupled subsystems 

 Further vertical decomposition refers mainly to the control unit. It leads 
to a hierarchical structure, usually consisting of up to three layers (Ionescu, 
1982): i) operational layer; ii) planning layer, and iii) strategic layer. The 
operational layer is the one resulting from the horizontal decomposition 
process.  

1.2. Linear models for decentralized systems 
 As stated before, a global model such as the well known centralized 
linear state model: 

 
0, (0) ,

x Ax Bu
y Cx Du x x
= +

 = + =

�
 (5) 

with x∈Rn, u∈Rm, y∈Rr, A, B, C, and D constant matrices of suitable sizes, 
is useless for the large-scale system control even if such a model could be 
found. Instead of it, smaller size order models of the subsystems together 
with the interconnection structure model should be used when the analysis 
and design of the decentralized control unit is in view. 
 The I/O Oriented Model. It allows only for a decentralized I/O 
characterization of the large scale system while state information continues 
to remain centralized. It can be derived from (5) where input and output 
variables are partitioned into N smaller size components  
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 [ ]TNuuuu ...21= ; [ ]TNyyyy ...21=  (6) 

 dim ui = mi, dim yi = ri, Ni ,1= ,   

as well as the input matrix B and the output matrices C and D 

 
0

1

, (0) ,

, 1, .

N

S i i
i

N

i S i i j j
j=1

x Ax B u x x

y C x D u i N

=


= + ⋅ =



 = ⋅ + ⋅ =


∑

∑

�

 (7) 

 The Interaction Oriented Model. Each subsystem is considered a 
standalone system, having its own state, input, and output variables. It is 
described by a centralized smaller order linear model 

 

, 1, , (0) ,

i i i i i i i

i i i i i i i

i zi i zi i zi i i i0

x A x B u E s
y C x D u F s

z C x D u F s i N x x

 = + +


= + +


= + + = =

�
 (8) 

where dim xi = ni, dim ui = mi, dim yi = ri, dim si = msi, dim zi = rzi. 
 Consider the subsystem couplings being fully described by the algebraic 
equation 

 s = Lz , (9) 

where [ ]1 2 ... T
Ns s s s= , [ ]1 2 ... T

Nz z z z=   with dim s = ms = ∑
N

i
sim

1=
, 

dim z = rz = ∑
N

i
ir

1=
z . 

 Due to the absence of direct couplings from the local inputs ui to the local 
outputs yi as well as between the interaction inputs si and outputs zi., the 
decentralized I/O model of the overall system can be written 

 
, (0) ,

, 1, ,

N

i ii i ij j i i i i0
j=1
j i

i i i

x A x A x B u x x

y C x i N
≠


= + + =




= =

∑�
 (10) 

where 

 A = [Aij]N×N, where Aii = Ai + Ei Lii Czi,  Aij = Ei Lij Czj, i≠j  

 B = diag Bi, C = diag Ci, D = 0. (11) 
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2. Analysis of decentralized systems 
 The following three theorems are well known from the multivariable 
feedback control of centralized systems described by the state space linear 
model 

 
0, (0) .

x Ax Bu
y Cx x x
= +

 = =

�
 (12) 

 The solution of the differential equation (12) may be expressed as 

 0 0
( ) ( )

n ntt (t )i i
i i i i i

i=1 i=0

y t C v w e x Cv w B e u dλ λ −θ= + ⋅ ⋅ ⋅ θ θ∑ ∑∫ , (13) 

where λi are the n different eigenvalues of the system (12), and vi, wi are the 
corresponding right and left eigenvectors, respectively. 

Theorem 1  The input mode t
iBi

iewm λ=  and the eigenvalue λi is said to be 
controllable if one of the following equivalent conditions is satisfied 

 [ ] niBIAw i ,1,0i =∀≠−λ  (14) 

rank [ ] .,1, ninBIA i =∀=−λ  

Theorem 2  The output mode tλ
iCi

ievm =  and the eigenvalue λi is said to be 
observable if one of the following equivalent conditions is satisfied 

  ,0≠






 −
i

i v
C

IA λ
  rank nin

C
IA i ,1, =∀=






 −λ
. (15) 

Theorem 3  The set of centralized fixed eigenvalues is identical to the set of 
the uncontrollable and unobservable eigenvalues of the system (12). 

 The centralized fixed modes cannot be changed even by any dynamic 
output feedback. Negative values of the real part of such fixed eigenvalues 
make difficult to fulfill some design requirements, while positive values is 
the worst case: the system is unstable and cannot be stabilized. In the 
following, the I/O oriented model (7) of the system (12) is considered 
together with the decentralized static control law 

 u = -Ky y , (16) 

where Ky is the decentralized feedback matrix  

 Ky = diag(Ky1,Ky2, … , KyN) . (17) 
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2.1. Decentralized fixed modes and eigenvalues 
 Decentralized fixed modes are defined in a similar manner as the 
centralized ones, corresponding to those eigenvalues of the closed loop 
system that remain unchanged for any decentralized feedback applied to the 
system (Corfmat et al. 1973). First, according to (17) Ky∈Rm x r, so the 
centralized fixed modes are all decentralized fixed modes too. However, 
further decentralized fixed modes may occur due to the decentralized control 
structure, even if the closed loop system is completely controllable and 
observable. 

Theorem 4 (Anderson et al., 1981)  The eigenvalue λ[A] is a decentralized 
fixed one if and only if a disjoint partition of the index set I ={1, 2,..., N} 
exists, consisting of the sets D = {i1, i2,..., ik} and H = {ik+1, ik+2,..., iN}, 
D ∩H = ∅, D ∪H=I , so that the following condition is satisfied 

 rank 0
D

H

A I B
nC

− λ 
< 

  
, (18) 

where  

 

1 2 1 2

, ,

, .

1 2 k k+1 k+2 N

k k k N

D Si Si Si H Si Si Si

T TT T T T T T
D Si Si Si H Si Si Si

B B B B B B B B

C C C C C C C C
+ +

   = =   

   = =   

… …

… …
  

 It is obvious that the eigenvalue λ[A] is not a decentralized fixed one if 
there exists at least one channel (ui, yi), i∈I so that λ[A] is both controllable 
and observable through it. Decentralized fixed eigenvalues are either 
uncontrollable or unobservable or both of them at the same time through any 
of the decentralized I/O control channels. 
 Theorem 4 provides a necessary and sufficient condition for an 
eigenvalue to be a decentralized fixed eigenvalue. It assures that if the 
eigenvalue λ[A] is uncontrollable through the I/O channels i, ∀i∈ D, then it 
cannot be made controllable by any decentralized feedback control at the I/O 
control channels i, ∀i∈ H  by which it is observable. Conversely, it assures 
that if the eigenvalue λ[A] is unobservable through the I/O channels i, ∀i∈ 
H, then it cannot be made observable by any feedback control at the I/O 
control channels i, ∀ i ∈ D  by which it is controllable.  
 The condition (18) is independent by the decentralized control matrix Ky. It 
reveals a property the system has to be provided with for a decentralized fixed 
mode to exist. However, exploiting the condition provided by the Theorem 4 
to find the decentralized fixed modes leads to complex mathematical 
operations with the centralized model of the large-scale system. In the 
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following, equivalent conditions will be given that establish a connection 
between the decentralized fixed modes and the properties of the subsystems 
described by the interaction oriented model (10) in a simplified form 

 01 0 ,
.

i i i i i i i

i i i i zi i i i

x A x B u E s

y C x , z C x , i ,N ,x ( ) x
s  Lz

= + +


= = = =
 =

�

 (19) 

 If all the subsystems i∈I are completely controllable and observable 
through their local I/O channel (ui, yi), then the eigenvalues of the isolated 
subsystems can all be changed by an appropriate decentralized I/O feedback. 
However, even if all subsystems and the overall system are completely 
controllable and observable, the overall system may still have decentralized 
fixed modes, as exemplified in (Lunze, 1992).  
 Thus, sufficient conditions for a subsystem eigenvalue to be a 
decentralized fixed eigenvalue of the overall system can be tailored to the 
interaction-oriented model. To begin with, it is clear that a subsystem 
eigenvalue λ[Ai] is a decentralized fixed eigenvalue of the overall system 
(19) if it is either uncontrollable through both the inputs ui and si or 
unobservable through both the outputs yi and zi.  

Subsystem 
Subsystem 

 

Interconnections 
Control 
unit i 

Subsystem 

s1

z1
zi

ui

siyi

sN

zN 
Second “control unit”  

Figure 2. The i-th subsystem and its I/O channels: (ui, yi), (si, zi) 

 For the subsystem i assimilated to a plant with two control units, as 
shown in Fig.2 the following theorem is given. 

Theorem 5  A subsystem eigenvalue λ[Ai] is a decentralized fixed 
eigenvalue of the overall system (19) if at least one of the following 
conditions holds 

 rank i
i

ii n
C

EλIA
<







 −
0

,  rank i
zi

ii n
C

BλIA
<







 −
0

. (20) 

 These conditions can be derived directly from Theorem 4 applied to the 
subsystem i while its control structure is considered as in Fig.2. In other 
words, λ[Ai] is a decentralized fixed eigenvalue of the overall system (19) if 
it is not and cannot be made either simultaneously controllable through si 
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and observable through yi, nor simultaneously controllable through ui and 
observable through zi.  
 Finally, Theorem 4 can also be applied to the subsystem i with embedded 
interconnections, having N I/O channels, while the matrices A, BD şi CH are 
aggregated from the subsystem matrices Ai, Bi, Ci, Ei, Czi, and Lij, using the 
relations (11), as described in (Lunze, 1992). 
 A subsystem eigenvalue that turns out to be a decentralized fixed value 
does not depend on the interconnections between subsystems. These values 
remain unmodified even if some subsystems are decoupled from the overall 
system or other subsystems are later connected.  

2.2. Decentralized structural fixed modes and eigenvalues 
 Large scale systems control often cannot make use of a precise linear 
model. However, some properties of the system can be determined in spite 
of the uncertainties regarding the parameters and the structure of the plant. 
Such structural properties are valid for a relatively large area of numerical 
values instead of being strongly dependent on some singular parameter 
values (Sezer, 1981). 
 The structure of a system S (A, B, C) may be described through the mean 
of a structure matrix or graph. All the matrices of the system (1) A, B, and C 
may be converted as structure matrices Sa= [A], Sb= [B], and Sc= [C], 
respectively, by using the following notation 

 
0 0,

0 .
ij

ij
ij

, a
a

* , a

=  =   ≠
 (21) 

 The class S consists of all systems having the same structure matrices Sa, 
Sb, and Sc 

 S (Sa, Sb, Sc) = {(A, B, C) / [A] = Sa, [B] = Sb, [C] = Sc} . (22) 

 The graph representation of class S can be derived from the structure 
matrix Q attached to the system 

 .
0

0 0 0
0 0

a b

c

X U Y
S S X

Q U
S Y

 
 =  
  

 . (23) 

 There are n=dim x state vertices xi, m=dim u input vertices ui, and r=dim y 
output vertices yi within the structure graph G (Q). An edge from one vertex 
vi to another vertex vj exists if and only if the corresponding entry qij = * in 
matrix Q in (23).  
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Definition 1  For a structure matrix Sa, a set of independent entries is defined 
as a set of indeterminate ‘*’ entries, no two of which lie on the same row or 
column.□ 

Definition 2  The structural rank (s-rank) of Sa is defined as being the 
maximum number of elements contained in a set of independent entries.   
 A typical relation between numerical and structural investigations can be 
defined. The structural rank of a structure matrix Sa is equal to the maximum 
rank of all admissible matrices having the same structure 
 s-rank Sa = max rank

a

A
A S∈

.□ (24) 

 Equation (24) specifies that almost all matrices A∈Sa have a numerical 
rank equal to the structural rank. In other words, rank A < s-rank Sa holds 
only for some exceptional matrices A, whose entries lie on a hyper surface, 
and, thus, they are relatively infrequent.   

Definition 3  A class S of systems is said to be structurally controllable (s-
controllable) or structurally observable (s-observable) if there exists at least 
one admissible realisation (A, B, C)∈S which is completely controllable or 
completely observable, respectively. As a consequence, the s-controllability 
and s-observability of a class S are necessary conditions for the numerical 
controllability and observability, respectively, for almost all systems from 
class S.□ 

Definition 4  A class of systems S is said to be input connectable if for every 
state vertex v in the graph G (Q) there is a path from at least one of the input 
vertices to v. It is said to be output-connectable if for every state vertex v a 
path to at least one output vertex exists.□ 
 Input-connectivity and output-connectivity guarantees that 

s-rank [ ] nBIA =− λ  and s-rank n
C

IA
=







 − λ
, for λ ≠ 0 and almost all 

admissible systems. Taking these into account, the structural counterpart of 
Theorems 1, 2 is 

Theorem 6  A class S of systems is s-controllable if and only if it is input-
connectable, and s-rank [Sa Sb] = n. The class S is s-observable if and only if 
it is output-connectable, and s-rank [Sa

T Sc
T]T = n. 

Definition 5  A class S of systems has structurally fixed modes if all the 
admissible systems of that class have fixed modes.□ 

 As a result, a given system (A, B, C) has fixed modes if its container 
class S([A],[B],[C]) has structural fixed modes. On the other hand, a class S 
has no structural fixed modes if at least one system completely controllable 
and observable (A, B, C) ∈ S exists, i.e. if the class S is s-controllable and 
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s-observable. Subsequently, the presence of structural fixed modes can be 
checked using the s-controllability and s-observability conditions 
established by Theorem 6. 

Theorem 7  A class S of systems has structurally fixed modes if and only if 
at least one of the conditions of Theorem 6 is not satisfied. Structural fixed 
modes of type I occur due to the missing input or output connectivity, 
otherwise structural fixed modes, if exists, are said to be of type II.  

 Although the conditions of Theorem 6 refer to the open loop system, a 
good graphical representation for them can be made based on the closed loop 
system which takes into account the static output feedback u = –Kyy. The 
structure matrix Q0 of the closed loop system is 

 0

0 * *
0 0 ,

0 0 * *

a b

c

S S
Q E E

S

   
   = =   
     

"
# % #
"

 . (25) 

 Compared to G (Q), the closed loop graph G (Q0) has supplemental edges 
from all the output nodes to all the input ones, expressing the information 
flow across the feedback links. As any system mode can be changed only if 
it is placed within a closed loop in the graph G (Q0), structural fixed modes 
exist only if there are vertices in G (Q0) that cannot be embedded in such 
closed loops. As any input can be linked to any output using a proper static 
feedback, state vertices are part of no closed loop only if they are 
disconnected from all the inputs or all the outputs. 
 The second condition may be examined starting from the following 
considerations. The condition s-rank [Sa Sb] = n may be equally expressed as 
the requirement that every state vertex must have at least an edge from 
different state or input vertices (or any line of [Sa Sb] must have at least one 
indeterminate entry placed on different columns). Similar meanings can be 
given to the condition s-rank [Sa

T Sc
T]T = n: every state vertex must have at 

least an edge to different state or output vertices (or any column of [Sa Sb] 
must have at least one indeterminate entry placed on different lines). These 
two conditions are simultaneously satisfied if there are disjoint closed loops 
or cycles in G (Q0) with all the state vertices embedded within at least one of 
them. All these closed loops yields to a cycle family, whose dimension is 
given by the number of state vertices included. 
 The necessary and sufficient condition given by Theorem 7 can be 
expressed in the equivalent form of 

Theorem 8  A class S of nth-order systems has structurally fixed modes if 
and only if at least one of the conditions is satisfied for graph G (Q0): 

I. S is neither input-connectable nor output-connectable. 
II. There does not exist a cycle family of width n.  
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 Structural fixed modes as they were defined for the centralized model (5) 
have been generalized for interconnected systems described by the 
decentralized I/O model (10). Thus, the graph for the decentralized closed 
loop system may be derived from the following structure matrix 

 

[ ] [ ]

[ ]

111 1

1

1

0

0

0

0
0 0

0

0

0 0

0

N

N NN N

d

N
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A A B
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C

C

                
 
 
                      
 ∗ 

=  
 ∗ 
    
 
 
        

""

# % # # % #

" "

"
# % #
"

"

# % #

"

 . (26) 

 Applying Theorem 8 for the decentralized feedback system matrix Qd one 
can claim that for the class Sd of N interconnected subsystems there are 
structurally fixed modes if at least one of the following conditions is 
satisfied for graph G (Qd): 

I. There exists a subsystem vertex, which is not connectable to any 
channel (ui,yi). 

II. There does not exist a cycle family of width N. 
 Another way to establish if an interconnected system has structural fixed 
modes can be derived by investigating each subsystem together with its 
couplings to and from the other subsystems. Thus, while the subsystem i is 
considered as shown in Fig.2, the attached graph G (Qdi)  

 

[ ] [ ] [ ]

[ ]
[ ] 






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












=

0000
0000

0000
0000
00

zi

i

iii

di

C
C

*
*

EBA

Q  (27) 

may be used in order to check if an eigenvalue of the subsystem is a 
structurally fixed eigenvalue for the overall system. 
 Given the class Sd of systems whose ith subsystem structure is described 
by Qdi, the class Sd has structurally fixed modes if there exists an index i so 
that at least one of the following conditions are satisfied for the graph G (Qdi): 

I. There exists a state vertex, which is not connectable to any channel  
(ui, yi). 

II. There does not exist a cycle family of width ni.  
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3.  Conclusions 
 Structural investigations concerning the existence of decentralized fixed 
modes are important due to their impact on the stabilizability of the plant. A 
decentralized stabilizability theorem may be given which is similar to 
Theorem 3. The eingenvalues of the plant and their associated modes can be 
all modified using a decentralized static feedback u= -Kyy if and only if there 
are no decentralized fixed modes. 
 Making all the decentralized eigenvalues to be controllable and 
observable trough the same channel leads to a centralized design procedure 
of the decentralized control problem. Other solutions presented in the 
literature (Lunze, 1992) are decentralized dynamical compensation, and the 
replacement of a centralized state feedback by a decentralized output 
feedback without changing the eigenvalues established at the previous stage. 
 Having the control units interconnected via an industrial control network 
is a different approach to solve the overall control problem in a distributed 
way. This approach may overcome many of the constraints imposed by the 
decentralized structure of the controller (Wang et al., 1978). Structural 
analysis of the large scale system still offers useful information as long as it 
is focused on the centralized fixed modes of the system. 
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Abstract The control problem of the spatial tentacle manipulator is presented. The 
difficulties determined by the complexity of the nonlinear integral - differential 
equations are avoided by using a very basic energy relationship of this system. 
Energy-based control laws are introduced by using only the relations that 
determine the energy stored in the system. A PD controller and a fuzzy 
controller are discussed. Numerical simulations for spatial and planar tentacle 
models are presented in order to prove the efficiency of the method. 

Keywords: tentacle, distributed parameter system, fuzzy controller 

1. Introduction 
 An ideal tentacle manipulator is a non-conventional robotic arm with an 
infinite mobility. It has the capability to take sophisticated shapes and to 
achieve any position and orientation in a 3D space. These systems are also 
known as Hyper-Redundant Manipulators or Hyper-Degree-Of-Freedom 
(HDOF) Manipulators and, over the past several years, there has been a 
rapidly expanding interest in the study and construction of them. 
 The control of these systems is very complicated and a great number of 
researchers tried to offer solutions for this difficult problem. Hemami (1984) 
analyzed the control by cables or tendons meant to transmit forces to the 
elements of the arm in order to closely approximate the arm as a truly 
continuous backbone. Also, Mochiyama et al. have investigated the problem 
of controlling the shape of an HDOF rigid-link robot with two-degree-of-
freedom joints using spatial curves (Mochiyama and Kobayashi, 1999; 
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Mochiyama et al., 1998). Important results were obtained by Chirikjian and 
Burdick (1990, 1992, 1995) who laid the foundations for the kinematical 
theory of hyper-redundant robots. Their results are based on a “backbone 
curve” that captures the robot’s macroscopic geometric features. The inverse 
kinematical problem is reduced to determining the time varying backbone 
curve behavior. New methods for determining “optimal” hyper-redundant 
manipulator configurations based on a continuous formulation of kinematics 
are developed. Gravagne (2000) analyzed the kinematical model of “hyper-
redundant” robots, known as “continuum” robots. Robinson and Davies 
(1999) present the “state of art” of continuum robots, outline their areas of 
application and introduce some control issues. 
 In other papers (Suzumori et al., 1991; Cieslak and Moreki, 1994; 
Shigoma, 1996) several technological solutions for actuators used in hyper-
redundant structures are presented and conventional control systems are 
introduced. 
 All these papers treat the control problem from the kinematical point of 
view and few researchers focus their efforts on the dynamic problem of these 
systems. The dynamic models of these manipulators are very complicated. 
Chirikjian (1993b) proposed a dynamic model for hyper-redundant structures 
as an infinite degree-of-freedom continuum model and some computed torque 
control systems are introduced. Ivanescu (1984) presented a dynamic model 
for an ideal planar tentacle system and discussed optimal control solutions. 
Ivanescu and Stoian (1995) proposed a sequential distributed control for a 
tentacle manipulator actuated by electrorheological fluids. 
 The difficulty of the dynamic control is determined by integral-partial-
differential models with high nonlinearities that characterize the dynamic of 
these systems. In Appendix 1 of this paper the dynamic model of an ideal 
spatial tentacle manipulator is presented and the difficulties to obtain a 
control law are very clear. 
 In this paper we treat the control problem by using a very basic energy 
relationship of these models and avoid the difficulties determined by the 
complexity of the dynamic model. The energy-based controller (Ge, et al., 
1996; Wang, et al., 2001) determines the control law by using only the 
relations that determine the energy stored in the system. By this method, a 
class of controllers that can assure the motion of the manipulator to a desired 
position with good performances is proposed. The method is verified for an 
ideal spatial tentacle manipulator and the control laws are numerically 
simulated. The paper is organized as follows: section 2 reviews the basic 
principles of a tentacle manipulator; section 3 presents the general relationship 
of the energy for these systems; section 4 introduces the control law; section 5 
verifies by computer simulations the control laws for a 2D and 3D tentacle 
manipulator. In Appendix 1 the dynamic model of a 3D manipulator is 
inferred and in Appendix 2 and 3 the control laws are demonstrated. 
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2. Background 
 We will consider an ideal tentacle arm, with a uniformly distributed mass 
and torque, with ideal flexibility that can take any arbitrary shape (Figure 1). 
Technologically, we will analyze a backbone structure with peripheral cells 
that can determine the shape of the arm by an appropriate control. We will 
neglect friction and structural damping. 
 The essence of the tentacle model is a 3-dimensional backbone curve C 

that is parametrically described by a vector r(s) ∈ R3 and an associated 
frame Φ(s) ∈R3×3 whose columns create the frame bases (Figure 2a). The 
independent parameter s is related to the arc-length from the origin of the 
curve. We denote by l the total length of the arm on curve C. 
 The position of a point s on curve C is defined by the position vector, 
 ( )srr = , (1) 

where s ∈ [0, l]. For a dynamic motion, the time variable will be introduced, 
( )t,srr = . 
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Figure 1. Tentacle model Figure 2. a) Backbone structure; b) Backbone parameters 

 

 We used a parameterization of the curve C based upon two “continuous 
angles” θ(s) and q(s) (Chirikjian and Burdick, 1990, 1992, 1995), (Figure 
2b). At each point ( )t,sr , the robot’s orientation is given by a right-handed 
orthonormal basis vector { }zyx e,e,e  and its origin coincides with point 
( )t,sr . The set of backbone frames can be parameterized as 

 ( ) ( ) ( ) ( )( )t,set,set,set zyx
s =Φ  (2) 

 ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) 















−−
−

=Φ θθθ

θθθ

t,sct,ss0
t,sst,sct,sct,sct,ss
t,sst,sst,sct,sst,sc

t

qq

qq

qq
s  (3) 

with ,sins,cosc θ=θ= θθ  etc. 
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 For a small variation ds along curve C, 
 ( ) ( ) ( )t,dssrt,srdt,sr +=+  (4) 

the new frame is given by 

 ( ) ( ) ( ) ( )( )t,dsset,dsset,dsset zyx
dss +++=Φ +  (5) 

 The position vector on curve C is given by 

 ( ) ( ) ( ) ( )[ ]Tt,szt,syt,sxt,sr = , (6) 
where 

 ( ) ( ) ( )
s

0
x s,t sin s ,t cosq s ,t ds′ ′ ′= θ∫  (7) 

 ( ) ( ) ( )
s

0
y s, t cos s , t cosq s , t ds′ ′ ′= θ∫  (8) 

 ( ) ( )
s

0
z s, t sinq s , t ds′ ′= ∫  (9) 

with [ ].s,0s ∈′ We can adopt the following interpretation (Chirikjian and 
Burdick, 1990, 1992, 1995; Gravagne and Walker, 2000): at any point s the 
relations (6)-(9) determine the current position and the matrix sΦ contains 
the robot’s orientation, and the robot’s shape is defined by the behavior of 
functions ( )sθ  and ( )sq . The robot “grows” from the origin by integrating to 
get ( )t,sr . 

3. Energy - work relationship 
 The method developed in this paper is based on the energy-work 
relationship of the tentacle manipulator. To simplify, we will consider the 
(OYZ) planar model of an ideal tentacle arm without friction and structural 
damping. For this model, the main parameter is the angle between the 
tangent to the curve and axis Y, at time t (Figure 3), 
 q = q(s,t). 
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Figure 3. Energy-work relationship 
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 We consider as initial position the horizontal position when total energy, 
kinetic and potential, is zero. 
 We will assume that the mechanical work required to move the (l – s) – 
length arm from the horizontal position (initial position) to the motion 
position is L (l – s). If an element ∆s is moved by a torque M to a new 
position defined by the angle q, at a time t, the mechanical work will be 

 L (l–(s–∆s)) = L (l–s)+ ( ) ( )t

0
M s, τ q s, τ dτ∫ , (10) 

where 

 ( ) ( )qq s, t s, t
t

∂
=

∂
 

but 

 ( ) ( ) st,sFt,sM ∆=  (11) 

and (10) becomes 

 L (l–(s–∆s)) = L (l–s)+ ( ) ( )t

0
F s, τ q s, τ dτ∆s∫ . (12) 

 We can define the derivative of the mechanical work as 

 
( ) ( )( ) ( )

∆s 0

- s +∆s - - sd s
= lim

ds ∆s
l l

→

L LL
 (13) 

or 

 
( ) ( ) ( )

t

0

d s
= F s, τ q s, τ dτ

ds ∫
L

. (14) 

 By integration, the mechanical work will be 

 ( ) ( ) ( )
l t

s 0

s = F s , τ q s , τ dτds′ ′ ′∫ ∫L ,. (15) 

where [ ].,ss l∈′  . 
 For all the arm, l – length, it results 

 ( ) ( ) [ ]l t

0 0
= F s , τ q s , τ dτds , s 0,l′ ′ ′ ′∈∫ ∫L  (16) 

 We can extend this result for the 3-dimensional model which means the 
motion controlled by two angles θ  and q, 

 ( ) ( ) ( ) ( )( )l t
θ q0 0

= F s, τ θ s, τ + F s, τ q s, τ dτds∫ ∫L , (17) 

where ( ) ( )t,sF,t,sF qθ  represent the distributed forces on the length of the 
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arm that determine motion and orientation in the 3-dimensional space. 
 Thus, from the energy-work relationship, we have the following equation 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
l t

K P K P q
0 0

W t W t W 0 W 0 F s, s, F s, q s, d dsθ   + − + = τ θ τ + τ τ τ    ∫∫ ,(18) 

where WK(t) and WK(0), WP(t) and WP(0) are the total kinetic energy and 
total potential energy of the system at time t and 0, respectively. 
 From (18), we have 

 ( ) ( ) ( ) ( ) ( ) ( )( )l

K P q0
W t W t F s, s, F s, q s, dsθ+ = τ θ τ + τ τ∫ . (19) 

4. Control laws 
 The classical methods are often impossible to apply to this manipulator 
with hyper-redundant configurations. The great number of parameters, 
theoretically an infinite number of parameters, the complexity of the 
dynamical model make the application of the classical algorithms to obtain 
the control law very difficult. For example, in Appendix 1 we determined the 
dynamical model of a 3D spatial tentacle manipulator, 

 
( )
( )

s s
q q0 0

s s
θ θ0 0

G q,θ,q,θ,q,θ ds ds = F

G q,θ,q,θ,q,θ ds ds = F ,

′ ′′

′ ′′

∫ ∫

∫ ∫
 (20) 

where Gq, Gθ are nonlinear functions of the motion parameters (the exact 
forms and notations are presented in Appendix 1) and Fq, Fθ are distributed 
forces along the arm in the q-plane and θ-plane, respectively. 
 The dynamical model of this system is determined as a nonlinear integral 
differential equation and the difficulty of finding a control law is well-
known. Ivanescu (1984) determined an optimal control for minimum energy 
criterion, Chirikjian and Burdick (1990, 1992, 1995) use the approximation 
methods and Hemami (1984), Gravagne and Walker (2000), Mochiyama and 
Kobayashi (1999), Mochiyama et al. (1998), Robinson and Davies (1999), 
Suzumori et al. (1991), Cieslak and Moreki (1994) analyze the kinematical 
position control. In all these papers the simplified procedures are treated or 
the difficult components are neglected in order to generate a particular law 
for position or motion control. 
 In contrast to these traditional methods, we will develop the dynamic 
control law from the basic energy-work relationship and that can generate 
the closed-loop stability of the system (Ge et al., 1996; Wang et al., 2001). 
This method avoids the complex problems derived by a nonlinear derivative 
integral model and offers an easy solution to implement an adequate 
controller. 
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 The position control of the tentacle manipulator means the motion control 
to a desired steady position of the arm defined by a curve, 

 ( ) ( )( ) [ ]l,0s,sq,s:C ddd ∈θ . 

 We define the motion errors as 

 ( ) ( ) ( ) [ ]l,0s,ss,ts,te d ∈θ−θ=θ , 

 ( ) ( ) ( ) [ ]l,0s,sqs,tqs,te dq ∈−= . 

Theorem 1 (PD uniform distributed control) The closed-loop tentacle 
manipulator arm system is stable if the control law is given by 

 ( ) ( ) ( ) ( ) ( )t,seskt,seskt,sF 21
θθθθθ −−=  (21) 

 ( ) ( ) ( ) ( ) ( ) [ ]l,0s,t,seskt,seskt,sF q
2
qq

1
qq ∈−−= , (22) 

where ( ) ( ) ( ) ( )1 2 1 2
q qk s , k s , k s , k sθ θ  are positive coefficients of the control law. 

Proof.. See Appendix 2.■ 

Theorem 2 (spatial weighted distributed control) The closed-loop tentacle 
manipulator arm system is stable if the control law is 

( ) ( ) ( ) ( ) ( )−−−= θθθθθ t,seskt,seskt,sF 21 ( ) ( ) ( ) ( )t3
θ θ θ θ0

k s f s, t f s,τ e s,τ dτ∫  (23) 

( ) ( ) ( ) ( ) ( )−−−= t,seskt,seskt,sF q
2
qq

1
qq ( ) ( ) ( ) ( )t3

q q q q0
k s f s, t f s,τ e s,τ dτ∫  (24) 

where ( ) ( ) ( ) ( ) ( ) ( ),sk,sk,sk,sk,sk,sk 3
q

2
q

1
q

321
θθθ  are positive coefficients 

distributed along the arm and ( )t,sfθ  and ( )t,sfq  represent the spatial 
weighted functions. 
Proof. See Appendix 3.■ 
 The control system proposed by Theorems 1 and 2 is presented in Figure 4. 

 

_ + 

Fq(s,t)
Fθ(s,t)Eqs. 21, 22

Eqs. 23, 24

Controllerqd(s) 
θd(s) 

q(s,t) 

θ(s,t)  
Figure 4. Control system 
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 Equations (21), (22) and (23), (24) define a generalized PD controller 
with good performances of the position control for an ideal tentacle model 
without friction and internal damping and for a control criterion defined by a 
steady desired position. 

5.  Discussion 
 a. The stability proofs are independent of the system dynamics and thus 
the problems associated with model-based controllers (Ivanescu, 1984; 
Ivanescu and Stoian 1995; Ge et al., 1996) are avoided. Also, the controllers 
(21), (22) and (23), (24), respectively, are independent of the system 
parameters and thus possess stability robustness to system parameter 
uncertainties. 
 b. The infinite dimensionality of the system determines difficulties in the 
selection of the control parameters .k,k,k,k 2

q
1
q

21
θθ  Of course, the closed-

loop system stability requires only as ,0k1 >θ  ,0k 2 >θ  ,0k1
q >  0k 2

q >  but a 
practical experiment or simulation imposes a procedure in order to reach an 
adequate performance. Certainly, this parameter selection had to be 
associated with dynamic model of the system. Difficulty of the problem 
determines methods, rather heuristic, to evaluate the control coefficients. 
 c. We will suggest an approximate method for evaluating the control 
parameters. We assume that: 
 A1. The arm motion is a “small” motion that verifies the condition: 

 ( ) ( ) ,t,sqt,sq δ<′′−′   [ ],s,0s,s ∈′′′  [ ]ft,0t∈ , (25) 

where δ  is a positive constant, sufficiently small. 
 A2. A sequential spatial control is assumed, the elements of the arm 
achieve the desired position step by step: the first element achieves the 
desired position, then the second, and so on. 
 The control system (21), (22), by the conditions A1, A2, can be 
approximated in the error space by the equation 

 ,0ehgekeke iii2

1
i

i2

2
i

i =
∆

+
∆ρ

+
∆ρ

+   N,...,2,1i = , (26) 

where ( )
idii qhh =  represents the nonlinear term determined in the error 

space by the gravitational component and 2
i

1
i k,k  corresponds to 2

q
1
q ii

k,k  or 

,k,k 21
ii θθ  in the q -plane or θ -plane, respectively. (The procedure is 

presented in the section 6). 
 Equation (26) can be rewritten in the classic terms of the damping ratio 

iζ  and the natural frequency ,
inω  
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i i

2 *
i i n i i i ine 2 e e h e 0+ ζ ω + ω + = , (27) 

where 

 
i

1
1 2i

n 2

k 
ω =  ρ∆ 

 (28) 

 
( )2

1
1
i

2

2
i

i

k2

k

∆ρ
=ζ  (29) 

 i
*
i hgh

∆
= . (30) 

 For this model, we suggest a method based by the sliding mode control in 
which the trajectory is forced along the switching line, directly to the origin, 
by the control of damping ratio iζ  (Figure 5). 

 ei 

-m 

ei 
. O 

DSMC

DSMC

 
Figure 5. Direct Sliding Mode Control 

 This special control is named DSMC (Direct Sliding Mode Control) and 
was introduced for linear systems. Ivanescu and Stoian (1995) presented an 
extension for nonlinear systems. 
 The DSMC control can be obtained if the damping ratio iζ  verifies the 
conditions (see the following Section): 

 2
n

*
i2

i
i

h1
ω

+>ζ  (31) 

 2
n

*
i i

h ω−> . (32) 

 The increasing of iζ  determines an over damped motion but we 
appreciate that this control ensures a good robustness of the global system. 
 d. This parameter selection is based by the approximate system but it can 
be used in order to establish the main domains of the control coefficients. 
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Simulation examples presented in the following Section will confirm this 
procedure. 
 e. The functions ( ) ( )t,sf,t,sf qθ  can be introduced in order to achieve good 
performances when the desired trajectory has a "non-smooth form", with 
corners and group forms. We can use as fθ, fq the functions of the distance 
between the real position and the corner points (or terminal points) of the 
desired trajectory. 

6. Simulations 
 In this section, some numerical simulations are carried out as 3D and 2D 
tentacle manipulators. 
Test 1. We consider a spatial tentacle manipulator that operates in OXYZ 
space. The mechanical parameters are: linear density ρ=2.2 kg/m and the 
length of the arm l = 0.6 m. 
 The initial position of the arm is assumed to be horizontal (OY-axis), 

 ( ) ( ) [ ]6.0,0s;00,sq;00,s ∈==θ , (33) 

and the desired position is represented by a curve C1 in OXYZ frame that is 
defined in terms of motion parameters as 

 ( ) ( ) s
10

sq;s
12

s:1C dd
π

=
π

=θ . (34) 

 The control law is chosen as (21), (22) where the proportional and 
derivative coefficients are selected as 

 
( ) ( )
( ) ( )

1 1

2 2

12.5

1.58 .
q

q

k s k s

k s k s
θ

θ

= =

= =
 (35) 

 (The selection of coefficients will be explained in the following Test). 
 To solve the integral-differential system (A.1.9), (A.1.10) with the control 
law (21), (22), (27) we used a discretization of the s-space, with an 
increment ∆ = 0.1 m, 

si  = i⋅∆ ,  i = 1,2, …, 6, 
and a MATLAB system is used for simulation. 
 The error for the global system is defined as 

 ( ) ( ) ( )( ) ( ) ( )( )( )∫ θ−θ+−=
l

0

2
d

2
d dsst,ssqt,sqte  (36) 

 ( ) ( ) ( )∫ 







∂
θ∂

+
∂
∂

=
l

0

dst,s
t

t,s
t
qte . (37) 
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 The result of simulation is presented in Figure 6. We selected only most 
significant five intermediary positions of the motion and the phase portrait 
has the form presented in Figure 7. We see the stability of motion and error 
convergence to zero. 
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 Figure 6. 3D motion simulation    Figure 7. 3D phase portrait 

Test 2. A better understanding of the control can be obtained for 2D tentacle 
arm. We analyze now the case of a planar tentacle model in OXZ plane.  
 The dynamic model is obtained from the equation (A1.9), (A1.10) for ,0=θ  

 

( ) ( ) ( )
s s

2

0 0
s

q
0

q cos q q q sin q q q q sin q q ds ds

g cosq ds F .

′ ′ ′′ ′ ′′ ′ ′ ′′ ′′ ′ ′ ′′ ρ − + − − − + 

′ ′+ρ =

∫∫

∫
 (38) 

 The control law is reduced to the form 

 ( ) ( ) ( )( ) ( )t,sqksqt,sqkt,sF 2
qd

1
qq −−−= . (39) 

 A spatial discretization ,is ∆=  i = 1, 2, …, 6, is introduced. 
 The system (38), (39) can be rewritten in the error space by using the 
constraint A1 (Section 5) as 

 ( ) 0eqhgekeke
m

1i
idii

1
qi

2
q

m

1i
i

2
ii

=∑ρ+++∑∆ρ
==

, (40) 

where 
 ( ) ( ) ( ) ( )∆−∆=∆= iqt,iqt,iete di  (41) 

 ( )
∆=

=







∂
∂

=

is
qq

di
dq

Hqh  (42) 
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and ( )qHH =  is determined by the gravitational component 

 ( ) qcosqH = . (43) 

 A sequential spatial control strategy (constraint A2 – Section 5) determines 
a decomposition of the global motion. For the first element, m = 1, 

 0eghekeke 111
1
q1

2
q1

2
11

=ρ+++∆ρ , (44) 

the control law determines 

 ( ) 0telim 1t
=

∞→
. (45) 

 Then, for the second element, m = 2, 

 0eghekeke 222
1
q2

2
q2

2
22

=ρ+++∆ρ , (46) 
we obtain 
 ( ) 0telim 2t

=
∞→

. (47) 

 We repeat the procedure for each element, m = 3, 4, … . 
 In this case, we can use for each element the dynamic model 

 ,0eqsingee2e idi
2
ninii iii

=⋅
∆

−ω+ωζ+  i = 1, 2, …, 6. (48) 

 The DSMC control (Figure 5) imposes the condition 

 m
e
e

i

i −= . (49) 

 The condition for convergence of the motion to zero, on the switching 
line (49), can readily be found as 

 2
n

d2
i

i

i
qsing

1
ω∆

⋅
−>ζ  (50) 

 2
nd ii

qsing
ω<

∆
. (51) 

 For the simulation test we choose the initial position of the arm as the 
vertical line (OZ-axis) 

 ( ) [ ]6.0,0s,
2

0,sq:2D ∈
π

= , (52) 

and the desired position is a semicircle, that is approximated by 
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 ( ) 6,...,2,1i,
6

s
3

sq:2C iid =
π

−
π

= . (53) 

 We choose an uniform natural frequency ,24
in =ω  i=1, 2, …, 6, and for 

verifying the conditions (50), (51), (53) we select 

 ,5.1i =ζ     i=1, 2, …, 6. (54) 

 From (28), (29) we obtain the control coefficients 

 ,5.12k1
i =     ,58.1k2

i =     i=1,2,…,6. (55) 

 The results of the simulations are presented in Figure 8 and the phase 
portrait is plotted in Figure 9. 
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Figure 8. 2D phase portrait Figure 9. 2D motion simulation 

7. Conclusions 
 The paper treats the control problem of a tentacle manipulator. In order to 
avoid the difficulties generated by the complexity of the nonlinear integral-
differential equations that define the dynamic model of this system, the 
control problem is avoided by using a very basic energy relationship of this 
dynamic model. 
 The energy relationships of a tentacle manipulator are inferred. An energy-
based control law is introduced by using only the relations that determine the 
energy stored in the system. 
 Two controllers are proposed that generate the PD control laws and a 
procedure of control coefficient selection is discussed. 
 In Appendix 1 is obtained the dynamic model of a spatial tentacle arm 
that allows for the checking of the control laws. 
 Numerical simulations for spatial and planar tentacle models illustrate the 
efficiency of the method. 
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Appendix 1 
 We will consider a spatial tentacle model, an ideal system, neglecting 
friction and structural damping. We assume a uniformly distributed mass 
with a linear density ρ [kg/m]. We will consider a non-extensible arm with a 
constant length l (Figure 2a, 2b). 
 We will use the notations: 
 ( ) [ ] [ ]ft,0t,,0s,t,sqq ∈∈= l , 

 ( ) [ ] [ ]ft,0t,,0s,t,s ∈∈θ=θ l , 

 ( ) [ ] [ ]ft,0t,s,0s,t,sqq ∈∈′′=′ , 

 ( ) [ ] [ ]ft,0t,,0s,
t

t,sqq ∈∈
∂

∂
= l , 

 ( ) [ ] [ ]ft,0t,s,0s,
t

t,sqq ∈∈′
∂
′∂

=′ , 

 ( ) [ ] [ ]f2

2

t,0t,s,0s,
t

t,sqq ∈∈′
∂

′∂
=′ , 

 ( ) [ ] [ ]f2

2

t,0t,s,0s,
t

t,sqq ∈∈′′
∂

′′∂
=′′ , 
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and the velocity components are 
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 For an element dm, kinetic and potential energy will be 
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where 
 dm = ρds. (A.1.5) 
 From (A.1.2)-(A.1.5) we obtain, 
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 The dynamic model is obtained by using Lagrange equations of motion 
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where 
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 denotes a functional partial (variational) Gateaux derivative 

(Wang, 1965) that is defined as the variation of the functional W with 
respect to the function q at a point s∈[0, l]. From (A.1.6), (A.1.7) it results, 
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Appendix 2 
 We consider the following Lyapunov function (Ivanescu, 1984) 
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V(t) is positive definite because the terms that represent the energy WK and 
WP are always 

 WK(t) ≥ 0, WP(t) ≥ 0 . 

 From (17) we obtain (for a steady desired position), 
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 If we use the control law defined by the relations (21) and (22), we will have 
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Appendix 3 
 We extend the Lyapunov function (A.2.1) as 
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 In this case, 
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and by using the control laws (23) and (24) we obtain 
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Abstract “Humanitarian demining”, is growing up dramatically in the last decade. Here a 
new idea – application of a very well known tool from production automation 
“advanced robots” - will be presented. These robots of the new generation offer 
possibilities to solve this task in a very efficient way. Finally “Humanitarian 
Demining Multi Agent Systems – HDMAS” an autonomous, intelligent robot 
swarm for cleaning minefields in the future is discussed. 

Keywords: landmines, demining, robots, MAS, robot swarms 

1. Introduction 
 According to current estimates, more than 100.000.000 anti-personnel 
and other landmines have been laid in different parts of the world. A 
similar number exists in stockpiles and it is estimated that about two 
million new ones are being laid each year. According to recent estimates, 
mines and other unexploded ordnance are killing between 500 and 800 
people, and maiming 2.000 others per month (Red Cross, 1995), mainly 
innocent civilians who had little or no part in the conflicts for which the 
mines were laid. Anti-personnel mines are usually designed not to kill, 
but to inflict horrible injuries instead (McGrath, 1994). However, many 
victims eventually die of their injuries, and suffer a long and agonizing 
death, often with little medical attention. 
 Some countries have banned the use of landmines and others are 
supportive of a complete ban. However, their low cost ($1- $30) and the 
large numbers in existing stockpiles make them an attractive weapon for 
insurgency groups which operate in may countries with internal conflicts 
– the most common cause of wars today. They are used for self-defense 
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by villages and groups of people traveling in many districts where civil 
law and order provide little effective protection. Many countries retain 
massive landmine barriers on their borders or near military installations. 
Some of the most severe landmine problems exist in Egypt, Angola, 
Afghanistan, Rwanda, Bosnia, Cambodia, Laos, Kuwait, Iraq, Chechnya, 
Kashmir, Somalia, Sudan, Ethiopia, Mozambique and the Falkland 
Islands. 

2. Landmines 
 Landmines are usually very simple devices which are readily 
manufactured anywhere. There are two basic types of mines: anti-vehicle 
or anti-tank (AT) mines and anti-personnel (AP) mines.  
 AT mines are comparatively large (0.8 – 4 kg explosive), usually laid 
in unsealed roads or potholes, and detonate which a vehicle drives over 
one. They are typically activated by force (>100 kg), magnetic influence 
or remote control.  
 AP mines are much smaller (80-250g explosive, 7-15cm diameter) and 
are usually activated by force (3-20kg) or tripwires. There are currently 
over 700 known types with different designs and actuation mechanisms. 
We have two main categories of AP mines. A blast mine is usually small 
and detonates which a person steps on it: the shoe and foot is destroyed 
and fragments of bone blast upwards destroying the leg. When a 
fragmentation mine explodes, metal fragments are propelled out at high 
velocity causing death or serious injuries to a radius of 30 or even 100 
meters, and penetrating up to several millimeters of steel if close enough. 
Simple fragmentation mines are installed on knee high wooden posts and 
activated by tripwires (stake mines). Another common type of 
fragmentation mine (a bounding mine) is buried in the ground. When 
activated, it jumps up before exploding. Mines of one type have often 
been laid in combination with another type to make clearance more 
difficult: stake mines with tripwires may have buried blast mines placed 
around them. 

3. Demining; state of the art 
 First you have to find the mines and then you must destroy. Used 
methods for identifying mines today are: 

- Manually: by humans – deminers – equipped with e.g. metal 
detectors. 

- Dogs: using dogs that sniff the explosive contents of the mines, has 
significant limitations and cannot be regarded to as general-purpose 
solution.  

- High-tech methods for mine detection: radar, infrared, magnetic tools, 
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touching sensors (piezo resistive sensor) …. Also GPS is used for 
finding the place again where a mine lies, and for the navigation of the 
robots.  

 Today used methods for destroying and removal are: brutal force 
methods include ploughs, rakes, heavy rolls, flails mounted on tanks. 
 The problems with these methods are that. 

- Ploughs only can by used to clear roads for military use. Mines are 
only pushed to the side of the road. Some ploughs also attempt to 
sieve the mines from the displaced soil. 

- Flails are mechanical devices, which repeatedly beat the ground, 
typically with lengths of chain. These chains are attached to a rotating 
drum and their impact on the ground causes the mines to explode, but 
this can cause severe damage to cultivable land. 

- Rollers generally consist of a number of heavy circular discs, which 
are rolled along the ground in order to cause the explosion of any 
mines. 

 Before demining can start, surveys are needed to produce detailed maps 
of minefields to be cleared. The survey team may use specially trained dogs 
to narrow down the limits of a mined area, and normally verifies a one or 
two meter wide “safe lane” around each minefield to define the minefield 
which may be surrounded with unknown land or other minefields. Typical 
minefields are 100-200m across and 0.1-10ha in area. 
 Hand-prodding is today the most reliable method of mine clearing, but it 
is a very slow, and extremely dangerous. People performing this type of 
clearing can normally only perform this task for twenty minutes before 
requiring a rest. This method clears one square meter of land in 
approximately 4 minutes. 
 The tools of a deminer are: 

1. A whisker wire which is gently swung or lifted to check for 
tripwires. 

2. A metal detector which is swung from side to side to check for metal 
objects. 

3. A prodder (typically a bayonet, screw driver or knife) which is used to 
probe the ground at an angle of about 30 degrees to the horizontal and 
to excavate earth from around a suspect object. Usually a prodder is 
used to investigate a suspect metal object. However, which dealing 
with minimum metal mines or large numbers of metal fragments, the 
entire area has to be prodded by hand. 

 The UN estimates the cost of removing a single mine at 300 to 1000 $. 
The primary factor is the local cost of labor. So in low labor-cost countries 
such as (Cambodia, Afghanistan, or Africa) US$ 100 per month is a high 
rate pay for manual work, even with the obvious risks. In contrast, the labor 
cost for de-mining in the former Yugoslavia may be twenty times higher. 
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 Thinking about the number of mines is rather pointless which estimates 
range from a few million word-wide (including national borders) to 150 million. 
It is much more sensible to think in terms of the areas of land which are: 

a) known to be affected by mines, and are important to local or displaced 
population:  

homes, food producing land, roads, infrastructure (roads, canals, 
power lines, water supplies etc.); 

b) believed to be affected by mines; 
c) known or believed to be affected by mines, but land is of no 

immediate importance. 
 The standard which is required for humanitarian demining is a guaranteed 
99.6% clearance. Therefore the remaining risk to be injured or killed by a 
mine is 0.4%. 
 Mechanical mine clearance means either actuating the mine, or removing 
it for later destruction. 
 For actuating ploughs are pushed by a tank or an armored bulldozer. 
There is a bulldozer with a rotating cylinder in front, digging up to 50cm into 
the ground. The vehicle has been tested in Mozambique. Although it did not 
reach the 99.6% UN requirements, it removed 25.000 mines in a six-month 
campaign. Another demining vehicle uses the same principle, with closer 
teeth. It is based on a Leopard 1 main battle tank chassis to which a rotating 
roller is added. The tank can be remote controlled from 500m away. In 
normal terrain this vehicle should clear up to 20.000 square meters per hour 
with total safety for the mine-clearing team. 
 The disadvantage is that mines includes a lot of chemicals which when 
they detonate are put into the ground which is later used for food producing. 

4. Robots for demining 

4.1. State of the art 
 Several projects have proposed the use of autonomous robots to search for 
antipersonnel mines. The sensor problem is nearly solved now and it will take 
only little time until a combination of sensors will be available and sufficiently 
tested in order to give full confidence that all the mines have been discovered. 
There may be false alarms, but no mine must be left. Once the location of a 
mine is known, several manual techniques are easily applied to neutralize it. A 
robot can also be developed to do this easy job, which is simply to go to a 
precise spot, avoiding obstacles and other mine locations. Then it should 
deposit a shaped charge or some chemical to destroy the mine. 
 The necessary features of a demining robot are: 

- Ability to distinguish mines from false alarms like soil clumps, rocks, 
bottles and tree roots. 
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- Operation in a variety of soil types, moisture contents and compaction 
states. 

- Ability to detect both types or in fact variety of different mine types 
and sizes. 

- Operation in vegetated ground cover. 
- Costs may be lower then 10.000 US$ including the sensors. 

 Today there are some appropriate, reasonable cheap sensors available or 
in development based on optical technologies, acoustic and seismic 
detection, radio frequency resonance absorption spectroscopy, trace 
explosion detection. Worldwide approximately 100 companies or research 
institutes offers intelligent, mobile platforms but the price is too high 
according to the small lot sizes in production. It’s only a question of time 
until this problem is solved. 
 Random navigation for covering the field and searching for mines has 
been proposed. Even with improved algorithms applied to a group of robots, 
it is difficult to accept ignoring a small proportion of uncovered areas. 
Systematic navigation is theoretically easy with a global positioning system 
(GPS), but the resolution must be better than the size of the detector, in order 
to be sure to cover all the area. 
 A robot has been designed as a light-weight autonomous robot to search 
for antipersonnel mines. The pressure force on the ground, 5kg, is not 
intended to trigger the mines. The sensor head oscillates under the 
alternating movement of the wheels, in order to scan a width of about 1.2 m. 
the project is suspended until an adequate sensor, weighing less than 4kg, 
can be installed inside the head. 
 Research groups experienced with walking robots try to suggest the use 
of their devices for this application. Snake robots are more attractive, since 
they should be able to crawl close to the ground inside dense vegetation. 
Their design is, however, quite challenging. 
 The advantages of robots for demining are 

- Minefields are dangerous to humans; a robotic solution allows human 
operators to be physically removed from the hazardous area. 

- Robots can be designed not to detonate mines. 
- The use of multiple, inexpensive robotized search elements minimizes 

damage due to unexpected exploding mines, and allows the rest of the 
mission to be carried on by the remaining elements. 

- Teams of robots can be connected so that one team is for searching 
and one for destroying or displacement. 

 This means that many robots are searching and a few or only one robot is 
destroying or displacing the mines. 
 But there are also disadvantages of using robots: 

- it is very difficult for robots to operate in different frequently rough 
terrain; 
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- they are still expensive; 
- you need special qualified operators. 

4.2.  Multi Agent Systems - MAS 

 A MAS consists of a number of intelligent, co-operative and 
communicative hardware agents – mobile robots – getting a common task. 
Because of the intelligence they are able to divide the task in subtasks as 
long as at least one agent is able to fulfill one subtask. Repeating this 
procedure yields the solution of the common task. Newest research goes in 
the direction of MMAS - Multiple Multi Agent Systems – different MAS 
are involved for the solution of a complex task. 
 A MAS get a whole task. The host computer divides the whole task in a 
number of different subtasks as long as a distinct subtask can be carried out 
by at least one agent. The agents will fulfill their subtasks in a cooperative 
way until the whole task is solved. Such a global task could be: assemble a 
car. The agents – mobile, intelligent assembly robots – have to create 
subtasks (e.g. assembling of wheels, windows, brakes,......) in an optimal way 
(equal distribution of the workload of the agents) and distribute to the agents. 
 The main hurdles for MAS-research are the complexity of the whole 
system. This complexity is dramatically increasing by adding new agents. 
Therefore the interaction, communication, coordination of the tasks between 
agents, and control are the topics for the development of a Multi Agent 
System ( MAS ).  
 For heterogeneous robots it is difficult to implement the communication, 
because each robot has its own kinematical structure, programming language 
etc.. Furthermore the range of frequencies used for communication and the 
capability of RF modules is limited. It is necessary to develop standardized 
communication protocols and methods, which should be one of the works 
for the next years.  
 Fig.1a. shows the present situation of the communication between the 
host and the agents. For the future the agents should also communicate with 
the host and also with the other agents as shown in Fig. 1b and Fig.1c. 
The characteristics of MAS are: 

• each agent has incomplete information or capabilities for solving the 
problem and, thus, has a limited viewpoint; 

• there is no system global control; 
• data are decentralized; 
• computation is asynchronous. 

 In scientific papers one uses various approaches and denotations to subdivide 
control strategies for autonomous mobile robots in different types. There are two 
fundamental describing ideas: the functional and the behavior based approach. 
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a. Communication only between host and agents 

H A2

A1
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b. Partial communication between host and agents as well as between the agents 

H

An

A1

A2

 
c. Full communication between host and agents as well as between the agents 

Figure 1. Different types of MAS  H : Host computer; A1, A2,.....,An : Agents; 

  ________: full communication; ------------ : partial  communication 

4.3.  Robot Swarms – MAS - for demining 
 Robot swarms improve the capacity of robotic applications in different 
areas where robots are already used today. Robot swarms are similar to – or 
a synonym for - ‘Multi Agent Systems – MAS’. These systems are very well 
known in software engineering – “software agents” - since more than twenty 
years. In the last years there are more and more works related to “hardware 
agents” like robots forming “robot swarms”. 
 Applying robots for demining there are two possibilities: 

a. using mobile, intelligent multipurpose robots equipped with devices 
for mine detection, mine removing as well as mine transportation; 

b. using three different swarms of single-purpose robots equipped either 
with detection devices or removing devices or transportation facilities. 

 Our approach is the second one – three different swarms in the minefield. 
The detection robots scan the field for possible mines. If a metallic part – 
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probably a landmine is detected one of the removal robots close to this site 
removes the mine and takes it over to a transportation robot with free 
capabilities. This robot transports the mine to a collection area out of the 
minefield. The whole process is fully autonomous. Operators are only 
needed for monitoring and of course maintenance. To achieve this goal the 
robots must have a high level of intelligence and must be able to 
communicate among themselves. Since the power supply of mobile robots is 
very limited there is also need for docking stations. The host computer in 
Fig. 2 is necessary to solve the path planning problem in a dynamic 
environment. Each robot represents for all other robots a dynamic obstacle 
which has to be avoided. The host computer controls the movements of all 
robots by means of wireless communication. But soon such a host computer 
will be obsolete (Fig.1c). Software implemented in the onboard computer of 
each robot will take over this task. 

  
Figure 2. Humanitarian Demining Robot Swarms [Kopacek, 2002b] 

 Using different single purpose robots for the different tasks reduces the 
weight of the robots. Therefore it is much easier to design robots which are 
lightweight enough not to cause an explosion while crossing over a mine field. 
 As mentioned before the use of modular robots is perfect for the design of 
task-specific demining robots because of the similarities between the tasks. 
[Shivarov, 2001] 
 Since the complexity of a system raises the susceptibility to trouble 
exponential it is always better to keep devices as simple as possible and 
therefore to use simpler robots. Using smaller robots extends the operational 
time before re-fuelling or re-charging is necessary or at least prevents the use 
of bulky and heavy batteries or tanks. 
 On the other side the second possibility requires an increased effort in 
communication between the robots in the swarm. If every robot is able to 
perform the whole demining process by itself the communication is reduced 
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more or less to get each other out of the way and ensure to cover all the area. 
However the task-specific robots have to exchange a lot more of data. The 
detection robots must work together since they are equipped with different 
detection technologies. When they have found a mine they must signal it to 
the removal robots and they have to inform after done work the 
transportation robots. 

4.3.1. Detection robots 

 The robots for the detection of landmines are probably the most simplest 
of the three types. The basic composition of modules common for all three 
types has to be upgraded only with the detection system. There are several 
detection technologies in use respectively under development, none of them 
able to detect a mine alone by itself. The solution is to use two or more of 
these different sensors simultaneously. The first logical step would be to 
attach different sensors on one robot. Since there are weight limits, and 
limits in the amount of available energy, this is probably not the best 
solution. Some of these technologies need strong power sources and some of 
them are relatively heavy constructed. These facts will not help to keep the 
weight of the robot low, so using for each type of sensor a single robot 
seems to be the better solution. 
 The detection robots should communicate with each other, change data 
and coordinate their work. If one robot with one distinct detection 
technology has found a possible target, the area should be verified by all 
other detection technologies before any further action is started. Therefore 
the different technologies must be compatible to allow coordination. At least 
the data from the sensors should be assessed by the same software. 
Combining results from different mine detection technologies is not easy and 
demands special strategies. These so-called sensor fusion technologies are 
not only of concern for mine detection. 
 Another important point is the power supply of the detection swarm. One 
possibility is to equip detection robots with an autonomous power source. 
But this could complicate the recharging of the system. There would be need 
for extra docking stations and at the worst for each detection technology a 
different docking station. 
 This cooperation during the development and design process of the 
modular robot system and landmine detection sensors is of greater concern 
than only for an appropriate modular interface. Some of these sensor systems 
are extremely sensible and may drop in performance in presence of distinct 
materials. Using these materials for parts of the robot system which has to 
carry the sensor technology has to be avoided. And many of the sensor 
techniques work by using radiation in some range of the electromagnetic 
spectrum. It has to be guaranteed that systems of the robot do not jam the 
sensor technology or the other way round. 
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4.3.2. Removal robots 

 The removal of landmines is probably the heaviest work during the whole 
de-mining process. This is clearly a matter of the type of soil in which the 
mines are buried. But generally this task needs the highest forces and 
therefore the system has to be more stiff and heavy constructed. 
 The removal robots have also the most complex part to fulfill. While the 
detection robots only transport the detection technology and the 
transportation robots have to accomplish an advanced pick and place task, 
the removal robots have to, in case of buried mines, dig out a highly 
sensitive device, which must be handled extremely carefully, but at the same 
time applying relatively high forces to penetrate the soil. In addition the 
excavation of a mine is every time a different procedure. The main 
parameters which differ for each buried mine are the type and shape of the 
mine, the position relative to the surface and the type of soil in which the 
mine is buried. 
 Since the excavation is a complex task a dexterous robot arm with a high 
number of degrees of freedom is likely to be used. For the mine removal 
various end-effectors may be necessary. The robot arm can be equipped with 
a variety of standard tools which are similar to tools used for manual 
excavation. All forms of shovels are doubtless of interest to remove foremost 
close grained material. Grippers may used to sweep stones or other bigger 
obstacles. These tools are commercially available and well proven.  
 Up to the present the most removal work performed at hazardous 
materials was executed teleported. For that the aid of sensors is mainly 
limited to force and torque sensors which ensure not to apply too high forces 
to the sensible object. But the whole process is controlled by an operator 
using video cameras to lead the tools. Using a robot for autonomous removal 
of landmines presupposes the usage of sensors to compensate the 
teleoperator. Two broad classes of sensing technologies support earthmoving 
automation. One class allows determining the state of the robot itself, the 
other class concerns perception of the environment around the earthmover. 
 Local state is achieved by measuring displacements at the robots various 
joints. If the actuators are hydraulic cylinders the use of position transducers 
would be a good choice. An alternative is to use joint resolvers, like 
potentiometers, directly at rotary joints. Another form of state estimation is to 
locate the robot arm with respect to some fixed coordinate frame. Many sensing 
modalities have been used including, GPS, inertial sensors and reflecting 
beacons. Successful estimation schemes combine several of these techniques. 

4.3.3. Transportation robots 

 The transportation seems to be quite simpler than the removal of a 
landmine. Basically the robot has to pick up the landmine, store it 
somewhere during the transportation and deliver it at the collection point. 
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 An important decision in respect of the transportation robots is the 
number of mines the robots should be able to carry. Carrying only one mine 
would it make possible to use a rather simple robot. At the best it may 
possible to retrench the storing place for the landmine. The robot could pick 
up the mine with a gripper, lift it up somewhat above the ground and 
transport it to the collection area while holding it tight with the gripper. The 
use of a dexterous robot arm, like that one for the removal task, would be 
disproportionate. A simple 2 DOF lift onboard the mobile robot platform 
could be sufficient. 
 On the other side the application of a transportation robot with the ability 
to carry more than one mine is in a manner useful too. Since transportation 
robots are likely to be rather slow this approach is much more timesaving. 
The volume of saved time depends on the amount and distribution of 
collection areas in proportion to the field of activity as well. But establishing 
lesser collection areas simplifies the further strategy for the disposal of the 
collected landmines. To give the robot the ability to transport more than one 
mine it must be equipped with some sort of storage device.  
 One principle would be of use to make the storage device of protective 
material to mitigate accidentally explosions. One possibility is to use a 
lockable storage device. But therefore the device must be designed with 
regard to a maximal allowed load of explosives. An explosion inside a 
locked container exceeding the maximal allowed load may be worse than 
without any protective measures. Fragments of the blasting container could 
damage the robot in addition. For this reason it would be better to use a 
container which is opened upwards. This guarantees a way out for the 
pressure wave in case of an accidental explosion. 
 An important factor for the decision of using single or multi transport 
robots is the density of the minefield. If there are only few landmines per 
surface unit the application of single-mine transportation robots is more 
likely. In this case the work quota of the detection robots is much higher 
compared to that of the removal and transportation robots. Therefore raising 
the working capacity of the transportation robots would not increase the 
overall efficiency perceptible.  

4.4.  Realization 
 The features of the robot for these three tasks have to be quite different. 
For detection a light-weight robot only able to carry little load has to be 
developed. For removal the robot has to be more stiff and heavy constructed 
because removal requires force. The size of transportation robots depends on 
the number and kind of the mines to be transported. 
 Another point of view which has to be taken into account is the time 
necessary for these operations. Detection is usually relatively fast and is not 
so time consuming than removal. According to some experiences the 
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removing time is 3 to 5 times more than the detection time. Transportation 
time is also relatively small. 
 Therefore it could be advantageous to use three different types of robots 
(Fig. 2): robots for detection (D), robots for removal (R) and robots for 
transportation (T) of the mines. One main disadvantage of this philosophy is 
if a robot of the swarm D (detection) has found or detected a mine it has to 
send a command to the host computer or to the other robots. The host 
computer or the other robots have to decide which of the robots of the swarm 
R (removal) is in the neighborhood of this mine and not busy at that time 
with removal operations on another mine. If a robot of the swarm R is 
selected this robot gets usually wireless the position data and some other 
information about the place of the mine. The R robot is now moving to 
displace and start with the removal work. After the removal of the mine it 
has to place the mine on the ground in a distinct position. One of the 
transportation robots (T) have to pick up the mines and have to carry it to a 
collecting place.  

4.4.1. Mobile robots 

 Today we are in the position to develop robots of all three types mainly 
using commercially available mobile platforms. As pointed out earlier it is 
not economically feasible to develop so-called single purpose robots for each 
of these three types. A good approach could be a kind of a tool kit [Shivarov, 
2001] of mobile robots consisting of a mobile platform and different 
equipments and tools compatible in hard- and software. A good approach 
could be to have two platforms, one with wheels or chains and one walking 
platform. According to the types of mines as well as the surface of the 
minefield these platforms could be equipped with necessary tools in a very 
short time. 
 Usually the mobile robots of both types available today are moving 
relatively slow. Speed for wheeled and chained robots is between 0.5 and 
0.7 m/s, walking robots are usually much slower. This could be a 
disadvantage concerning the demining time but from the viewpoint of 
control and path planning it is much easier to work with such slow robots. 
We have in that case the usual problem of path planning of robots in a 
changing environment. Usually in a minefield we have fixed obstacles like 
trees, rocks, buildings as well as moving obstacles usually the robots of the 
own or other swarms. 

4.4.2. Humanoid robots [Kopacek, 2003] 

 The main feature of a real human is the two legged movement and the two 
legged way of walking. In principle the stability during the walking decreases 
with the number of the legs. At the begin of this development there were 
consequently 8, 6 and 4 legged robots copied from the nature (insects, swarms, 
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…). In the future two legged robots should be responsible for human tasks like 
service applications, dangerous tasks, tasks on the production level, support of 
humans in everyday life … 
 The main advantage of legged robots is the ability to move in a rough 
terrain without restrictions like wheeled and chained robots. Two legged 
robots could work in environments which were until now reserved only for 
humans. In addition to walking such robot could realize other movements 
like climbing, jumping, swimming, …. Walking robots are much more 
flexible than robots with other movement possibilities. Especially fixed and 
moved obstacles can be surmounted by legged robots. 
 Two legged robots require new technologies in the field of robotics. In 
some cases a combination from well known methods of mechanical 
engineering, electrical engineering, electronics, control engineering, 
computer sciences, applied physics are necessary. 
 Currently there are worldwide two categories of two legged humanoid 
robots available: 

• “Professional” humanoid robots. 
• “Research” humanoid robots. 

 The humanoid robots of the first category are mostly developed but very 
expensive and currently not available on the market. The robots of the 
second category a usually prototypes  
 Therefore for several tasks e.g. humanitarian demining a two legged, 
humanoid robot should be developed. These robots could be applied for all 
three tasks of demining – detection, removing and transportation in the 
future. 

5. Summary 
 As pointed out demining is today a very time consuming, dangerous and 
expensive task. Automatic demining  e.g. as presented in this paper by 
robots, is today and will be in the future a powerful tool to solve these 
problems. All the existing and planed robots for humanitarian demining are 
only able to detect the mines. Brutal force methods destroy mines without 
detection – but with a not reasonable probability. In a next step our robots 
have to be able to remove the mines from the ground. 
 “Multi Agent Systems – MAS” [Kopacek, 2002a] are very well known in 
software engineering since more than 20 years. In the last years there are 
some works related to the application in production automation. A MAS 
consists of a number of intelligent, co-operative and communicative 
hardware agents e.g. robots getting a common task. Because of the 
intelligence they are able to divide the whole task in subtasks as long as at 
least one of the agents is able to fulfill one subtask. 
 Repeating this procedure yields the solution of the common task. Newest 
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research goes in the direction of MMAS – Multiple Multi Agent Systems – 
different MAS are involved for the solution of a complex task. In a mid or 
long term perspective it might be possible to develop “Humanitarian 
Demining Multi Agent Systems – HDMAS ” consisting of a number of such 
robots or agents [3]. Robot swarms or HDMAS for demining especially with 
two legged (humanoid) robots are currently only a vision but will be reality 
in the nearest future. 
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PARAMETRIZATION OF STABILIZING  
CONTROLLERS WITH APPLICATIONS 1 
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Abstract This contribution addresses, in a tutorial and retrospective manner, the 
parametrization of all controllers that stabilize a given plant with rational 
transfer function. An account of the classical results that paved the way for the 
parametrization is given. The parametrization result is then derived for several 
definitions of stability. The parameter, which is a qualified rational function, is 
shown to appear in the feedback system transfer functions in an affine manner. 
A two-step procedure for control system synthesis is then formulated, namely to 
determine all stabilizing controllers first, then meet additional performance 
specifications by selecting the parameter. Various applications of this procedure 
are given and illustrated by numerous examples. Advantages as well as 
limitations of this approach are discussed. 

Keywords: linear systems, feedback systems, stabilization, parametrization, control system 
synthesis 

1. Introduction 
 The majority of control problems can be formulated using the diagram 
shown in Figure 1. Given a plant S, determine a controller R such that the 
feedback control system is (asymptotically) stable and satisfies some 
additional performance specifications such as reference tracking, disturbance 
attenuation, optimality, robustness, or system integrity. 
 It is natural to separate this task into two consecutive steps: (1) 
stabilization and (2) achievement of additional performance specifications. 
To do this, all solutions of the first step, i.e. all controllers that stabilize the 
given plant, must be found. 
                                                      
1 Supported by the Ministry of Education of the Czech Republic under Project LN00B096  
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Figure 1. Feedback control system 

 How can one characterize such controllers? In case the plant is stable and 
one stabilizing controller R is known, then 
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is a stable rational function. On the other hand, if V is any given stable 
rational function, then the corresponding controller 
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must necessarily stabilize the plant S.  Therefore the stabilizing controllers 
can be parametrized by the set of stable rational functions (Newton, et al., 
1957). 
 As argued by Kučera (2002), if Hsens denotes the reference-to-error 
transfer function (sometimes called the sensitivity function) and Hcomp the 
disturbance-to-control transfer function (the so called complementary 
sensitivity function) in the closed loop control system, namely 
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then the preceding result can be phrased as follows: the control system is 
stable if and only if Hcomp = SV, since V can be interpreted as the reference-
to-control transfer function from r to v. This means that Hcom must absorb all 
the unstable zeros of the plant S. In case the plant is unstable, however, V is 
no longer arbitrary: the zeros of V must absorb all the unstable poles of S. 
 To derive stability conditions, one needs to know the (unstable) poles and 
zeros of the plant. Expressing S as the ratio of two coprime polynomials, S = 
b/a, and assuming the controller in a like form, R = n/m, the two closed loop 
transfer functions can be written as 

 ,aX
bnam

maH =
+

= :sens    bY
bnam

nbH =
+

= :comp . 

 Consequently, a stable control system calls for stable rational functions X 
and Y. These functions cannot be arbitrary, however, since Hsens + Hcomp = 1. 
A stability equation follows (Strejc, 1967) 
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 1=+ bYaX . 
 Any stabilizing controller can be expressed as R = Y/X, where X and Y is 
a stable rational solution pair of the stability equation (Kučera, 1974). This 
solution can be expressed in parametric form, furnishing in turn an explicit 
parametrization (Youla, et al., 1976a) of all stabilizing controllers  
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−
+

= . 

 Here x and y are any polynomials satisfying the equation ax + by = 1 
while T is a parameter ranging over the set of stable rational functions (and 
bound to satisfy x – bT ≠ 0). 
 The set of stabilizing controllers admits transfer functions R that are not 
proper. Example: given S(s) = 1/s, one calculates x = 0, y = 1 so that 
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 Taking T = 1 leads to the stabilizing controller R(s) = 1 – s. The resulting 
feedback system is asymptotically stable but, alas, it has poles at s = ∞.  
 If impulse modes are to be eliminated, stability has to be defined in a 
different way. The asymptotic stability of the control system in Fig. 1 will be 
replaced by the requirement that any external input d, r of bounded 
amplitude result in the internal signals e, v (hence also u, y) of bounded 
amplitude. One can say that such a control system is internally stable. While 
the control system is asymptotically stable if and only if its characteristic 
polynomial is Hurwitz, it is internally stable if and only if the four transfer 
functions from d, r to e, v (or u, y) are proper (analytic at the point s = ∞) 
and stable (analytic at the closed right half plane Re s ≥ 0). Naturally, this 
notion of stability does not capture hidden modes in the plant and in the 
controller. These modes, however, cannot be stabilized by output feedback 
anyway. That is why the internal stability is a natural option. 
 In order to study internal stability, it is convenient to express the transfer 
functions of unstable systems as ratios of two coprime transfer functions, 
each representing a stable system. Internal stability can than be told by 
inspection: the four transfer functions have a trivial denominator. This is a 
key observation in an attempt to obtain a simple condition for the internal 
stability of closed loop systems (Desoer, et al., 1980). Accordingly, the 
polynomial fractional representations used in the study of asymptotic 
stability will be replaced by fractional representations over proper and stable 
rational functions. For example, the integrator transfer function S(s) = 1/s 
will be written in the form 

 
11)(
−









λ+








λ+
=

s
s

s
sS , 



ADVANCES IN AUTOMATIC CONTROL 176

where λ is a positive real; the particular value of λ is irrelevant. 
 When studying discrete-time control systems, the typical proper stable 
fractional representation has the form 
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where | λ| < 1. A legitimate choice is λ = 0. Proper and stable rational 
functions in  z  whose poles are all located at the point z = 0 can be viewed as 
polynomials in z – 1: 
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 This representation has been in use for a long time, see Kučera (1979). 
The methodology explained above provides an elegant justification for the 
use of z – 1 in lieu of z in the synthesis of discrete-time control systems. 

2. Parametrization 
 We shall now derive a parametrization of all controllers that internally 
stabilize a plant with a given rational transfer function, which is not 
necessarily proper, nor stable. The derivation is a variation of the one given 
by Vidyasagar (1985). 

Theorem 1  Let S = B/A, where A and B are coprime, proper and stable 
rational functions. Let X and Y be two proper and stable rational functions 
satisfying the Bézout equation 
 1=+ BYAX . 
 Then the set of all controllers that internally stabilize the control system 
shown in Fig. 1 is given by 
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where W is a parameter ranging over the set of proper and stable rational 
functions such that  X – BW ≠ 0. 
Proof. It consists of three steps. 
 1) Fist we shall show that if S = B/A and R = N/M are two coprime 
fractions of proper and stable rational functions, and if C is defined by C := 
AM + BN, then the control system is internally stable if and only if 1/C is 
proper and stable. 
 Indeed, the control system is internally stable if and only if the four 
transfer functions 
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are proper and stable. The sufficiency part of the claim is evident: the transfer 
functions are all seen to be proper and stable. The necessity part is not evident: 
the denominator C can have zeros in Re s ≥ 0 or at the point s = ∞ which, 
conceivably, might cancel in all four numerators AM, AN, BM, and BN. 
However, this is impossible as the pairs A, B and M, N are both coprime. 
 2) Further we shall show that a controller R internally stabilizes the plant 
S = B/A if and only if it can be expressed in the form R = M/M for some 
proper and stable rational solution pair M, N of the Bézout equation 
AM + BN = 1. 
 Indeed, if the equation is satisfied, then C = 1 and the control system is 
internally stable. Conversely, if some controller MNR =  internally 
stabilizes S, then NBMAC +=  and the inverse C1 is proper and stable. 
Therefore, CMM =  and CNN = is a proper and stable rational solution 
pair of the Bézout equation and it defines the same 
controller MNMNR == . The proper and stable factor C is seen to cancel 
from both sides of the Bézout equation. 
 3) Finally we shall prove that all proper and stable rational solution pairs 
of the equation AM + BN = 1 are given by  

 AWYN,BWXM +=−= , 

where X, Y is a particular solution pair of this equation and W is a parameter 
that ranges over the set of proper and stable rational functions.  
 Indeed, M and N satisfy the Bézout equation: 

 1=++− )()( AWYBBWXA . 

 It remains to show that every solution pair of the equation has the form 
shown above for some proper and stable rational function W. We have 

 )()( YNBMXA −=− . 

 Since A and B are coprime, A is a factor of N – Y while B is a factor of X – 
M. Put W := (N – Y)/A. Then X – M = BW, and the claim has been proved. ■ 
 Let us illustrate the above theorem by determining all controllers that 
internally stabilize the plant 
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 A fractional representation of the plant transfer function is obtained as 
follows 
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 The Bézout equation 
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has a particular solution X(s) = 1, Y(s) = 2 so that the formula for all 
stabilizing controllers reads 
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where W is a parameter that ranges over the set of proper stable rational 
functions. 
 The set of stabilizing controllers clearly contains controllers of any finite 
order. If only PI controllers are of interest, one puts 
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 These controllers correspond to the parameter 
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 Consequently, kP > 0 and  kI > 0  in order for W to be proper and stable.  
 Theorem 1 can be applied to both continuous-time and discrete-time 
controllers. Accordingly, a rational function is defined to be stable if it is 
analytic either in     Re s ≥ 0 or in | z | ≥ 1. 
 In the case of discrete-time systems, additional constraints have to be 
imposed: the transfer functions S and R are proper (so that the plant and the 
controller are causal systems) and one of them is strictly proper (so that the 
closed loop system is causal). The chronology of samples in the control 
system is usually taken in such a way that R is to be strictly proper. Selecting 
a particular solution pair X, Y of the Bézout equation such that Y is strictly 
proper, and constraining the parameter W to be strictly proper and stable will 
achieve this requirement. Incidentally, no distinction need be made between 
asymptotic and internal stability in discrete-time systems – impulsive modes 
do not exist. 

3. Control system design 
 The most important property of the parametrization is that all transfer 
functions in an internally stable control system are affine functions of the 
parameter W. In contrast, the controller R appears in a nonlinear fashion: 
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 As R and W are in a one-to-one correspondence, it is convenient to use W 
in the design process and return to R subsequently. Thus the parametrization 
of all stabilizing controllers makes it possible to separate the design process 
into two steps: the determination of all stabilizing controllers and the 
selection of the parameter that achieves the remaining design specifications. 
The extra benefit is that both tasks are linear. 

3.1. Asymptotic properties 
 Asymptotic properties of control systems can easily be accommodated in 
the sequential design procedure. These include the elimination of an offset 
due to step references, the ability of system output to follow a class of 
reference signals, or the asymptotic elimination of specific disturbances. 
 The design procedure is best illustrated by an example. Given a plant 
with transfer function 
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find an internally stabilizing controller that asymptotically eliminates 
harmonic disturbances 
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as well as the offset due to step references  
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at the plant output y. Here α and β are arbitrary constants that parametrize 
the amplitude and phase of the family of all harmonic signals that have 
frequency 10. Similarly γ serves to describe the class of step references with 
arbitrary magnitude.  
 The first step is to determine the set of all internally stabilizing 
controllers. Referring to the previous example, 
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where W is a proper stable rational parameter function. The next step is to 
accommodate the specifications by constraining the parameter. When r = 0, 
the output y equals 
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 When d = 0, the tracking error e = r – y equals

 











+










+










+
−

+

−
=

−

1
γ

1
)(

1
11

1

1
)(

1

ss
ssW

ss

s
se . 

 Both functions are to be proper and stable, thus the inverses must be 
absorbed in 
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for some proper and stable rational functions W1 and W2. Taking the least 
common multiple, one obtains 
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so that the simplest parameter equals 
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The resulting controller is 
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3.2. Optimal control 
 The sequential design procedure will be further illustrated on the design 
of linear-quadratic optimal controllers. Given a plant with transfer function 
S(s) in the form of a coprime fraction of two proper and stable rational 
functions, S = B/A. The task is to find a continuous-time controller that 
internally stabilizes the control system of Fig. 1 while minimizing the effect 
of the disturbance d on the output y in the sense of minimizing the H2 norm 
of the transfer function 
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 The set of all internally stabilizing controllers is described by the formula 
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where AX + BY = 1 and W is a proper and stable rational parameter. In the 
internally stable control system, one has 

 QWP −=−= :)( BWXBH , 

where P and Q are some proper stable rational functions. Consider the inner-
outer factorization (Doyle, et al., 1992) of Q defined as Q = QiQ0, where Qi 
has unit magnitude on the imaginary axis and Q0 has no zeros in Re s ≥ 0. 
With this factorization, 

 
2

0

2

0202 WQ
Q
PWQ

Q
PQWQQPQWP

jj
jj −=










−=−=− . 

Next P/ Qi is decomposed as 
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where { · }+  is analytic in Re s ≥ 0 and { · }–  is strictly proper and analytic 
in Re s ≤ 0. With this decomposition, 
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as the cross-terms contribute nothing to the norm. The last expression is a 
complete square whose first part is independent of W. Hence the minimizing 
parameter is 
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and if it is indeed proper and stable, it defines the unique optimal controller. 
The consequent minimum norm equals 
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 If the minimizing W happens to be improper or unstable, then no optimal 
controller exists.  
 To illustrate, consider the following example: 
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 The Bézout equation has a particular solution X = 2, Y  = –1. The class of 
all internally stabilizing controllers is 
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for an arbitrary proper stable rational W. The disturbance-to-output transfer 
function is 
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 The inner-outer factorization yields 
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and the stable-antistable decomposition is 
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 The H2 norm of H attains minimum for W = 2. The corresponding 
optimal controller is  
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 Note that R is not proper. Nevertheless the control system is internally 
stable: the impulsive mode of the controller cannot be excited in the closed 
loop. From the practical point of view, however, the control system will not 
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perform satisfactorily at high frequencies and a suboptimal strictly proper 
controller may be preferable. 

3.3. Robust stabilization 
 Generally speaking, the notion of robustness means that some 
characteristic of the feedback system holds for every plant in a set. There are 
three ingredients in this definition. Firstly, robustness refers to some 
particular characteristic of the control system, like stability, asymptotic 
tracking, suboptimal level of performance, or some other performance 
condition. Secondly, the characteristic is to hold for every plant in the set. 
The ultimate goal is that it holds for the actual plant. The actual plant is 
unknown, however, so the best one can do is to make the characteristic hold 
for a large enough set of plants. Finally, one fixed controller guarantees 
robustness. Consequently, it makes no sense to call a control system robust 
unless the particular characteristic and the set of plant models are specified. 
 The basis technique to model plant uncertainty is to model the plant as 
belonging to a set. Such a set can be either structured – for example, there is 
a finite number of uncertain parameters – or unstructured – the frequency 
response lies in a set in the complex plane for every frequency. The 
unstructured uncertainty model is more important for several reasons. 
Firstly, relying on the frequency response, it provides a good connection 
with the classical techniques and tools. Secondly, it is well suited to 
represent high-frequency modeling errors, which are generically present and 
caused by such effects as infinite-dimensional electromechanical resonance, 
transport delays, and diffusion processes. Finally, and most importantly, the 
unstructured model of uncertainty leads to a simple and useful design theory. 
 The unstructured set of plants is usually constructed as a neighborhood of 
the nominal plant, with the uncertainty represented by an additive, 
multiplicative, fractional, or feedback perturbation (Zhou and Doyle, 1998). 
The size of the neighborhood is measured by a suitable norm, most common 
being the H∞ norm that is defined for any rational function analytic on the 
imaginary axis as 
 ω)(supω jHH =

∞
. 

 This norm has a simple control engineering interpretation. It is the 
distance in the complex plane from the origin to the farthest point on the 
Nyquist plot of the transfer function, and it appears as the peak value on the 
Bode magnitude plot. 
 This section will illustrate the design for robust stability under 
unstructured norm-bounded multiplicative perturbations. Consider a 
nominal plant with transfer function S and its neighborhood S∆ defined by 

 )()]()(1[()( sSsMssS ∆+=∆ , 
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where M is a fixed proper stable rational function and ∆ is a variable proper 
stable rational function such that 1≤∆

∞
. The idea behind this uncertainty 

model is that ∆M is the normalized plant perturbation away from 1: 
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S
∆=−∆ 1 . 

 Hence if 1≤∆
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, then for all frequencies 
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so that )( ωjM  provides the uncertainty profile while ∆ accounts for phase 
uncertainty. 
 Now suppose that R is a controller that internally stabilizes the nominal 
plant S. It follows from the Nyquist diagram that 
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for all ω. Consequently, the controller R will internally stabilize the entire 
family of plants S∆ if and only if 
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 This is a necessary and sufficient condition for robust stabilization of the 
nominal plant S.   
 The set of all internally stabilizing controllers for S = B/A is described by 
the formula 
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where AX + BY = 1 and W is a proper and stable rational parameter. The 
robust stability condition then reads 
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where P := BYM and Q := – BAM are proper stable rational functions. Any 
proper and stable rational W that satisfies this inequality then defines a 
robustly stabilizing controller R for S. In case W actually minimizes the norm 
one obtains the best robustly stabilizing controller. 
 As an example, consider a plant with the transfer function 
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where the time delay τ is known only to the extent that it lies in the interval 0 
≤ τ ≤ 0.2. The task is to find a controller that stabilizes the uncertain plant Sτ. 
The time-delay factor sτ−e can be treated as a multiplicative perturbation of 
the nominal plant 
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by embedding Sτ in the family  
 )()]()(1[()( sSssMsS ∆+=∆ , 

where ∆ ranges over the set of proper and stable rational functions such that 
1≤∆

∞
. To do this, M should be chosen so that the normalized 

perturbation satisfies 
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for all ω and τ. A little time with the Bode magnitude plot shows that a 
suitable uncertainty profile is 
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 Figure 2 is the Bode magnitude plot of this M and 1e −− sτ for τ = 0.2, the 
worst value. 

 
Figure 2. Bode plots of M (dotted) and 1e 2.0 −− s (solid) 
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 The task of stabilizing the uncertain plant Sτ is thus replaced by that of 
stabilizing every element in the set S∆, that is to say, by robustly stabilizing the 
nominal plant S with respect to the multiplicative perturbations defined by M. 
 Take 
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in the fractional representation of the nominal plant S. The set of all 
stabilizing controllers for S is then given by 
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where W  is a non-zero proper and stable rational parameter. The robust 
stability condition reads 

 1<−
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QWP , 
where 
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 Since Q has one unstable zero at s = 1, it follows from the maximum 
modulus theorem (Doyle, et al., 1992) that the minimum of the H∞ norm 
taken over all proper and stable rational functions W is P(1) = 2/5 and this 
minimum is achieved for 
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 Thus the robust stability condition is satisfied and the corresponding best 
robustly stabilizing controller is 
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3.4. Deadbeat control 
 The following application illustrates the design of discrete-time deadbeat 
controllers. Given a plant with discrete-time transfer function S(z), written in 
the form of a coprime fraction of two proper and stable rational functions, S 
= B/A. The task is to determine a controller R that internally stabilizes the 
control system of Fig. 1 while rendering the output y to follow any reference 
r exactly in a minimum time. Consequently (Kučera and Kraus, 1995), the 
control system can have poles only at the point  z = 0 and the reference-to-
error transfer function 
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 In the control system so designed, the polynomial H is given by the 
formula 
 QWPBWXAH −=−= :)(  

and its degree can be minimized by a choice of W: it suffices to identify W 
with the quotient of  P/Q so that H  becomes the remainder. 
 To illustrate, consider a discrete-time integrator plant 
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sampled at the unit rate and displacement ε of input and output sampling 
instants, with 0 < ε ≤ 1. The Bézout equation admits a solution 
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 The set of all stabilizing controllers that allocate the closed loop poles to 
the point  z = 0 is 
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for an arbitrary polynomial W(z – 1). The resultant transfer function from  r to e is 

 WzzzzzH 11111(1 −−+−−−+−= −−−−− ]ε)(1)[ε(1 ]ε)(1)[1)( 1z . 

 Taking the quotient of the polynomial division of 11 −−+ zε)(1  by 
21 −−+− zz ε)(1ε  gives the parameter W = 0; hence the optimal controller 
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and the polynomial  

 H(z) = ]ε)(1)[1 11(1 −−+−− zz . 

 The tracking error will vanish in three sampling periods. 

3.5. Stabilization subject to input constraints 
 Most plants have inputs that are subject to hard limits on the range of 
variations that can be achieved. The effects of actuator saturation on a 
control system are poor performance and/or instability. Stabilization subject 
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to input constraints can be formulated either as a local stabilization, when 
saturation is avoided for a set of initial states and the control system behaves 
as a linear one, or as a global stabilization, when saturation is allowed to 
occur and the control system is nonlinear. 
 Consider the saturation avoidance approach. Given a discrete-time plant 

 0xzTzuzSzy )()()()( +=  

with the input  

 ...zuzuuzu +++= −− 2
2

1
10)(  

subject to the constraints 

 ...,,,k,uuu k 210=≤≤− +− , 

where  u+ and  u –  are positive constants and x0 is the initial state. The task is 
to find a controller (zero initial state assumed) of the form 

 )()()( zyzRzu −=  

such that the control system is locally asymptotically stable for any initial 
state x0 of the plant within a given polyhedron }:{ nNxxPN ≤= , where N 
is a matrix and n is a vector. 
 Denote S = B/A and T = C/A the fractional representation of the plant. 
The control sequence in a stable feedback system is 

 0xAWYCu )( −= . 

 Taking W in the form of a power series around the point z = ∞ 
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shows that the control sequence is an affine function of the parameters p1, p2, 
… of the form 
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and satisfies the given constraint if x0 belongs to the polyhedron 
})(:{ mxppMxPM ≤= ,..., 21 , where 
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 Now x0 is in PN , so that PN must be contained in PM. Applying the Farkas 
lemma (Henrion, et al., 2001), one concludes that the stabilization problem 
has a solution if and only if there exists a matrix P with non-negative entries 
and real numbers p1, p2, … such that 

 mPnMPN ≤= ,,...p,p )( 21 . 

 This is a linear program for P and p1, p2, … . The stabilizing controller is 
then obtained by putting  

 ...zpzpzW +−+−= 2
2
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 If the power series W is approximated by a polynomial, then the program 
has a finite dimension. 
 To illustrate, consider the plant described by the input-output and state-
output transfer functions 
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 The plant input is constrained as  
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and the initial state x0 belongs to the polyhedron 
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 The set of stabilizing controllers is found to be 
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and the corresponding control sequence is  
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 Now start with W(z) = 0 and check whether the resulting linear program 
for P is feasible: 
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 It is not, hence no controller of order 1 stabilizes the plant. 
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 Proceed by choosing W(z) = p1 z –1 and check whether the resulting linear 
program for p1 and P is feasible: 
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furnishes the stabilizing controller 
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The actual polyhedron of stabilizable initial states is  
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and it includes PN  as a proper subset. 
 The successive selection of a feasible parameter results in the increase of 
the order of the stabilizing controller. This points out to a potential weakness 
of the design procedure based on parametrization: each time an additional 
design specification is achieved, the order of the controller is increased. 

4. Conclusions 
 The parametrization of internally stabilizing controllers can easily be 
extended to multi-input multi-output systems (Vidyasagar, 1985). Rational 
matrices are represented as „matrix fractions“, that is to say, as the left and 
right factorizations  

 LLPP BAABS 11 −− ==  

of two proper and stable rational matrices, where PA  and PB  are right 
coprime and LA and LB are left coprime. The set of all internally stabilizing 
controllers is given by 
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where the proper and stable rational matrices LX , LY  and  PX , PY satisfy the 
Bézout identity 
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and W is a proper and stable rational matrix parameter (Kučera, 1975; Youla, 
et al., 1976b). 
 It is interesting to note that the set of internally stabilizing controllers can 
be parametrized also for plants with irrational transfer functions. This is 
possible whenever such a transfer function is expressed in the form of a 
fraction of two coprime proper and stable rational functions. This property is 
by no means evident (Vidyasagar, 1985) and it holds, for instance, for 
transfer functions having a finite number of singularities in 0Re ≥s , each of 
which is a pole. 
 Even more striking is the observation that internally stabilizing 
controllers can be parametrized for nonlinear plants, where transfer 
functions no longer exist. The key condition is again the possibility of 
factorizing the nonlinear mapping that defines the plant into two „coprime“ 
mappings, one of them representing a stable system while the other one 
representing the inverse of a stable system (Hammer, 1985). Technical 
assumptions may prevent one from parametrizing the entire set of internally 
stabilizing controllers; still, the subset may be large enough for practical 
purposes.  
 The parametrization of all stabilizing controllers is a result that launched 
an entire new area of research and that has ultimately become a new 
paradigm for the design of optimal and robust control systems. Being of 
algebraic nature (Kučera, 1993), it is a result of high generality and elegance. 
The stabilizing controllers are obtained by solving a linear equation. This is 
not because the plant to be controlled is linear but because it is an element of 
the ring of fractions defined over the ring of stable plants (Vidyasagar, 
1985). The requirement of stability is thus expressed as one of divisibility in 
a ring: an element a divides an element b if there exists an element x 
satisfying    ax = b. That is why x is the solution of a linear equation. 
 There is a dual result: the parametrization of all plants that can be 
stabilized by a fixed controller. This result is useful in system identification. 
In fact, the (difficult) problem of closed-loop identification of the plant 
becomes a (simple) problem of open-loop identification of the parameter, as 
discussed by Anderson (1998). Consequently, the parametrization may 
facilitate the study of dual control. 
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Abstract This paper presents an integrated methodology for feedback control of
active vibration attenuation systems. The basic steps of the method-
ology are: open loop identification of the secondary path, design of a
robust digital controller, identification in closed loop of a ”control ori-
ented” model, redesign of the controller based on the closed loop identi-
fied model and controller reduction. The feasability of this methodology
is illustrated by its application on the Hutchinson active suspension.

Keywords: active control, active suspension, feedback control, closed loop identifi-
cation, controller order reduction.

1. Introduction
Feedback is used in active vibration control mainly for three reasons:

Absence of a measurement correlated with the vibration source
(which is necessary for feedforward control).
Wide band vibration attenuation.
Potential robustness of performances with respect to system model
variations.

A number of techniques has been proposed for the design of feedback
controllers dedicated to active vibration attenuation [2, 3, 4]. Often an
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adaptation loop is added for the tuning of the controller because either
the identified model is not enough accurate or because the designed
controller is not enough robust. For more details on feedback used in
active vibration control see [4]-Chapter 3.

The key contributions of the present paper are related to:
the identification of a good ”design model” by using up to date
open loop and closed loop identification methods and model vali-
dation tests;
the design of a robust controller allowing to achieve severe perfor-
mance constraints in terms of the frequency attenuation charac-
teristics;
the use of a recent developed efficient controller reduction method
preserving the desirable properties of the nominal closed loop sys-
tem.

For more details on this methodology see [1].
To be specific we will start by presenting the system under consider-

ation for the experimental verification of the methodology.
The structure of the system is presented in Fig. 1, a photo of the

system being presented in Fig. 2. The controller will act upon the piston
(through a power amplifier) in order to reduce the residual force. The
system is controlled by a PC via an I/O card, the sampling frequency
being 800Hz.
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Figure 1. The active suspension system

The equivalent scheme is shown in Fig. 3.
The system input, u(t) is the position of the piston, the output y(t)

being the residual force measured by a force sensor (see figs. 1, 3).
The principle of the active suspension is to vary the system’s stiffness

in order to attenuate the vibrations generated by the part that we want
to isolate (primary force, disturbance). In our case, the primary force
has been generated using a shaker controlled by a signal given by the
computer.
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Figure 2. Active suspension system (photo)

We call primary path transfer function (q−d1
C

D
) the transfer function

between the signal sent to the shaker, p and the residual force y(t).

We call secondary path transfer function (q−d B

A
) the transfer function

between the input of the system, u(t) and the residual force. The input
of the system being a position and the output a force, the secondary
path transfer function has a double differentiator behaviour.
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Figure 3. Block diagram of the active suspension system

The frequency characteristic of the identified primary path model (the
effect of the disturbances on the output), between the excitation of the
shaker and the residual force is shown in Fig. 4. The control objective
is to minimize the modulus of the transfer function between the input
signal of the shaker and the residual force at low frequencies, using a
feedback control. In other words, to attenuate the first vibration mode,
without amplifying the disturbance effect in low frequencies (below 31
Hz) and minimizing the maximum amplification of the disturbances over
35 Hz by distributing it through the high frequencies up to 200 Hz.
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Figure 4. The frequency characteristic of the primary path model (input: shaker’s
signal, output: residual force)

Assuming that a good model of the system is available, the difficulty
in controller design comes from the constraints in low frequencies (no
amplification is allowed below 31Hz). In our case the allowed amplifi-
cation in the frequency region over 35Hz is ≤ 3dB. See for example [2]
for less stringent frequency specifications.

The methodology proposed for the design of feedback active vibration
control is illustrated in Fig.5.

The first stage is the open loop identification and validation of a dis-
crete time model for the secondary path (between the piston’s position
and the residual force).

Then a controller based on this open loop identified model is designed
and implemented (open loop based controller). The pole placement with
shaping of the sensitivity functions by convex optimization is used for
the design [11].

Once the open loop based controller is implemented, an identification
in closed loop is carried out [8]. This allows to get a better design model,
since identification in closed loop (using appropriate algorithms) will
enhance the precision of the estimated model in the critical frequency
regions for control.

Then a re-design of the controller is done based on the closed loop
identified model (nominal closed loop based controller).

The nominal controller is then implemented and tested.
The next stage is the reduction of the controller complexity, which can

be done using simulated or real data. The algorithms used for controller
reduction will preserve the desirable properties of the nominal closed
loop system [9, 6].
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Figure 5. Design methodology

The last stage is a comparison in real time between the performances
of the nominal and reduced order controllers.

The paper is organized as follows: Section 2 will discuss the model
identification (in open and in closed loop). Section 3 will present the
controller design methodology. Section 4 will present the controller re-
duction technique. Section 5 will illustrate the application of the design
methodology to the Hutchinson active vibration attenuation system.

2. Open and closed loop identification
From a practical point of view, the identification of a plant model is

the first thing to do for the design of a controller.
The identification of a system is an experimental approach for esti-

mating a model of the real system. The identification procedure can be
divided in four different steps:
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I/O data acquisition (under an experimental protocol).
Estimation of the model complexity.
Estimation of the model parameters and choice of the noise model.
Validation of the identified model.

An important point in the identification of a system is the excitation sig-
nal. In this paper we use as excitation signal a PRBS (Pseudo Random
Binary Sequence). See [10] for details.

2.1. Open loop identification
The open loop identification algorithms minimize the error between

the output of the real system and the output of the estimated model.
In other words, they try to estimate a model whose output fits as much
as possible the part of the output of the real system generated by the
excitation signal. For details on open loop identification and validation
see [10].

2.2. Closed loop identification
Closed loop identification can be used when a controller (i.e. based on

an open loop identified model) exists, in order to obtain a better model
of the real plant since the precision of the estimated model is improved
in the critical frequency regions for control. Of course, this requires to
use specific algorithms.
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Figure 6. Identification in closed loop

The closed loop identification algorithms minimize the error between
the true closed loop system and the adjustable predictor of the closed
loop. The objective of the closed loop identification is to obtain a better
predictor for the closed loop, using a better estimation of the plant
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model. The predictor of the closed loop is formed by the controller and
the estimated plant model (see Fig. 6). For more details on the closed
loop identification see [7, 8].

3. Controller design
The method used in this paper for the computation of a robust digital

controller is the pole placement method with shaping of the sensitivity
functions by convex optimization.

The combined pole placement/sensitivity function shaping method
consists of placing the dominant closed loop poles, specifying some fixed
parts of the controller and then adding auxiliary poles and controller
parts to fulfill specifications on the output and input sensitivity functions
by a convex optimization procedure [11].

3.1. Plant representation and controller structure
The structure of a linear time invariant discrete time model of the

plant (on which is based the design of the controller) is

G(z−1) =
z−dB(z−1)

A(z−1)
, (1)

where:

d = number of sampling periods on the plant pure time delay;
A = 1 + a1z

−1 + . . . + anA
z−nA ;

B = b1z
−1 + . . . + bnB

z−nB .

The controller to design is a RS-type controller (see Fig. 7). The sensi-

Figure 7. Structure of RS-controller

tivity functions for the closed loop are:
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the output sensitivity function (the transfer function between the
perturbation p1(t) and the output y(t)):

Syp(z−1) = −A(z−1)S(z−1)
P (z−1)

; (2)

the input sensitivity function (the transfer function between the
input of the plant u(t) and the output y(t)):

Sup(z−1) = −A(z−1)R(z−1)
P (z−1)

, (3)

where P (z−1) are the poles of the closed loop.

3.2. Design problem formulation
The problem may be formulated as follows: Given a nominal plant

model Gnom =
z−dBnom

Anom
obtained by identification, define:

the fixed parts of the controller (HR and HS);
the desired closed loop behaviour (the dominant closed loop poles
PD and the acceptable region for the optimized ones);
the desired upper bounds Wx(ω) for the modulus of the sensitivity
functions (performance and robustness objectives);
an objective to be minimized.

3.3. Controller parameterization
The parameterization used for the controller is the Youla-Kucera Pa-

rameterization:

R

S
=

HR(R0 + AnomHSQ)
HS(S0 − z−dBnomHRQ)

, (4)

where the fixed parts of the controller, HR, HS and Anom, Bnom are
polynomials of z−1.

The central controller (Q = 0) can be obtained by solving the Bezout
equation for R0 and S0:

AnomHSS0 + z−dBnomHRR0 = PD, (5)

where PD is a stable polynomial containing the desired dominant closed
loop poles. Expressing Q as a fraction of polynomials β and α (with α
stable), we obtain:
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R

S
=

HR(R0α + AnomHSβ)
HS(S0α − z−dBnomHRβ)

(6)

Pnom = AnomS + z−dBnomR = PDα, (7)

where the zeros of PD are the fixed closed loop poles and the zeros of α
are the additional (optimized) ones.

Using the parameterization and constraint formulation presented above,
a controller (R and S) with the required properties may be obtained by
convex optimization. For more details on the optimization procedure
see [11].

4. Controller reduction
The design of a robust controller (see Section 3) leads normally to

high order controllers. There exist two main approaches to obtain a
reduced order controller:

to reduce the order of the plant model and then to compute a low
order controller based on the reduced model;

to compute a high order controller based on the nominal plant
model, and then to reduce the order of the obtained controller.

The second approach seems more appropriate because the approximation
is done in the final step of the controller design. In addition, the first
approach in this case did not allowed to obtain enough simple controllers.

Identification in closed loop offers an efficient methodology for the
controller order reduction. The most important aspect of the controller
reduction is to preserve as much as possible the desirable closed loop
properties.

One block diagram for reduced order controller identification is pre-
sented in Fig. 8. The simulated nominal closed loop system (the upper
part of Fig. 8) is constituted by the nominal designed controller, K and
the best identified plant model, Ĝ. The lower part is constituted by
the estimated reduced order controller, K̂ and the plant model, Ĝ. It
is assumed that the nominal controller stabilizes the real plant and the
identified plant model.

The parametric adaptation algorithm will try find the best reduced
order controller of a given order which will minimize the closed loop input
error (the difference between the input of the plant model generated in
the nominal simulated closed loop, u, and the input of the plant model
generated by the closed loop using the reduced order controller, û).

Identification of a reduced order controller can also be done using real
data [9].
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Figure 8. Closed-loop identification of reduced order controllers using simulated
data (input matching: CLIM)

One can also consider as an objective for controller order reduction
to minimize the closed loop error between the plant output generated
in the nominal simulated closed loop and the plant output generated in
the closed loop using the reduced order controller (CLOM algorithms)
[5].

For more details on the algorithms see [9, 5, 6].
An important aspect for the reduction procedure, from the valida-

tion point of view, is that the reduced order controllers should stabilize
the nominal model, Ĝ, and they should give sensitivity functions which
are close to those obtained with the nominal controller in the critical
frequency regions for performance and robustness [9].

5. Application of the designed methodology to
an active suspension

The design methodology proposed in the previous sections will be
illustrated on an active suspension. The active suspension has been
presented in the Section 1 of this paper.

The primary path transfer function has been identified in open loop.
The excitation signal sent at the input of the shaker is a PRBS with 10
cells shift register and the frequency divider p = 2. For the identification
we used 2048 data points.

The primary path identified model has the following orders: nC = 12,
nD = 9, delay d1 = 2. The frequency characteristic of the identified
model is presented in Fig. 4.
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One can see that there exist several vibration modes, the first one
(that we desire to attenuate) being at 31.5Hz with a damping factor
0.093.

We shall present below the results obtained, step by step.

5.1. Step 1: Open loop identification of a discrete
model for the secondary path

The excitation signal sent at the input of the system (the piston) is
a PRBS with 9 cells shift register and the frequency divider p = 4. For
the identification we used 2048 data points.

The reason of using a frequency division p = 4 is that we are interested
to obtain a good model in low frequencies, a PRBS with p = 4 having a
higher energy in low frequencies. See [10] for details.

The identified model of the secondary path has the following orders:
nA = 12, nB = 11, delay d = 2, and it has been identified using the
Recursive Maximum Likelihood method with a variable forgetting factor.

The frequency characteristic of the identified model is presented in
Fig. 9 (thin line), the first vibration mode being at 31.98Hz with a
damping factor 0.078. As we can see, there are 6 vibration modes from
which 5 are very low damped (< 0.078). We have chosen the best model
from the point of view of the open loop validation techniques.
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Open loop identified model
f1 =   31.98 Hz; xi = 0.078
f2 = 145.08 Hz; xi = 0.712
f3 = 158.59 Hz; xi = 0.040
f4 = 239.56 Hz; xi = 0.037
f5 = 279.19 Hz; xi = 0.028
f6 = 364.73 Hz; xi = 0.016

Closed loop identified model
f1 =   32.76 Hz; xi = 0.085
f2 = 107.70 Hz; xi = 0.641
f3 = 157.13 Hz; xi = 0.062
f4 = 221.92 Hz; xi = 0.024
f5 = 273.02 Hz; xi = 0.033
f6 = 371.13 Hz; xi = 0.045

Figure 9. The frequency characteristics of the secondary path model (input: piston
displacement, output: residual force)
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5.2. Step 2: Design of a robust controller
Having now an open loop identified model, identified in Step 1, one

can pass to the computation of a robust digital controller. We used the
methodology presented in Section 3.

In order to compute the controller, we fixed a pair of dominant poles
at the frequency of the first vibration mode of the open loop identified
model with a damping factor 0.8. We introduced also some fixed parts
in the controller (in HR):

HR = 1+q−1 (assures the opening of the loop at 0.5fs - robustness
reason);
a pair of zeros at 215Hz with a damping factor 0.01 (assures a very
low gain of the controller at the frequency where the energy of the
PRBS used for identification is low (0.25fs) and where therefore
one has an uncertainty on the model);
a pair of zeros at 20.5Hz with a damping factor 0.01 (assures
the opening of the loop in low frequencies, because of the fact
that attenuating the first vibration mode may other way produce
amplification in low frequencies (below 31Hz)).

The constraints on the sensitivity functions are the templates presented
in Fig. 10. The template on the Syp function has been established as a
function of the desired disturbance rejection, the one on Sup is a function
of the saturation problems of the actuator. The template on Syp is at
−12dB at the frequency corresponding to the first vibration mode and
at 0dB at the frequencies over 35Hz (up to 150Hz), because we should
like a very little amplification in this frequency region. We ask a little
value of Sup at 0.25fs because of the uncertainties of the identified model
in this frequency region. The objective is to minimize the Syp sensitivity
function in the regions of interest (see the template) without sticking
out from the template on Sup.

The resulting controller (the nominal one) has the following complex-
ity (the orders of polynomials R and S): nR = 27, nS = 28. The output
sensitivity function Syp, respectively the input one, Sup, are presented
in Fig. 10. From Fig. 10 one can see that we obtain a good disturbance
rejection (low magnitude of Syp) at the frequency corresponding to the
first vibration mode (≈ 31Hz) and that we do not amplify at all in low
frequencies. The maximum amplification over 31Hz is below 3dB.

5.3. Step 3 and 4: Controller implementation and
closed loop identification

Having now the nominal controller (which stabilizes also the real
plant), computed at Step 2, we can proceed to the closed loop iden-
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Figure 10. Sensitivity functions

Table 1. Closed loop validation results

Plant model Open loop Closed loop

C.L. Err. var. 1.5368 0.1477

|RN(i)|max 0.4802 0.0340

Vinnicombe 0.7624 0.3587

tification of the secondary path in order to improve the quality of the
open loop identified model (see Step1).

We use the same excitation signal from the open loop identification
(Step 1) and we add it on the input of the system (the piston), which is
now in feedback with the nominal controller (see Fig. 3)

We identify a model having the same complexity as the open loop
one. We use the F-CLOE (Filtered Closed Loop Output Error) method
[8].

The closed loop validation results for the open loop, respectively
closed loop identified models, are presented in Table 1. The first two
lines give the variance of the residual closed loop error and the maxi-
mum of the normalized cross correlations between estimated output and
residual closed loop error. The third line gives the Vinnicombe distance
between the identified transfer function of the real closed loop system
and the closed loop transfer function of the simulated closed loop (nomi-
nal controller + model to validate). For details on closed loop validation
and Vinnicombe distance see [8, 10], and [12], respectively.

One can see that the closed loop identified model validates better than
the open loop one.
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5.4. Step 5: Re-design of a controller
Having now a better model of the real system, we compute a robust

digital controller based on this model, in order to improve the perfor-
mances of the controller on the real system.

The controller based on the closed loop identified model is obtained
using the same methodology and the same constraints (templates on the
sensitivity functions) imposed in Step 2.

5.5. Step 6: Performance tests
In order to test the performances of the nominal controller on the real

system, we present the spectral density of the residual force in open and
in closed loop (see Fig. 11). One can see an attenuation of about 7dB
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Figure 11. Spectral density of the residual force in open and in closed loop

at the frequency corresponding to the first vibration mode (≈ 31Hz),
without any amplification in low frequencies. The tolerated amplifica-
tion (3 dB) over 35 Hz has been verified, so the controller obtained
accomplished the desired performances.

5.6. Step 7: Controller reduction
In order to do the order reduction of the nominal controller, we shall

give the results obtained using the CLIM direct reduction method pre-
sented in Section 4, based on simulated data. The plant model used
is the closed loop identified model. We use as external input a PRBS
generated by 10 cells register and with a frequency divider of p = 2. We
use 4096 data points and a variable forgetting factor. For more details,
see [9, 6].
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We present the reduction results by showing the sensitivity functions
(Syp and Sup in figs. 12, 13) for the nominal controller Kn with nR =
27, nS = 28 and for three reduced order controllers: K1 with nR = 19,
nS = 20, K2 with nR = 12, nS = 13 and K3 with nR = 9, nS = 10
respectively (a fixed part HR = 1+q−1 has been imposed in the reduced
order controllers). K3 controller has a lower complexity than the pole
placement one.
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Figure 12. Output sensitivity for the active suspension (controller reduction using
CLIM algorithm on simulated data)
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Figure 13. Input sensitivity for the active suspension (controller reduction using
CLIM algorithm on simulated data)
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Note: The reduced controller K2 corresponds to the complexity of
the pole placement controller.

One can see the closeness of the sensitivity functions.
Similar results are obtained by using real data for the reduction of the

controller complexity.

5.7. Step 8: Performance tests
To illustrate the performances of the resulting controllers (Kn, K1,

K2 and K3) on the real system, the spectral density of the residual
acceleration in open and in closed loop is shown in Fig. 14. The spec-
tral densities obtained in closed loop operation are compared to those
corresponding to the open loop operation.

The performances of the reduced order controllers are close to that
of the nominal controller and all achieve a significant reduction of the
vibrations around the first vibration mode of the plant model.
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Figure 14. Spectral density of the residual acceleration in open and in closed loop
(controller reduction using CLIM algorithm on simulated data)

6. Conclusions
The methodology presented in this paper allowed to design a feedback

control for an active vibration system and has been successfully tested
in real time.

The real system has been identified in open and in closed loop. The
resulting controller accomplished the desired performances. The nominal
controller has been simplified by a procedure preserving the closed loop
properties. The reduced order controller (19 parameters instead of 55)
gives very close results to those of the nominal controller.
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Abstract Model predictive control is a control technique in which a finite horizon optimal 
control problem is solved at each sampling instant to obtain the control input. 
The measured state is used as initial state and only the first control of the 
calculated optimal sequence of controls is applied to the plant. A key advantage 
of this form of control consists in its ability to cope with complex systems and 
hard constraints on controls and states. This resulted in a wide range of 
applications in industry, most of them in the petro-chemical branch. In this 
survey, a selected history of model predictive control is presented, with the 
purpose to outline the principles of this control methodology and to analyze the 
progress that has been made. The initial predictive control algorithms, mainly 
based on input/output models, are recalled in the introduction and then we focus 
on the more recent work done in nonlinear model and hybrid model predictive 
control. The stability problem and the computational aspects are discussed to 
formulate some fruitful ideas for the future research. 

Keywords: model predictive control, discrete-time systems, nonlinear systems, hybrid 
systems, constraints, stability 

1. Introduction 
 Model Predictive Control (MPC) is a control strategy that offers 
attractive solutions, already successfully implemented in industry, for the 
regulation of constrained linear or nonlinear systems and, more recently, also 
for the regulation of hybrid systems. Within a relatively short time, MPC has 
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reached a certain maturity due to the continuously increasing interest shown 
for this distinctive part of control theory, and this has been illustrated by the 
prolific literature on this subject, including (Garcia et al., 1989; Qin and 
Badgwell, 1997; Allgöwer et al., 1999; Camacho and Bordons, 1999; Morari 
and Lee, 1999; Mayne et al., 2000; Rawlings, 2000; Maciejowski, 2002). 
 The reason for the rapid development of MPC algorithms mainly consists 
in the intuitive way of addressing the control problem. In comparison with 
conventional control, which uses a pre-computed control law, predictive 
control is built around the following key principles: the explicit use of a 
process model for calculating the future behavior of the plant, the 
optimization of an objective function subject to constraints (which yields an 
optimal control sequence) and the receding horizon control strategy. The 
MPC methodology involves solving on-line an open-loop optimal control 
problem subject to input, state and/or output constraints. The graphical 
interpretation of this concept is depicted in Fig. 1. 

 
Figure 1. Graphical interpretation of model predictive control 

 At each sampling instant k, the measured variables and the process model 
(linear, nonlinear or hybrid) are used to predict the future behavior of the 
controlled plant over a specified discrete-time horizon called prediction 
horizon (N). This is achieved considering a future control scenario as the 
input sequence applied to the process model, which must be calculated such 
that certain desired (imposed) objectives are fulfilled. To do that, a cost 
function is minimized subject to constraints, yielding an optimal control 
sequence over a discrete-time horizon named control horizon (Nu). Note that 
Nu ≤ N and if the control horizon is strictly smaller than the prediction 
horizon, the control input will be kept constant after Nu sampling time 
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instants. According to the receding horizon control strategy, only the first 
element of the computed optimal control sequence is then applied to the 
plant. 
 The original MPC algorithms, addressing linear systems exclusively, 
utilized only input/output models. In this framework, several solutions have 
been proposed both in the industrial world, IDCOM – Identification and 
Command (later MAC – Model Algorithmic Control) at ADERSA (Richalet 
et al., 1978) and DMC – Dynamic Matrix Control at Shell (Cutler and 
Ramaker, 1980), which use step and impulse response models, and in the 
academic world (the adaptive control branch) MUSMAR – Multistep 
multivariable adaptive regulator (Mosca et al., 1984), predictor-based self 
tuning control (Peterka, 1984), EHAC – Extended Horizon Adaptive Control 
(Ydstie, 1984), EPSAC – Extend Predictive Self-Adaptive Control (De 
Keyser and Van Cauwenberghe, 1985). Other MPC algorithms were also 
developed later on, from which the most significant ones are GPC – 
Generalized Predictive Control (Clarke et al., 1987) and UPC – Unified 
Predictive Control (Soeterboek, 1992). 
 Next, the MPC algorithms have been designed for state-space models and 
extensions to nonlinear models followed shortly. In the framework of 
Nonlinear Model Predictive Control (NMPC), several alternatives have been 
studied and implemented with good results, such as dual-mode NMPC 
(Michalska and Mayne, 1993), quasi-infinite horizon NMPC (Chen and 
Allgöwer, 1996; Chen and Allgöwer, 1998) or contractive NMPC (de 
Oliveira Kothare and Morari, 2000). Also, a more recent stabilizing NMPC 
algorithm has been presented in (Magni et al., 2001). 
 The first MPC approach to the control of hybrid systems has been 
reported quite recently in (Bemporad and Morari, 1999). Since then, several 
MPC schemes have been proposed for particular relevant classes of hybrid 
systems, such as the ones in (Bemporad et al., 2000; De Schutter and Van 
den Boom, 2001; De Schutter et al., 2002; Mayne and Rakovic, 2002; Lazar 
and Heemels, 2003). 
 By now, the linear MPC theory is quite mature. Important issues such as 
on line computations, the interplay between modeling-identification and 
control, and system theory subjects like stability and robustness are well 
defined. In the sequel, we will only focus on the NMPC and the MPC 
framework for hybrid systems and the associated problems. 

2. NMPC - Basic concepts and problem formulation 
 When nonlinear systems (models) are employed, despite the slightly 
different problem formulation, the basic concepts are still the key principles 
of predictive control. The use of a nonlinear model only complicates the 
finite horizon optimal control problem that has to be solved on-line. 
 Consider the general discrete-time nonlinear systems described by the 
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difference equation: 

 ),(1 kkk uxfx =+  (1) 

subject to input and state constraints of the form: 

 ,0  ,    0  , ≥∀∈≥∀∈ kX xkUu kk  (2) 

where n
kx ℜ∈ is the state vector, m

ku ℜ∈  is the control input vector and  
f(.) = [f 1(.), f 2(.), …. , f n(.)]T is a vector containing smooth nonlinear 
functions of their arguments, which are zero at zero. In the simplest form, 
the sets U and X are defined by: 

 { } { }maxminmaxmin |     ,| xxxxXuuuuU k
n

kk
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where umin, umax, xmin, xmax are given constant vectors. 
 The control objective is to regulate the state x to a desired equilibrium 
point xr. As any equilibrium point xr can be reduced to the origin via a 
suitable change of coordinates, we consider for the rest of the paper that the 
goal is to steer system (1) to the origin, while fulfilling the constraints (2). 
 The predictive control approach to the above stated control problem leads 
to the minimization of the cost function: 
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where ]  . . .   [ |1|1|0 kNkkk uuu −=u  are the manipulated controls, F(.) is the 
stage cost and L(.) is a suitable terminal state penalty term. The stage cost 
specifies the desired control performances and it is usually a quadratic 
function in x and u: 
 ( ) i

T
ii

T
iii RuuQxxuxF +=,  (6) 

with Q and R positive definite and symmetric weighting matrices. 
 Note that, for simplicity, it is assumed that the prediction horizon N is 
equal to the control horizon Nu. Thus, the NMPC control problem can be 
stated as: 
 Problem 1 Solve: 
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which yields the optimal control sequence 

 ]  . . .   [ /1/1/0 kNkkk uuu −=u , (8) 

and apply to plant (1) only the first element of (8). 
 The initial condition from (5) shows that the system model used to 
predict the future in the controller is initialized by the actual system state. In 
general, at each time instant k the full state xk is assumed to be measured or 
must be estimated. Model-plant mismatch and disturbances are not 
represented in the optimization problem. 
 In general it would be desirable to use an infinite prediction horizon, i.e. 

∞=N , and to minimize the cost function (4) with L = 0, in order to achieve 
stability of the closed-loop system. However, the open-loop optimal control 
problem that must be solved on-line is often formulated using a finite 
prediction horizon, resulting thus in a finite parameterized problem which 
allows a (real-time) numerical solution of the nonlinear programming Problem 
1. It is obvious that the shorter the prediction horizon is, the less time 
consuming are the calculations involved, so it is advantageous from a 
computational point of view to implement MPC schemes using short horizons. 
 Still, the problem now consists in the fact that the actual closed-loop input 
and state trajectories will differ from the open-loop trajectories, even if no 
model mismatch and no disturbances are present. Moreover, it is by no means 
true that a repeated minimization of a finite horizon cost function in a receding 
horizon manner leads to an optimal solution also for the infinite horizon 
problem with the same stage cost F (Bitmead et al., 1990). In fact the two 
solutions differ significantly if a short horizon is utilized, which implies that 
there is no guarantee that the NMPC closed-loop system will be stable. Hence, 
when using finite horizons in standard NMPC, the employed cost function 
cannot be simply developed from the desired physical objectives.  

2.1. NMPC algorithms with guaranteed stability 
 The most perceptive way to achieve stability, when an NMPC algorithm is 
utilized to calculate the control law, is to choose an infinite prediction horizon. 
In this case, with the state available for measurement, no model mismatch and 
no disturbances it follows directly from Bellmann’s principle of optimality 
that the open-loop input and state trajectories calculated at a specific time 
instant k as a solution of the NMPC Problem 1, are in fact identical with the 
closed-loop trajectories of the nonlinear plant. This implies closed-loop 
stability because any feasible predicted trajectory goes to the origin.  
 Since nearly all stability proofs for NMPC follow along the same basic 
steps as for the infinite horizon proof, at this point, it is worth mentioning the 
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key ideas: considering the cost function as a Lyapunov function, it is first 
shown that feasibility at one time instance does imply feasibility at the next 
time instance for the nominal case, in a second step, it is established that the 
cost function is strictly decreasing and thus the state and the input are 
converging to the origin, and finally, in a third step, asymptotic stability is 
established using the continuity of the cost function at the origin and its 
monotonicity properties.  
 Unfortunately, an infinite horizon for the NMPC Problem 1 is only useful 
as a theoretical concept, because the solution of such a high dimension 
optimization problem is extremely difficult, if not impossible to obtain. Due 
to this reason, finite horizon approaches are preferred for NMPC, despite the 
inconsistencies between the open-loop predicted trajectories and the closed-
loop actual trajectories mentioned above. Instead of using an infinite 
prediction horizon, stability is achieved / guaranteed by adding suitable 
constraints (not connected with physical restrictions or desired performance/ 
requirements) and penalty terms to the original cost function (4). Therefore, 
these extra conditions are referred as stability constraints. In the following, 
two representative finite horizons NMPC schemes with guaranteed stability 
are presented. 
 Dual-mode NMPC This NMPC approach was introduced in (Michalska 
and Mayne, 1993) and consists in the use of two different controllers that are 
applied in different regions of the state space depending on the state being 
inside or outside of some terminal region that contains the origin. For the 
case in which the state is outside the terminal region an NMPC controller 
with a variable finite horizon is applied and, when the current state has 
entered the terminal region, a linear state feedback control law is employed. 
Thus, the proposed NMPC algorithm utilizes the following twofold control 
strategy: 

 0 / ,
, .
k k

k
k k

u     if x
u

Kx     if x
∉Ω

=  ∈Ω
 (9) 

 The terminal region Ω and the state feedback are calculated off-line such 
that the terminal region is a positive invariant region of attraction for the 
nonlinear system controlled by the linear state feedback algorithm and thus, 
the input and state constraints are satisfied with this linear controller in Ω. 
According to the dual-mode approach, when the state is outside Ω, the length 
N of the horizon is considered as an additional minimizer and Problem 1 to 
be solved, becomes: 

 { }/ / 0/,
min ( , , ) | , [0, 1]; , [0, ];

k
k k i k i k k ku N
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with the additional terminal inequality constraint 

 BNx Ω∈ , (11) 
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which ensures that at the end of the horizon, the state has to lie on the 
boundary ΩB of the terminal region Ω. 
 Starting from the outside of terminal region, the dual-mode NMPC 
controller guarantees the reaching of the terminal region boundary in a finite 
time. The close-loop stability is attained due to the use of a stabilizing local 
linear feedback control law. From the computational point of view, the dual-
mode NMPC solution is more attractive because a inequality constraint is 
used, rather than a terminal equality constraint. The main drawback consists 
in the requirement to switch between control strategies and in determining 
the terminal region Ω. 
 Quasi-infinite horizon NMPC The quasi-infinite horizon NMPC strategy 
was presented in (Chen and Allgöwer, 1996) and then further developed in 
(Chen and Allgöwer, 1998), where the inequality stability constraint 

 Ω∈Nx  (12) 

and the quadratic terminal penalty term 

 N
T
NN PxxxL =)(  (13) 

have been added to the standard NMPC Problem 1. The authors started from 
an infinite horizon cost function described by 
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where ∞
ku  is an infinite length control sequence. Splitting (14) in two parts, 

Problem 1 can be recast as: 
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 The basic idea is that the final cost L is not a performance specification 
that can be chosen freely, but rather that the P matrix must be pre-computed 
such that the penalty term (13) is a good approximation of the second term in 
(15) (the infinite stage cost). Unfortunately, this is not usually feasible for 
general nonlinear systems, without introducing further restrictions. In 
particular, if the case is that the trajectories of the closed-loop system remain 
within some neighborhood of the origin (Ω) from the time instant k + N 
towards infinity, then, an upper bound on the second term of (15) exists. The 
terminal region Ω is built such that a local state feedback law similar to the 
one employed in dual-mode NMPC asymptotically stabilizes the nonlinear 
system in Ω. Moreover, it is shown in (Chen and Allgöwer, 1998) that if the 
terminal region Ω and the terminal penalty matrix P is chosen according to 
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Procedure 1 of (Chen and Allgöwer, 1998), then 

 ∑
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holds and the following equality is obtained 
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with J being the cost function as in the standard NMPC Problem 1. This 
implies that the optimal value of the finite horizon optimization problem 
bounds the value of the corresponding infinite horizon optimization problem, 
and thus asymptotic stability of the closed-loop system can be achieved, 
irrespectively of the control performance specifications. 
 Although the idea of using a local state feedback and a terminal 
inequality constraint are inspired by dual-mode NMPC, the main advantage 
of quasi-infinite NMPC comes from the fact that the control law is 
calculated solving the same NMPC problem, not depending on the state 
being inside or outside the terminal region, so no switching is involved in 
this case.  

3. MPC for hybrid systems 
 A general model of hybrid systems leads to an extremely high complexity 
approach for the synthesis, analysis and computation of the controller. So it 
is necessary to focus on particular subclasses of hybrid systems that allow 
efficient computational methods for MPC and capture a wide range of 
industrially relevant processes. In the following, we present two subclasses 
to which MPC has already been applied successfully. 

3.1. MPC of mixed logical dynamical systems 
 Mixed logical dynamical (MLD) systems are a subclass of hybrid 
systems described by interacting physical laws, logical rules and operating 
constraints. For this class of systems there are both continuous and binary 
inputs, states, outputs and auxiliary variables. MLD systems include a wide 
set of models, among which linear hybrid systems, finite state machines, 
some classes of discrete event systems, systems with discrete or qualitative 
inputs, constrained linear systems, bilinear systems, piecewise linear output 
functions, nonlinear dynamic systems where the nonlinearity can be 
expressed through combinational logic. The main motivation for the MLD 
framework is that in many applications the system to be controlled should be 
described by means of differential equations as well as by means of logic 
(i.e. due to on/off switches, gears or valves). In the MLD setting the logic is 
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converted into integer variable linear inequalities to make the model 
mathematically tractable. This leads to a description of MLD systems with 
linear dynamic equations subject to linear mixed-integer inequalities (i.e. 
inequalities involving continuous and logical variables). 
 The MLD systems are described by equations of the form (Bemporad and 
Morari, 1999): 
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where TT
b

T
rk kxkxx )](  )([=  is the state vector with rn

r kx ℜ∈)( denoting the 

continuous part of the state and with bn
b kx }1,0{)( ∈  denoting the logical 

(discrete) part of the state, and k is sampling time instant. The output ky and 
the input ku have a similar structure as the state vector, and rr

kz ℜ∈ , 
br

k }1,0{∈δ are auxiliary variables. MPC proved to be a successful tool for 
stabilizing MLD systems to a desired reference point, or for solving the 
(reference trajectory) tracking problem. The first MPC algorithm formulated 
for MLD systems (Bemporad and Morari, 1999) performs, at each sampling 
time instant k, the following operations: 
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subject to: 
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 Apply to plant (18) only the first element of the optimal control sequence 
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|kku , accordingly to the receding 
horizon control strategy. 
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 In the above equations, the standard MPC notation has been used, where 
N is the prediction horizon and kikx |+  represents the value of the state vector 
after i - steps ahead in the future, calculated at the sampling time instant k 
using the MLD model (18), the measured state kx  and the corresponding 
inputs from the control sequence kv . Also, in equation (19), the quintuple 

),,,,( eeeee yzux δ  is an equilibrium quintuple for the MLD system (18) and 

Q
.  denotes the Euclidean norm weighted by matrix Q. Note that the 

optimization of the cost function (19) must be fulfilled subject to the feasibility 
constraints (20.1) (which ensure that feasibility at one sampling instant implies 
feasibility at the next time instant), the constraints (20.2), imposed by the 
nature of the MLD system, and the terminal state equality constraint (20.3) 
that guarantees stability. Provided that the matrices used in the objective 
function (19) are positive definite and that the constrained minimization 
problem is initially feasible, it has been proven in (Bemporad and Morari, 
1999) that the MPC control law (19)-(20) stabilizes the closed loop system 
(18)-(19)-(20). The potentialities of the method and its impact in process 
control have been demonstrated through simulation case studies on a 
Kawasaki Steel gas supply system in (Bemporad and Morari, 1999). 
 However, this MPC approach has a drawback, which consists of a 
mixed integer quadratic programming problem (MIQP), NP hard, which 
must be solved on-line at each sampling time instant subject to constraints. 
Although there are several algorithms for solving the MIQP problem, such 
as cutting plane methods, decomposition methods, logic-based methods 
and branch and bound methods, a high computational effort is required, 
which restricts this control scheme to slow processes. Also, condition 
(20.3) will not be satisfied for any N so if the prediction horizon is chosen 
too small, a solution to the constrained optimization problem may no 
longer exist, hence feasibility is lost. These problems were addressed in 
(Bemporad et al., 2000), where infinity norms have been used in (19) 
instead of 2-norms and an explicit solution has been obtained for the MPC 
problem for MLD systems. This can be achieved by reformulating the 
original MPC problem as a multiparametric mixed integer linear program 
(mp-MILP) and obtaining the explicit piecewise linear control law off-line. 
The equality constraint (20.3) has been removed, and a terminal cost has 
been added to the cost function (19), such that stability is guaranteed 
irrespective of the length of the prediction horizon. Thus, the 
computational effort is reduced and feasibility is increased. 
 However, due to the fact that the explicit piecewise linear control law 
calculated off-line consists in a set of state feedbacks, which are used in 
certain regions of the state space, a finite number of linear inequalities has to 
checked at each sampling time to determine in which region the current state 
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resides. Hence, the explicit solution still requires some on-line computations, 
which increase in complexity with the length of the prediction horizon (the 
number of control regions increases). 

3.2. MPC of Piecewise Affine (PWA) systems 
 Another relevant class of hybrid systems is the class of PWA systems, 
described by equations of the form (Sontag 1981): 
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the discrete-time instant and }|{ Sjj ∈Ω  is a finite set of polytopes (i.e. 
compact and convex polyhedrons) with mutually disjoint interiors. The 
PWA systems are particularly important due to the fact that equivalences 
exist between piecewise affine systems and several other relevant classes of 
hybrid systems (Heemels et al., 2001). 
 Recently an optimal control solution and an optimal control and receding 
horizon control solution have been presented in (Kerrigan and Mayne, 2002) 
for constrained PWA systems with bounded disturbances. The optimal 
control is determined in this case by comparing the solutions of a finite 
number of multiparametric linear programming problems, instead of solving 
on-line a multiparametric mixed integer linear programming problem. 
Although this approach might not be realizable for large or complex 
systems (due to the computations required for calculating the robust 
controllable sets), the controllable sets theory can be used for studying the 
feasibility of the MPC problem for MLD systems (i.e. a lower bound N~ on 
the prediction horizon can be estimated such that feasibility is guaranteed 
for any N N≥ ). Another MPC algorithm for piecewise affine systems, that 
uses reverse transformation, has been presented in (Mayne and Rakovic, 
2002). 
 An approach for reducing the on-line computational load encountered in 
MPC algorithms for piecewise affine systems has been presented in (Lazar 
and Heemels, 2003). This method is based on an algorithm that solves off-
line the controllability problem with respect to an invariant target set. The 
algorithm calculates a minimum of discrete events controllable path to the 
target set and organizes the resulting state space regions (sets) in a tree-like 
structure. For an initial state (or a measured state), a controllable path to 
the target set with a minimal number discrete events is easily obtained and 
a resulting ordered sequence of state space regions is pre-computed; each 
region corresponds to a single sub-model, part of the piecewise affine 
system. Then, it has been shown that under suitable assumptions the 
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minimal discrete events controllable path can be used to develop a semi-
explicit (sub-optimal) computationally more friendly MPC algorithm for 
piecewise affine systems. 

4. Conclusions 

 The research on model predictive control has now reached a relatively 
mature stage. This rapidly evolving control methodology has proved to be a 
successful solution for the control of industrial applications where hard 
constraints are presents. The research in the academic world has been focused 
on the stability and the robustness of model predictive control. These problems 
have already been thoroughly investigated for linear and nonlinear systems, 
leading to a (all most) complete framework. Recently, model predictive 
control has also been extended to some relevant classes of hybrid systems and 
hybrid MPC tends to become as trendy as nonlinear MPC.  
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Abstract We present an analysis of possible blocking phenomena, deadlock, in Discrete 
Event Systems (DES) having corrective and/or Preventive Maintenance 
Schedules (PMS). Although deadlock avoidance analysis for several classes of 
DES systems has been widely published, and although different approaches for 
PMS exist, it is not obvious how to mix deadlock avoidance and maintenance 
theories to improve throughput. In this paper we show that for some DES 
structures having reentrant flow lines, it is not necessary to stop activities in the 
DES, for the case one or more machines in production lines are in PMS. 
However, PMS may cause deadlock to occur if activities continue in some 
machines. We propose deadlock-free dispatching rules derived by performing 
circular wait analysis for possible deadlock situations in systems with PMS. 
This is accomplished by integrating the PMS structure and failure dynamics into 
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a separate DES system that acts as a disturbance in the primary Reentrant Flow-
line DES system. We propose a matrix formulation and a Finite State Machine 
to synchronize both subsystems. 

Keywords: deadlock avoidance, Petri nets, discrete event systems, reentrant flow 
lines, maintenance 

1. Introduction 
 In this paper we address the problem of avoiding possible deadlock 
situations on Flexible Manufacturing Systems or Discrete Event Systems 
(DES) having shared resources in Reentrant Flow-lines [Kumar 93], with 
scheduled maintenance jobs. It is no doubt Preventive Maintenance (PM) is 
a vital activity for improving machines availability in DES. This improving 
of availability is due to the decreased number of corrective maintenance jobs 
in machines, which lead to a much more costly production times. PM 
methods, like the Reliability-Centered Maintenance method has been used 
for years, and is still a recommended approach [Smith 1992]. Recent studies 
have proven advantages of using PM techniques. For example, [Hicks 1990] 
has shown improvements in cost-reduction in different Army sites in the 
state of Texas. In Hicks’ work, recommendations are given to keep 
improving PM schedules. One important recommendation is the search for 
automated expert systems for optimal use of machines in systems with PM 
schedules. In this paper, we present one expert system with PM schedules 
based on matrices that avoid blocking phenomena in reentrant flow-lines. If 
DES contains Multipart Reentrant flow-lines (MRF), i.e. shared resources 
perform more than one job for same product, in a system producing several 
products, and if it is possible not to stop processes, even if one or more 
machines are in PM, then blocking phenomena can occur if jobs are not 
correctly sequenced in the remaining non-in-maintenance resources. This 
blocking phenomenon is known as system deadlock [Banaszak et al. 90, 
Hsieh et al. 94, Ezpeleta et al. 95, Fanti et al. 97, Lewis et al. 98]. Therefore, 
it is very important that the Discrete Event (DE) controller, after knowing 
which resources are in PM or corrective maintenance, properly sequences 
jobs and assigns available resources. 
 In this paper we restrict our analysis to systems lacking key resources 
[Gurel et al. 00]. These key resources are critical structured resources that 
might lead to possible Second Level Deadlock (SLD) [Fanti et al. 00]. 
Systems lacking SLD are called regular. In [Mireles et al. 02], we provide a 
matrix tests for system regularity. Based on the decision-making matrix 
formulation introduced in [Lewis 92-93], this paper presents the 
development of a deadlock-free augmented discrete event controller for 
regular MRF systems with failures and PMS. This augmented controller 
contains a framework capable of handling failures and maintenance-
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capabilities in the DES structure. We describe the DE controller (DEC) 
formulation, and show how to analyze and compute in matrix notation the 
structures needed for deadlock-free dispatching algorithms. Based on these 
matrix constructions, we integrate PM systems’ information for deadlock-
free dispatching rules in our augmented DEC matrix formulation by limiting 
the work-in-progress (WIP) in some critical subsystems, which we define 
later. This is accomplished by integrating a Finite State Automata system 
composed of the primary Reentrant Flow-line DES system, and the 
disturbance-acting PMS structure containing failure dynamics. 

2. Matrix-based discrete event controller 
 A novel Discrete Event Controller (DEC) for manufacturing workcells 
was described in [Lewis et al. 93, Mireles et al. 01a-b]. This DEC is based 
on matrices, and it was shown to have important advantages in design, 
flexibility and computer simulation. The definition of the variables of the 
Discrete Event Controller is as follows. Let v be the set of tasks or jobs used 
in the system, r the set of resources that implement/perform the tasks, u the 
set of inputs or parts entering the DES. The DEC Model State Equation is 
described as 

 Cucurv uFuFrFvFx ⊗⊕⊗⊕⊗⊕⊗=  , (1) 

where: x is the task or state logical vector, vF is the job sequencing matrix, 

rF is the resource requirements matrix, uF is the input matrix, ucF is the 
conflict resolution matrix, and   uc is a conflict resolution vector. 
 This DEC equation is performed in the AND/OR algebra. That is, 
multiplication ⊗  represents logical “AND,” addition ⊕  represents logical 
“OR,” and the over-bar means logical negation. From the model state 
equation, the following four interpretations are obtained. The job sequencing 
matrix Fv reflects the states to be launched based on the current finished 
jobs. It is the matrix used by [Steward 81] and others and can be written 
down from the manufacturing Bill of Materials. The resource requirement 
matrix Fr represents the set of resources needed to fire possible job states 
this is the matrix used by [Kusiak et al. 92]. The input matrix Fu determines 
initial states fired from the input parts. The conflict resolution matrix Fuc 
prioritizes states launched from the external dispatching input Cu , which has 
to be derived via some decision making algorithm [Graves 81]. The 
importance of this equation is that it incorporates matrices Fv and Fr, 
previously used in heuristic manufacturing systems analysis, into a rigorous 
mathematical framework for DE system computation. 
 For a complete DEC formulation, one must introduce additional matrices, 
Sr and Sv, as described next. The state logic obtained from the state equation 
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is used to calculate the jobs to be fired (or task commands), to release 
resources, and to inform about the final products produced by the system. 
These three important features are obtained by using the three equations: 

Start Equation (task commands) xSv VS ⊗=  (2) 

Resource Release Equation xSr rS ⊗=  (3) 

Product Output Equation xSy y ⊗=  . (4) 

3. Matrix analysis of MRF systems 
 In these sections we present a technique for deadlock-free dispatching for 
MRF systems with maintenance schedules, and show how to implement 
some notions from other papers using matrices. First, we integrate PM 
systems in MRF structures using our matrix approach, and then, we 
determine the deadlock constructions needed for free dispatching. This 
yields computationally efficient algorithms for analyzing the structure of 
MRF and deadlock-free dispatching.  
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Figure 1. Multipart Reentrant Flow Line Problem 

 Consider the following definition of Multiple Reentrant Flow-lines, 
which define the sort of discrete-part manufacturing systems that can be 
described by a Petri net. The characteristics of MRF systems are: 

• No preemption. A resource cannot be removed from a job until this 
job is completed. 

• Mutual exclusion. A single resource can be used for only one job at a time. 
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• Hold while waiting. A process holds the resources already allocated to 
it until it has all resources required to perform a job. 

• For the DE systems we consider in our analysis, the following are 
their particularities: 

• Each job uses only one resource. 
• After each resource executes one job, it is released immediately for its 

availability. 
• In this paper we also consider handling scheduled preventive 

maintenance, as well as machine failures. 
 An example of a class of MRF system is given next. Consider the 
Multipart Reentrant Flow-line problem shown in Figure 1. This system uses 
two types of machining resources and three types of robotic resources, 
machine types A and B, and robots type 1, 2 and 3. Any of the (two) robotic 
resources type 1 moves incoming parts P1 and P2 to conveyors C1 and C2 
respectively. Any of the (two) robotic resources type 2 can accomplish two 
jobs, jobs R2a and R2b. Job type R2a moves part type P2 from conveyor C2 
to buffer of (any of the two) machines type B. Job type R2b moves machined 
part type P2 from (any of the two) machines type B to conveyor C3. Any of 
the (two) robotic resources type 3 can accomplish three jobs, jobs R3a, R3b, 
and R3c. Job type R3a moves part type P1 from conveyor C1 to buffer of 
(any of the two) machines type A. Job type R3b moves machined part type 
P1 from (any of the two) machines type A to parts out P1. Job type R3c 
moves machined part type P2 from conveyor C3 to parts out P2. 
 In this example, for simplicity, we are assuming buffer sizes on 
conveyors and machines equal to one. This assumption will help us 
emphasize possible deadlock situations when resources are been in failure or 
scheduled for maintenance. Also, if we consider larger buffers, we will reach 
a practical point where the buffer might be full and so our same deadlock 
situation will appear.  

3.1. Failure/Maintenance DES structure 
 In this section we present an extension of the matrix framework presented 
in section 2 to incorporate DES systems with Failure and/or PMS. When 
human operators proceed to fix failures in machines/resources or proceed to 
perform a preventive maintenance, their jobs can be seen as specific jobs 
holding such machines/resources. The problem is that holding such resources 
being in Failure or PMS can lead to system deadlock. Therefore, in order to 
be able to control a DES with failures and/or maintenance schedules, one has 
to consider that each of such machine/robotic resources is in one of three 
possible states: In-Service state, Failure state, or in PM state. Then, for each 
resource in a PN representation, has to illustrate the Failure and PM states, as 
in the PN addition system in figure 2. We call this PN system the Failure-
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Maintenance (FM) system. In this figure, the places and transitions 
highlighted as “In-Service Status” belong to the FMR system, where tx and ty 
represent transitions •Jobij and Jobij•, for the j number of jobs from resource 
Ri. Notice that transition tfij fires when a failure occurs in resource Ri (for 
i=1,2…n=number of resources) while performing operation Jobij, after 
finishing this repair job, tfrij should be fired (in the PN from figure 2, this can 
be easily ensured by adding a virtual place between each tfij and tfrij transition 
pairs). Transition tmi will fire when a preventive maintenance Mpi for resource 
Ri is requested. When a transition tfij fires, a failure repair job, Frepi, is 
requested for execution. Maintenance times for jobs type Mpi are 
deterministic times. However, repair time jobs, type Frepi, are stochastic and 
not deterministic, and usually Frepi job times are larger than Mpi job times. 
Note that in order to improve throughout, transitions tfij are preferred over all 
others. However, transition tmi is not always an ‘urgent’ transition to fire due 
to a scheduled PM, by presence of a new token in place Manti. This is, the 
supervisor can decide whether it is more important to finish pending jobs, or 
proceed to maintenance of corresponding resource Ri. 
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Figure 2. Corrective, In-Service and Preventive status of FM 

 The definition of the Failure-Maintenance system structure follows. Since 
the structure discussed in section 2 is now augmented by the addition of 
corrective and PMS, the FM structures, we need to re-define the formulation 
from section 2. For this, we need to include jobs type Frepi and Mprevi (the 
repair and the maintenance jobs, respectively), and the control transitions 
that activate these jobs for every type of resources Ri. We include these sets 
in our now augmented matrix form. We integrate these FM structures by 
incorporating in matrices F and S the transitions and places shown in figure 
3. This figure shows black and gray dots, representing ones and zeros in the 
rows & columns shown. To properly maintain FM structures, we supervise 
the maintenance-integrated system, and keep track of job markings that 
belong to this system. That is, the number of tokens in the FM addition 
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system for each resource plus the number of tokens in the job set of same 
resource is always constant and equal to the initial marking in that resource 
(assuming no maintenance is in schedule at the time the initial marking is 
calculated.) 
 Resource places are he only places shared between PM structures and the 
original PN (with no PMs). Notice also that for any of these two options, the 
‘travel’ of tokens between one system to the other is through resource places 
R. Unless, of course, if a failure happens at the moment a machine is 
performing a job, a token passes from that job to failure status job place Frepi 
(by firing corresponding tfij). For this case, we consider the part was not 
finished, and stays in standby as a damaged part or for to be re-machined. 
Then, when failure happens, tfij is fired with high priority and start 
maintenance failure job type Frepi. 

 

Figure 3. Fu, Fv, Fr, Sv
T,, Sr

T matrices for resource R1 

 This separation of systems MRF and FM is practical for the following 
reasons: 

1) Since FM system does not have resource loops and does not generate 
extra resource loops if exist any in the general existing system, this 
facilitates deadlock analysis on the MRF system without worrying 
about dynamics on FM systems. 

2) It is possible to maintain and control an independent FM subsystem 
with its appropriate PMS, and the existing general system by properly 
handling the marking vectors from both systems. It is clear that at any 
given time, the total number of tokens in a job set from a specific 
resource set, plus the available set of resources from that set is 
maintained equal to the initial marking of that resource set. This total 
number of tokens is diminished by one, for every job been in 
maintenance, i.e. been in its corresponding FM system’s job set. Then, 
by maintaining for each resource this number of tokens equal always 
to the sum of tokens from both systems, it is possible to maintain 
control of the MRF and FM systems. 

 Figure 2 shows the FM Petri net system structure that has to be added for 
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each resource in the FMR system to supervise preventive and corrective 
jobs. Figure 3 shows the matrix representation section representing only the 
FM system of resource R1. For the class of MRF systems we are considering 
including FM, deadlock can occur only if there is a circular wait relation 
among resources [Deitel 84, Gurel et.al 00]. Circular wait relations are 
ubiquitous in reentrant flow-lines and in themselves do not present a 
problem. However, if a circular wait relation develops into circular blocking, 
then one has deadlock. But, as long as dispatching is carefully performed, 
the existence of circular wait relations presents no problem for regular 
systems [Gurel et.al 00]. In this paper we restrict our analysis to regular 
systems. This systems lack key resources. These key resources are critical 
structured resources that might lead to possible Second Level Deadlock 
(SLD) [Fanti et al. 00] situations in MRF systems. In [Mireles et al. 02a-b], 
we provide a matrix tests for system regularity. 

3.2. Circular waits: simple circular waits and their unions 
 In this section we present a matrix procedure to identify all circular waits 
(CW) in MRF systems. CWs are special wait relationships among resources 
described as follows. Given a set of resources R, for any two resources ri, rj 
⊂R, ri is said to wait for rj, denoted ri→rj, if the availability of ri is an 
immediate requirement to release rj, or equivalently, if there exists at least 
one transition x∈•ri∩ri•. Circular waits among resources are a set of 
resources ra, rb,…rw, which wait relationships among them are ra→ 
rb→…→rw, and rw→ ra. The simple Circular Waits (sCW), are primitive 
CWs which do not contain other CWs. If sCW are present in the PN system 
structure, these are identified by constructing a digraph of resources. 
[Hyenbo 95] demonstrated a technique to identify such sCW. We used his 
approach to construct digraphs in matrix form. The entire sets of CWs are 
the sCW plus the circular waits composed of unions of non-disjoint sCW 
(unions through shared resources among sCW.) 
 In [Mireles et al. 01], we obtained two matrices, Cout and G, using 
digraph theory and string algebra. Cout provides the set of resources which 
compose every CW (in rows), that is, an entry of ‘one’ on every (i,j) position 
means that resource j is included in the ith CW. G provides the set of 
composed CWs (rows) from unions of sCW (columns), that is, an entry of 
‘one’ on every (i,j) position means that jth sCW is included in the ith 
composed CW. 

3.3. Deadlock analysis: identifying critical siphons and 
critical subsystems 

 Three important sets associated with the CWs C are the siphon-job sets 
Js(C), the critical siphons, Sc(C), and critical subsystems, Jo(C). The critical 
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siphon of a CW is the smallest siphon containing the CW. Note that if the 
critical siphon ever becomes empty, the CW can never again receive any 
tokens. This is, the CW has become a circular blocking. The siphon-job set, 
Js(C), is the set of jobs which, when added to the set of resources contained 
in CW C, yields the critical siphon. The critical siphons of that CW C are the 
conjunction of sets Js(C) and C. The critical subsystems of the CW C, are the 
job sets J(C) from that C not contained in the siphon-job set Js(C) of C. That 
is Jo(C) = J(C)\ Js(C). The job sets of CW C are defined by J(C) = ∪r∈C J(r), 
for J(r) = r••∩J, where J is the set of all jobs. 
 In order to implement efficient real-time control of the DES, we need to 
compute these sets in matrix form. We need intermediate 
quantities •• CC and , input and output transitions from C, and which in 
matrix form for each CW are denoted dC and Cd respectively, computed as, 

 dC = Cout Sr, and  (5) 

 Cd = Cout Fr
T .  (6) 

 In terms of these constructions, matrix form sets are described next, 
indicating ‘one’ on every entry (i,j) for places that belong to that set existing 
in every ith CW. The job sets described earlier for each CW C, J(C), in 
matrix form (for all CWs arranged in rows) are described by 

 JC = dC Fv = Cd 
T

vS . (7) 

 The siphon-job sets are defined for each ith CW Ci as Js(Ci):= 
J(Ci)∩( •• CC \ ). In matrix notation, we can obtain them for all CWs by 

 Js = JC ∧ )( d vFC . (8) 

 The critical subsystems, Jo(Ci) = J(Ci)\ Js(Ci), in matrix form for all CWs 
Ci are obtained by 

 Jo = JC ∧ )( d FvC . (9) 

4. Deadlock avoidance 
 In terms of the constructions just given, we now present a minimally 
restrictive resource dispatching policy that guaranties absence of deadlock 
for multi-part reentrant flow lines. To efficiently implement in real time a 
DE controller with this dispatching policy we use matrices for all 
computations. We consider the case where the system is regular, that is, it 
cannot contain the Critical Resources (CR) (so-called structured bottleneck 
resources or ‘key resources’ [Gurel et al. 00] existing in Second Level 
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Deadlock (SLD) structures [Fanti et al. 97, 00].)  For this case, we described 
in [Mireles et al. 02], a mathematical test to verify that MRF systems are 
regular. If that is not the case, we can still use this matrix formulation, but 
with a different dispatching policy designed for systems containing second 
level deadlock structures. We will present such dispatching policy for FMRF 
systems having CR in a forthcoming work. 

4.1. Dispatching policy 
 In this section we consider dispatching for regular systems. In [Lewis et 
al. 98] was given a minimally restrictive dispatching policy for regular 
systems that avoids deadlock for the class of MRF systems considered in this 
paper, but without the failures or PMS. To understand this policy, note that, 
for this class of systems, a deadlock is equivalent to a circular blocking 
(CB). There is a CB if and only if there is an empty circular wait (CW). 
However, CB is possible (for regular systems) if and only if (iff) the 
corresponding critical siphon from any CW is empty. This is, there is a 
deadlock iff all tokens of the CW are in the Critical Subsystem. 
 Therefore, the key to deadlock avoidance is to ensure that the WIP in the 
Critical Subsystems is limited to one less job than the total number of initial 
tokens in the CW (i.e. the total number of resources available in the CW). 
Preliminary off-line computations using matrices are used to compute the 
Critical Systems. A supervisor is assigned to each Critical Subsystem (CS) 
who is responsible for dynamic dispatching by counting the jobs in that  
CS and ensuring that they do not violate the following condition, for each 
CW Ci, 

 m(Jo(Ci)) < mo(Ci). (10) 

 That is, the number of enabled places contained in the CS for each Ci 
must not reach the total number of resources contained in that Ci. In (10), 
mo(Ci), is the initial marking of Ci,. However, having failures and PM jobs, 
the total number of available resources will be diminished. So that mo(Ci) 
does not represent anymore the actual available resources contained for that 
Ci. To be able to keep track of such available resources, we need to define 
the total number of job places from systems FM corresponding to resources 
contained in a CW Ci, by JMF(Ci). Then, if we diminish mo(Ci) by jobs 
currently in failure and/or PM in JMF(Ci), our CB supervision test (10), we 
will be able to ensure actual available resources which will ensure deadlock-
free dispatching. This is, our new CB supervision test is 

 m(Jo(Ci)) < {mo(Ci) - JMF(Ci)}. (11) 

 A graphical example of using (11) is pictured in Figure 4. This system 
has two circular waits, C1={M1, R3}, and C2={M2, R2}. This system 
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contains five FM systems split as separate subsystems. Notice that initial 
mo(Ci)=4 for i=1,2. 
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Figure 4. Complete Petri Net and FM5 system structures 

 The current status shown in Figure 4, is that CW C1 has two jobs pending 
in m(Jo(C1))=2, jobs R3a and m1. Then, since JMF(C1)=0 (no jobs in places 
Fm1, Mmp1, Fr3, and Mp3), and mo(C1)=4, we are able to fire transition t3 to 
have a total of three tokens allowed by (11). However, since a new attempt 
to start a PM job at place Mpm1 is in place, and if we fire transition tmm1, 
JMF(C1) will become one, then we should not fire t3 since C1 would be in 
deadlock, due to (11). For CW C2, the allowable number of resources should 
be <{mo(C2) - JMF(C2)}. This is, should be smaller that 3. Then, we can not 
fire transition t9, since C2 will get into CB until failure maintenance Frep2 is 
finished. Therefore, it is better not to get into blocking and wait till one of 
the jobs m2 is finished to diminish m(Jo(C2)) by firing t11. 
 The appropriate way to keep the markings of resources equal in both 
systems is to use Finite State Automata techniques to supervise both 
subsystems alternatively. This is, run one (several) discrete event(s) in 
any one of these subsystems, then holds its markings and passes the new 
marking of resources R, m(R), before one run event(s) in the other 
subsystem. This Finite Element Machine interaction between subsystems is 
shown in Figure 5. 
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 For implementation of the DEC, in every DE iteration, we can use any 
desired dispatching policy. For example, FBFS, which maximizes WIP and 
machine percent utilization. However, it is known that FBFS often results in 
deadlock. Therefore, we combine FBFS with our new deadlock avoidance 
test (11). Thus, before we dispatch the FBFS resolution, we must examine 
the marking outcome with our deadlock policy. If this resulting outcome 
does not satisfy (11), then the algorithm denies or pre-filters in real time 
the firing and we apply again the FBFS conflict resolution strategy for the 
next possible allowable firing sequence. Then, using FBFS while 
permitted, we will try to satisfy in most of the current status of the cell the 
case m(Jo(Ci)) = {mo(Ci) - JMF(Ci)}-1. The later condition is an extended 
policy from that called MAXWIP policy, defined in [Huang et al. 96]. 
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Figure 5. Finite State Automata interactions between the FM subsystem and 
 DES controller structure 

5. Conclusions 
 We show an analysis of blocking phenomena in Discrete Event Systems 
(DES) having corrective and/or Preventive Maintenance Schedules (PMS). 
We show that for some DES structures having reentrant flow-lines, it is not 
necessary to stop all activities in the DES, for the case one or more 
machines are in corrective and/or PMS. We proposed deadlock-free 
dispatching rules derived by performing circular wait analysis for possible 
deadlock situations. We analyzed the so-called critical siphons, certain 
critical subsystems and resources to develop a DE controller that 
guarantees deadlock-free dispatching with PMS by limiting the work-in-
progress in the critical subsystems associated with each CW. This is 
accomplished by integrating a Finite State Automata supervision between 
two subsystems. One system is the Reentrant Flow-line system structure 
controlled by the DES matrix formulation, and an extra DES system 
contains the failure and preventive maintenance dynamics, called FM 
system structure. Deadlock-free dispatching is possible by passing the 
markings of available resources between these two subsystems. The extra 
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FM DES system acts as a disturbance in the primary Reentrant Flow-line 
DES system. 
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Abstract A CIM planning and control architecture is presented, mainly regarding its 
software aspects. The system was developed and tested on a flexible 
manufacturing cell endowed with industrial equipment. Artificial intelligence 
methods and tools were used, namely expert systems, multiagent systems and 
rule based programming. The approach that combines centralized planning and 
monitoring with de-centralized and distributed decision making and control sub-
systems aims at a high flexibility and autonomy.  

Keywords: computer-integrated manufacturing, artificial intelligence, agents, expert 
systems, planning 

1. Introduction  
 The use of new Artificial Intelligence (AI) techniques for planning and 
controlling in Robotics and CIM (Computer-Integrated Manufacturing) 
systems is a topical approach (Murphy, 2000; Parunak, 1999). One problem 
in applying the new methods is the difficulty of testing them on industrial 
systems. With respect to this, the presented research has the advantage of 
being based on a benchmark system that is used for both research and 
education. As depicted in Fig. 1, this system is exploiting a Flexible 
Manufacturing Cell (FMC), mainly endowed with real industrial equipment. 
In order to test a new planning and control architecture it was considered that 
the respective cell is part of a CIM system, so that various FMCs may 
exchange resources among them and the planning and control approach must 
be able to handle this. The goal for the whole system is to assemble the 
desired type and number of products, in the shortest time. A classical 
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planning and control solution was carried out first (Pănescu, 2001); now a 
new one is under development, so that an optimal operation, greater 
autonomy and flexibility should be obtained. 

 
Figure 1. The layout of the FMC; 1 – robot controllers; 2 – storage devices for raw parts;   
3 – IRB 1400 robot; 4 – PC Mill 55 machine tool; 5 – FlexLink conveyor;  6 – OptiMaster 
vision control station; 7 – IRB 2400 robot; 8 – assembly table;  9 – storage device for 
processed parts; 10 – storage device for final products 

 Though in the considered manufacturing system there is a certain 
sequence of main operations, namely part processing, quality control and 
assembly, certain issues make the planning and control processes difficult. 
These are as follows: 

• The main operations are accompanied by auxiliary operations, which 
must be properly planned to assure no interruption for the system; 
these refer to part transfer, feeding/unfeeding of the machine tools and 
storage devices. 

• The time parameters of the FMCs are variable. 
• There are certain resources that act as bottlenecks. For example, in the 

FMC where the experiments were conducted these are the two robots, 
the conveyor and the storage devices. Concerning them, a wrong 
planning may cause deadlocks.  

• To increase the CIM system autonomy and flexibility, the production 
goals were considered to appear randomly, and the planning system 
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should be able to deal with them. It means that the planning process is 
to be interleaved with execution phases and re-planning when needed. 

 To handle all these situations a new architecture was developed, making 
use of expert systems and agents techniques, as it is shown in the next 
paragraphs.  

2. The architecture of the planning and control system 
 The control of the CIM system is achieved in a hierarchical manner. The 
decision part is placed on the higher level sending main commands towards 
the classical control sub-systems (robots and machine tools controllers, etc). 
This level is composed of a multi-expert system in conjunction with some 
multiagent systems, as shown in Fig. 2. An expert system deals with CIM 
planning and another one is in charge with production monitoring. The first 
expert system is continually receiving the goals and is also considering the 
tasks already fulfilled by the CIM system, based on the results from the 
monitoring expert system. Thus an adaptable operation is possible; as soon 
as some outputs (e.g. processed parts) are available from any FMC, they will 
be considered in the planning process. Such an operation is supported by the 
chosen implementation that is a rule based one; the monitoring expert system 
sends facts towards the planning one, and these activate in an opportunistic 
manner rules that plan new activities based on newly available resources 
(e.g. certain products’ assembly using the recently processed parts). 
 

Planning Expert Systems Monitoring Expert Systems 

ResourcesGoals 

FMC1 

Multiagent system 

IRB 
2400 

IRB 
1400

FMCn 

Multiagent system 

Operational 
elements

M1 M2 Mi Mj

 
Figure 2. Planning and control architecture 

 It is to note that the planning and control architecture possesses both 
centralized and decentralized features. The two expert systems provide a 
centralized management of the main CIM systems goals – assembling of the 
products. Otherwise a distributed architecture is achieved through the use of 
several FMCs with specific planning and control systems. As already 
mentioned, for each FMC the control architecture is a hierarchical one. On 
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the top level there is a software multiagent system that gets the action 
decisions. These are transmitted to the control systems of the real equipment, 
namely to the operational elements. For example, in the FMC1, the one used 
for experiments (see Fig. 1), the two robots receive the action decisions. In 
this way, in an indirect manner, the robots have been transformed in the two 
agents of a multiagent system. This solution was adopted as the robot 
controllers can run only programs in their specific programming 
environment (the RAPID language). Thus, the CLIPS programs (Giarratano 
and Riley, 1989) that implement two software agents, representing action 
planning for each robot, are running on two distinct computers, being 
connected (by an Ethernet link) with the robot controllers. 

3. On flexible manufacturing planning based on multiagent 
systems 

 In the considered FMC and generally in a manufacturing process, the 
robots may appear as actors establishing the main events. Many of the 
features required for such a role, like autonomous, flexible operation and 
continuous interaction with the environment, are naturally conducting 
towards the agent systems technique (Wooldridge, 2002). According to the 
architecture of Fig. 2, two software agents have been considered, named M1 
and M2, corresponding to and guiding the two robots of the FMC1. By the 
interaction with the planning expert system and between themselves, both 
agents are goal based ones (Russel and Norvig, 1995). As FMC1 is a cell that 
can provide both part processing and assembly, for M1 the main goals refer 
to assembling certain products, and for M2 these correspond to the auxiliary 
operations related to part processing on the machine tool. Besides these, 
secondary goals for M1 are the ones received from M2 (when this one needs 
its help) and also those arising from its own motivation (e.g. the conveyor 
discharge). For M2, when there is no main goal, it may also take into account 
secondary goals received from M1 or its own goals, which refer to liberating 
some resources. For example, if there is no primary goal from M1 (no goal to 
supply the machine tool), and some raw parts are on conveyor, M2 will 
decide to transfer a raw part from conveyor to the storage device; thus the 
conveyor that is a shared resource is freed.  
 A hierarchy exists between the two agents: M1 is ranked higher than M2; 
this means that M2 must accomplish the goals on part processing received 
from M1 first (these are its primary goals) and only then consider its own 
goals. Even so, the dependence between the two agents is not a unilateral 
one, but a reciprocal one (Wooldridge, 2002). Indeed M1 depends on M2 in 
satisfying certain production goals. This is the case when a certain part is 
needed for assembling and is not available from another production cell, 
conducting to the necessity of being produced on the machine tool of FMC1. 
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In such a case M2 has to consider the goal received from M1 and decide 
about a sequence of actions for machine tool feeding, starting of the 
processing, and finally transferring of the processed part, via conveyor, to 
the robot represented by the agent M1. Meanwhile M2 depends on M1, as in 
certain conditions it cannot fulfill some tasks only by itself. This is the case 
when the machine tool must be fed and there is no raw part in the storage 
device near the IRB 1400 robot. Then the agent M2 will ask the help of M1, 
which may pass a raw part from the storage device near it, by using the 
conveyor. 
 A main property for a multiagent system is its communication ability. In 
the designed scheme there are several communication channels. First, there 
is a transfer of information from the planning expert system to the 
multiagent systems dedicated to various FMCs, representing the goals these 
must achieve. Then, the agents of the same system can exchange messages 
between them. Semantically these refer to assertions, requests, acceptances 
and refusals (Wooldridge, 2002), while syntactically they are all under the 
form of the facts in a rule based system (the agents are implemented in 
CLIPS). Even for the information received from environment, namely from 
the robot controllers, there is a C interface, which converts it into facts that 
are included in the agents’ knowledge bases.  
 As an example on how planning and control of the FMC1 are managed, 
starting from the goal of assembling a certain product, M1 will make a 
request towards M2 when a certain part is needed for assembling and it is not 
already available from another FMC. When the message is received – the 
formalism is closed to that of KQML (Wooldridge, 2002) – in the 
knowledge base of M2 the following fact appears: 
  (goal   of   M1   part   type   D) 
 The above fact is under the CLIPS appearance and if it activates a chain 
of rules that find a plan for the respective goal fulfillment, then a message of 
acceptance will be sent to M1. When the agent M2 cannot manage by itself, 
but there is a plan of fulfilling the goal by cooperation, a conditional 
acceptance is sent back towards M1. This may be the case in the considered 
example when the raw part necessary for processing a part of type D is not 
available in the storage device near the IRB 1400 robot. After receiving the 
message, the following fact appears in the knowledge base of M1: 
  (goal   of   M2   raw_part   for   type   D) 
 This one activates a chain of rules, which search for an adequate raw part 
in the storage near the IRB 2400 robot and the possibility of transferring it to 
the IRB 1400 robot. In the peculiar case when the conveyor and the storages 
near the IRB 2400 robot are full, the agent M1 further asks the help of M2 
that will be requested to discharge a position from the conveyor.  
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 The above example illustrates how a multiagent cooperation strategy can 
conduct to solving, in an autonomous manner, manufacturing problems with 
multiple robotic actions. The mechanisms of agents’ goal based motivation 
and communication proved to be useful in some other cases, as follows.  

• When a storage device or the conveyor is full the robots will take the 
initiative (there is a self-motivation with respect to this) to discharge 
it, even if there is no production goal justifying this by that time. After 
such an action, the agent responsible for it will inform the other ones, 
by sending a message of assertion type. Such behavior was chosen 
when the Petri net of the FMC1 was studied and the necessity of 
deadlock avoidance was considered.  

• As already mentioned, there is a continuous exchange of information 
between the multiagent systems and the two expert systems from the 
top level. This allows the planning and control system to manage the 
whole CIM system operation, even if the duration of various 
operations is variable. For example, in the FMC1, when a part is 
processed on the machine tool and one of the same kind arrives from 
another FMC, the IRB 2400 robot will immediately use this in the 
assembling process, in order to minimize the time of product delivery. 
In such a case the agent M1 informs M2 about the event and so M2 will 
make a plan to store the processed part in its storage. If such a plan 
fails (e.g. its storage of processed parts is full), M2 will further ask for 
the cooperation of M1. In the same time, as the monitoring expert 
system is informed about such events by the multiagent systems of the 
corresponding FMCs, a feedback is sent towards the planning expert 
system and re-planning is started.  

• Besides messages of acceptance, illustrated in the previous cases, 
refusals are also possible. As an example, when M2 receives a goal to 
process a certain part on the machine tool and there is no 
corresponding raw part in its storage device it will ask the help of M1. 
In the case that the storage device near the IRB 2400 robot does not 
contain any corresponding raw part, the answer of M1 to the request of 
M2 will be a refusal. In this case, the monitoring expert system is 
informed about the failure of the processing operation, and again the 
planning expert system will have to re-plan the goal towards another 
cell. 

4. Conclusion 
 A few conclusions resulted from the research developed so far on AI 
based planning and control in CIM. As with other new techniques, there is a 
gap between research and industrial application of multiagent systems; the 
presented architecture is to be regarded as reducing this gap, because real 
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equipment and problems were used. Agents and expert systems, through the 
way they consider the environment, the communication and the opportunist 
management of events, are able to deal with ill-structured problems. This is 
the case for many CIM systems, since it can be difficult to possess, from the 
beginning, all necessary information for planning and control, but this may 
appear randomly, as it is the case of the market’s requests. Moreover, when 
the CIM system is a complex one, with several manufacturing cells, the 
combination of centralized/de-centralized planning and control provided by 
the proposed architecture, together with the modularity of the respective AI 
methods, conduct to a greater adaptability and autonomy, in comparison 
with the classical solutions. 
 Through a hierarchical structure, with the AI sub-systems on higher 
levels, robotic applications get new enhancements, as this contribution 
showed. Even using current industrial robots, which possess little 
intelligence, when connected with software agents these can become more 
flexible tools, and CIM systems that have such robots as central actors can 
be much easier deployed. 
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Abstract A MATLAB toolbox has been developed to handle the basic problems of 
discrete event dynamical systems that are modeled by Petri nets. In the Petri Net 
Toolbox five types of Petri nets (untimed, transition-timed, place-timed, 
stochastic and generalized stochastic), with finite or infinite capacity, can be 
used. A user-friendly graphical interface allows activating three simulation 
modes (accompanied or not by animation) and running specific functions that 
cover the key topics of analysis such as coverability tree, structural properties 
(including invariants), time-dependent performance indices, max-plus state-space 
representations. A design procedure is also available, based on parameterized 
models. By incorporating instruments to explore the dynamics of Petri net models, as 
well as animation facilities to support the intuitive understanding and to guide the 
users in the exploitation of the software, the Petri Net Toolbox proves to be a 
valuable aid for Control Engineering education. 

Keywords Control Engineering education, discrete event systems, Petri nets, MATLAB 
software 

1. Motivation and objectives 
 The Petri Net Toolbox (PN Toolbox) was designed, implemented and 
tested at the Department of Automatic Control and Industrial Informatics of 
the Technical University „Gh. Asachi” of Iaşi. It is software for simulation, 
analysis and design of discrete event systems (DES), based on Petri net (PN) 
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models, and embedded in the MATLAB environment. Our initiative brought 
remarkable benefits for training and research because Control Engineering 
students are familiar with the exploitation of Graphical User Interfaces 
(GUIs) (The MathWorks, 2001a) based on this popular software. The 
integration of the PN Toolbox with the MATLAB philosophy has the 
incontestable merit of broadening the MATLAB's utilization domain 
towards the area of discrete-event systems, which is now covered only by the 
State-Flow package. The orientation of the PN Toolbox was also meant to 
permit further development in the sense of hybrid systems, since MATLAB 
incorporates comprehensive libraries for studying continuous and 
discontinuous dynamics. 
 In the current version (namely 2.0) of the PN Toolbox, five types of 
classic PN models are accepted, namely: untimed, transition-timed, place-
timed, stochastic and generalized stochastic. The timed nets can be 
deterministic or stochastic, and the stochastic case allows using appropriate 
functions to generate random sequences corresponding to probability 
distributions with positive support. The default type of an arc is regular, but 
the user is allowed to change it into double or inhibitor, if necessary. Unlike 
other PN software, where places are meant as having finite capacity, our 
toolbox is able to operate with infinite-capacity places. In addition, the PN 
Toolbox allows the assignment of priorities and/or probabilities to 
conflicting transitions. As an educational aid, this software is suitable for 
applications illustrating the theoretical concepts provided by courses on PNs 
with different levels of difficulty, e.g. (Pastravanu, 1997), (Pastravanu et al. 
2002), (Matcovschi, 2003), allowing relevant experiments for studying the 
event-driven dynamics of physical systems encountered in many technical 
fields (such as flexible manufacturing systems (FMSs), computer systems, 
communication protocols, power plants, power electronics). 
 The main goal envisaged by the designers of the PN Toolbox was to 
provide a collection of instruments for education and training at a graduate 
level, exploitable under MATLAB. Therefore, the focus was placed on 
developing students’ skills in mastering PN models as a generous framework 
for dealing with discrete-event systems. Although a large number of tools 
are advertised for various types of PN problems (Mortensen, 2003), the 
unified treatment permitted by the PN Toolbox for untimed, 
deterministic/stochastic P- and T-timed PNs, stochastic and generalized 
stochastic PNs, ensures the premises for an efficient instruction. Thus, the 
user needs a short time to learn how to handle the PN Toolbox and his major 
intellectual effort is invested in the construction and careful analysis of the 
PN models. The interest shown by the authors for the convenient usage of 
the PN Toolbox is reflected by the numerous improvements brought to its 
previous versions (Mahulea et al., 2001), (Matcovschi et al., 2001), 
(Matcovschi et al., 2002). 
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 For attaining the proposed teaching goal, we preferred to orient our work 
towards enhancing the quality and reliability of the procedures devoted to 
standard topics rather than developing new algorithms. Consequently, the 
authors’ attention focused on the following targets: (i) implementation of 
efficient algorithms for simulation, analysis and synthesis, (ii) creation of 
powerful visual support for the intuitive understanding of PN model usage, 
and (iii) elaboration of a comprehensive online help including animated 
demonstrative examples of handling the software. 

2. Simulation, analysis and design  
 The PN Toolbox has an easy to exploit GUI (Matcovschi et al., 2003) 
that gives the possibility to draw PNs in a natural fashion and allows a 
straightforward access to various commands starting adequate procedures for 
exploiting the PN models. 
 The simulation mechanism is based on the rule for enabling and firing of 
transitions specific to the type of the current PN model. Consequently, the 
simulation is driven by an asynchronous clock corresponding to the 
occurrence of events (Cassandras, 1993). In the untimed case, the 
sequencing of the events is reduced to simply ordering their occurrence, 
without any temporal significance, unlike the timed case when simulation 
requires a continuous correlation with physical time. 
 Three modes of simulation are implemented in the PN Toolbox, namely: 
Step, Run Slow and Run Fast. The Step and Run Slow simulation modes are 
accompanied by animation; the user can record the progress of the 
simulation in a log file with HTML format. After ending a simulation (run in 
any of the three modes) a number of Performance Indices are available to 
globally characterize the simulated dynamics. They refer to: (i) transitions: 
Service Sum (the total number of firings during the simulation), Service Rate 
(the mean frequency of firings), Service Distance (the mean time between 
two successive firings), Utilization (the fraction of time when server is 
busy); and (ii) places: Arrival Sum, Throughput Sum (the total number of 
arrived/departed tokens), Arrival Distance, Throughput Distance (the mean 
time between two successive instants when tokens arrive in/depart from the 
place), Waiting Time (the mean time a token spends in a place), Queue 
Length (the average number of tokens weighted by time). For timed or 
(generalized) stochastic PNs, while in the Step and Run Slow simulation 
modes, the Scope facility opens a new MATLAB window that displays 
(dynamically) the evolution of a selected performance index versus time. 
 For untimed PN models, the behavioral properties (e.g. boundedness, 
liveness, reversibility, etc.) may be studied based on the coverability tree of 
the net. The coverability tree is built with or without the ω-convention. The 
ω-convention means the usage of a generic symbol (herein denoted by “ω”) 
for referring to unbounded markings (Murata, 1989). The structural 
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properties are approached as integer programming problems (Matcovschi et 
al., 2001); the minimal-support P- and T-invariants (Martinez and Silva, 
1982), (David and Alla, 1992) are displayed, on request, in separate windows. 
 A facility for the synthesis of timed or (generalized) stochastic PN models 
is Design, which allows exploring the dependence of a Design Index on one 
or two Design Parameters that vary within intervals defined by the user. For 
each test-point belonging to this (these) interval(s) a simulation-experiment is 
performed in the Run Fast mode. The results of all these simulation-
experiments yield a graphical plot (2-D or 3-D, respectively) defining the 
dependence of the selected Design Index on the Design Parameter(s); the 
extreme values of the Design Index are numerically displayed. 
 The PN Toolbox is able to derive, directly from the topology and initial 
marking of a place-timed event graph, the max-plus state-space representation 
(Bacelli et al., 1992). The following facilities are available for the max-plus 
analysis (Matcovschi et al., 2002): ● displaying the matrix-form of the 
equations; ● max-plus simulation; ● graphical plots of the simulation results. 

3. Visual information and animated demos 
 To enlarge the addressability of the PN Toolbox, it includes a series of 
animation facilities aiming either to support the intuitive understanding or to 
guide the users in the exploitation of the software. 
 In the simulation modes Step and Run Slow, numerical computation is 
accompanied by animation whose role consists in feeding the user with 
visual information (current token contents of the places, currently firing 
transition), complementary to the numerical data available at the end of a 
simulation experiment. The animation technique is based on the general 
philosophy of the object-oriented graphics system, called Handle Graphics 
(The MathWorks Inc., 2001b). The nodes and arcs of a model are uniquely 
identified as MATLAB objects whose properties define (i) the characteristics 
of the PN, (ii) the graphical representation of the objects in the special area 
reserved for model drawing and (iii) the simulation status. The animation 
effects are obtained by automatically calling the set function for the 
properties referring to the appropriate instance of an object. 
 At the same time, the PN Toolbox was meant to illustrate, by short 
movies, behaviors that are typical for discrete event systems, for example 
sequential/parallel sharing of resources, routing policies, services in queuing 
networks, etc. The implementation combines, by means of the ActionScript 
Toolbox for Macromedia Flash (Macromedia, 2003), various techniques 
such as 2D and 3D graphics developed in Adobe Photoshop 7 (Adobe 
Systems Inc, 2003) and Maya 4.5 (Alias|Wavefront Inc, 2003), respectively. 
Each movie shows the physical motion of a real-life system synchronized 
with the token dynamics in the associated PN model, as resulting from the 
tutorial examples commented on in the following section. The movies are 
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accessible on the web site we have created for the PN Toolbox (Mahulea et 
al., 2003). 
 On the PN Toolbox site, the user can also find the online help of our 
software as well as some animated demos whose purpose is to present 
specific sequences of operations in handling the GUI and the interpretation 
of numerical results. Watching these demos, the user learns how to handle 
the key problems of discrete event systems within a PN framework: usage of 
adequate PN type (untimed, P/T-timed, stochastic or generalized stochastic) 
in model construction, study of behavioral/structural properties, analysis of 
max-plus representation, simulation and interpretation of the results, 
parameterized design, etc. 

4. Tutorial examples 
 The four tutorial examples briefly described below were designed to 
prove the effectiveness of the PN Toolbox in assisting the DES training 
based on the Petri net theory. These examples cover a large area of classical 
topics and the incorporated animation is extremely profitable especially for 
the beginners along the lines detailed in the previous section. 
 Demo 1 refers to a computer system with two processors sharing two 
disks (in parallel) which is a version of the “Two Dinning Philosophers” 
well-known problem (Dijkstra, 1968), illustrated by a movie from which a 
frame is captured in fig. 1. 

 

Figure 1. Frame in the Demo 1 movie illustrating the “Two Dinning Philosophers” 
 problem together with the dynamics of the associated PN model 
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 The addressed problems are: ● construction of an untimed Petri net 
model; ● analysis of deadlock (via the coverability tree); ● prevention of 
deadlock through lookahead feedback (Lewis et al., 1995); ● access to the 
following information about the Petri net model: incidence matrix, minimal-
support P- and T-invariants, structural properties. 
 Demo 2 refers to a manufacturing system with a sequentially shared robot 
(Desrocheres and Al-Jaar, 1993), (Zhou and DiCesare, 1993), illustrated by a 
movie from which a frame is captured in fig. 2. The addressed problems are: ● 
construction of a P-timed Petri net model; ● analysis of deadlock (via 
simulation); ● prevention of deadlock by limiting the number of pallets; ● 
analysis of time-dependent performance indices and ● study of a performance 
index depending on two design parameters (see fig. 3). 

 
Figure 2. Frame in the Demo 2 movie illustrating the functioning of a manufacturing 

system concomitantly with the dynamics of the associated PN model 

 Demo 3 refers to a flow-shop system with three machines, adapted from 
(Bacelli et al., 1992). The addressed problems are: ● simulation and animation 
in the Run Slow mode; ● record of the simulation results in a log file; ● 
computation of the cycle time, ● max-plus analysis of a place-timed event 
graph: max-plus state-space representation, setting of the values for the input 
vectors, max-plus based simulation and plots of the components for the input, 
state or output vectors (see fig. 4). 
 Demo 4 refers to an open markovian queuing network (Cassandras, 
1993). This demo illustrates: ● construction of a generalized stochastic Petri 
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net model; ● usage of the Scope and Diary facilities; ● analysis of time-
dependent performance indices. 

 
Figure 3. Frame in Demo 2 introducing, by animation, the usage of parameterized design 

 
Figure 4. Frame in Demo 3 presenting, by animation, the usage of max-plus analysis 
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5. Conclusions 
 Despite the large offer of software products available for MATLAB, none 
of its toolboxes provides instruments able to handle Petri net models. This 
fact has motivated the development of the PN Toolbox based on a user-
friendly graphical interface that makes it very attractive for students because 
they don’t have to spend time for code writing and their attention can 
exclusively focus on the topics of Control Engineering. The facilities created 
for simulation, analysis and design prove useful in many types of 
applications including a wide range of event-driven dynamics, as illustrated 
by the four tutorial examples briefly presented in the text. 
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Abstract In previous works on componentwise asymptotic stability (CWAS), the analysis 
of CWAS for a given linear system requested the investigation of an auxiliary 
system of difference (in the discrete-time case) or differential (in the 
continuous-time case) inequalities, built from the state equation of the studied 
system. Our paper shows that, by the adequate usage of the infinity norm, the 
analysis of CWAS can circumvent the construction of such inequalities and can 
apply the standard tools of asymptotic stability (ε - δ formalism, properties of 
the operator describing the system dynamics, Lyapunov functions) directly to 
the studied system. These novel results reveal the complete meaning of CWAS 
as a special type of asymptotic stability. 

Keywords: componentwise asymptotic stability, stability analysis, flow-invariant sets, 
linear systems 

1. Introduction 
 The concepts of componentwise asymptotic stability (CWAS) and 
componentwise exponential asymptotic stability (CWEAS) were introduced 
and characterized for continuous-time dynamical systems by Voicu, who 
explored the linear dynamics in (Voicu, 1984a; b) and the nonlinear 
dynamics in (Voicu, 1987). Voicu's works relied on the theory of time-
dependent flow-invariant sets (Pavel, 1984) which allowed a refinement of 
the standard stability notions, by the individual monitoring of the state-space 



ADVANCES IN AUTOMATIC CONTROL  

 

258

trajectories approaching an equilibrium point. Later on, CWAS and CWEAS 
were extended by Hmamed to continuous-time delay linear systems 
(Hmamed, 1996) and to 1-D and 2-D linear discrete systems (Hmamed, 
1997). Recently, Pastravanu and Voicu dealt with CWAS and CWEAS of 
interval matrix systems in both discrete-time and continuous-time cases 
(Pastravanu and Voicu, 1999; 2002). For a survey of some results based on 
time-dependent flow-invariant sets see (Voicu and Pastravanu, 2003). 
 All the researches mentioned above focused on the characterization of 
CWAS / CWEAS via difference inequalities (in the discrete-time case) and 
differential inequalities (in the continuous-time case). Consequently, 
emphasis was placed on studying the properties of the operators defining 
such inequalities, which were different from the operators describing the 
system dynamics.  
 The purpose of the current paper is to point out the existence of direct links 
between the dynamics of the studied system and CWAS / CWEAS as a special 
type of asymptotic stability. It is shown that such links are ensured by the 
usage of infinity norm and operate as particular forms of well-known results in 
the classical theory of stability. Thus, the analysis of CWAS / CWEAS can 
circumvent the construction of the inequalities mentioned above and can apply 
standard tools in stability theory directly to the investigated system. 
 During the last decade, the infinity norm has been used in several works 
devoted to the study of polyhedral invariant sets and their application in 
control – see, for instance, the remarkable survey paper (Blanchini, 1999) 
and the papers cited therein. For most of these researches, the polyhedral 
invariant sets do not depend on time, or if they do, the time-dependence is 
understood as a contraction of exponential type, operating uniformly on the 
constraints of the initial conditions (which is actually induced by the 
exponential-type decreasing of a non-quadratic Lyapunov function 
associated with linear systems). Therefore, such researches (focusing on the 
generality of the polyhedrons, but neglecting the generality of the time 
dependence) do not realize that the studied invariance is strongly related to a 
special type of asymptotic stability (actually meaning CWAS / CWEAS).  
 Besides the intrinsic value of the stability analysis tools developed by our 
paper, we are also able to bridge the gap between the research trend 
commented above and the CWAS / CWEAS framework. Thus, CWAS / 
CWEAS as special type of AS, reveal the complete meaning of the 
invariance for symmetrical rectangular sets, whose dependence of time is a 
priori stated and explicitly defined.  

2. CWAS and CWEAS derived from flow invariance 
 This short presentation of the key concepts and results on CWAS and 
CWEAS is based on the initial formulation proposed for the continuous-time 
case in (Voicu, 1984a; b) and, later on, unified for discrete-time and continuous-
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time cases in (Pastravanu and Voicu, 1999, 2002). 
 Consider the linear system: 

 '( ) ( ), ,n nt t ×= ∈x Ax A R  (1) 

where t ∈T  denotes the independent variable with discrete-time meaning 
+=T Z , or continuous-time meaning +=T R , and the action of the operator 

( )' is defined by: 

 
( 1)  for the  discrete-time case  ; 

'( )
( )  for the  continuous-time case  .
t t

t
t t

+

+

+ ∈ =
=  ∈ =

x T Z
x

x T R�
 (2) 

Definition 1. Given the vector function ( ) : nt →h T R , which fulfils the 
following conditions: 
 (a) in the discrete-time case ( +=T Z ), h(t) has positive components 

( ) 0ih t > , 1, ,i n= … , and lim ( ) 0
t

t
→∞

=h , 

 (b) in the continuous-time case ( +=T R ), h(t) is differentiable, has positive 
components ( ) 0ih t > , 1, ,i n= … , and lim ( ) 0

t
t

→∞
=h , system (1) is called 

componentwise asymptotically stable (CWAS) with respect to ( )th  if 

 0 0 0 0, , : | ( ) | ( ) | ( ) | ( ), 1, ,i i i it t t t x t h t x t h t i n∀ ∈ ≤ ≤ ⇒ ≤ =T … ,(3) 

where ( ), 1, ,ix t i n= … , denote the state variables of system (1).  
 CWAS allows the individual monitoring of each state variable and 
therefore it represents a refinement of the standard concept of asymptotic 
stability where the evolution is characterized in the global terms of a vector 
norm. 

Theorem 1  All the functions ( )th  that fulfill the conditions in Definition 1 
are solutions of the difference inequality (in the discrete-time case) or 
differential inequality (in the continuous-time case):  

 ( ) ( )t t′ ≥h A h ,  (4) 

where the matrix n n×∈A R  is built from matrix A in equation (1), as follows: 
(a) for the discrete-time case: 

 | |, , 1, ,ij ija a i j n= = " ; (5a) 

(b) for the continuous-time case: 

 
, 1, , ,

| |, , , 1, , .
ii ii

ij ij

a a i n
a a i j i j n

= =
= ≠ =

"
"

 (5b) 
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 System (4) confers a consistent dynamical signification to the operator 
A , pointing out the origin of the CWAS concept in the theory of flow-
invariant sets. Within this context, it is worth saying that system (4) might 
have solutions ( )th  that do not fulfill the condition lim ( ) 0

t
t

→∞
=h  in Definition 

1, but such solutions are able to define time-dependent sets, which are flow-
invariant with respect system (1). 

Theorem 2  System (1) is CWAS with respect to an arbitrary ( )th  which 
fulfils the conditions in Definition 1, if and only if the matrix A  built 
according to (5a) or (5b) is stable in Schur or Hurwitz sense, respectively. 

 The usage of CWAS with respect to a particular vector function ( )th  of 
exponential type yields:  
Definition 2. (a) In the discrete-time case, system (1) is called 
componentwise exponential asymptotically stable (CWEAS) if there exist a 
vector n∈d R , with positive components 0, 1, ,id i n> = … , and a constant 
0 1r< <  such that  

 0
0 0 0, , : | ( ) | | ( ) | , 1, , .t t

i i i it t t t x t d r x t d r i n+∀ ∈ = ≤ ≤ ⇒ ≤ =T Z … (6a) 

 (b) In the continuous-time case, system (1) is called componentwise 
exponential asymptotically stable (CWEAS) if there exist a vector n∈d R , 
with positive components 0, 1, ,id i n> = … , and a constant 0r <  such 
that  

 0
0 0 0, , : | ( ) | | ( ) | , 1, ,rt rt

i i i it t t t x t d e x t d e i n+∀ ∈ = ≤ ≤ ⇒ ≤ =T R … . (6b) 

 The linearity of the dynamics of system (1) guarantees the equivalence 
between CWAS and CWEAS. 

Theorem 3  For both discrete-time and continuous-time cases, system (1) is 
CWAS with respect to an arbitrary ( )th which fulfils the conditions in 
Definition 1 if and only if system (1) is CWEAS. 

 On the other hand, the exponential form of the vector function ( )th  
considered in Definition 2 results in an algebraic characterization of 
CWEAS, or, equivalently, CWAS. 

Theorem 4  System (1) is CWAS (or equivalently CWEAS), if and only if the 
system of inequalities constructed with the matrix A  (5a) or (5b): 

 , , 0, 1, , ,n
ir d i n r≤ ∈ > = ∈Ad d d R R… , (7) 

has solutions 0 1r< <  in the discrete-time case, or 0r <  in the continuous-
time case, respectively. 
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 The special structure of matrix A  built according to (5a) or (5b) induces 
a spectral property to A  of crucial importance for the compatibility of 
inequality (7): 

Theorem 5 Denote by ( )iλ A , 1, ,i n= … , the eigenvalues of the matrix A .  
i) (a) If  A  is defined according to (5a), then A  has a real nonnegative 
eigenvalue (simple or multiple) denoted by max ( )λ A , meaning the spectral 
radius, which fulfills the dominance condition 

 max| ( ) | ( ), 1, , .i i nλ λ≤ =A A …  (8a) 

 (b) If A  is defined according to (5b), then A  has a real eigenvalue 
(simple or multiple), denoted by max ( )λ A , meaning the spectral abscissa, 
which fulfills the dominance condition 

 maxRe[ ( )] ( ), 1, , .i i nλ λ≤ =A A …  (8b) 

ii) The system of inequalities (7) is compatible if and only if 

 max ( ) rλ ≤A . (9) 

3. CWAS / CWEAS and ε ~ δ formalism 
 Although it was eminently clear that CWAS, or, equivalently, CWEAS 
represented a stronger concept than the standard asymptotic stability, no 
proof has been constructed yet for this statement in terms of norms (which 
actually provide the classical tools for defining asymptotic stability). Let us 
show that the exponential asymptotic stability incorporates the concept of 
CWEAS as a special case, by using the well known ε ~ δ language. Therefore 
consider the following general condition which ensures the exponential 
asymptotic stability for the equilibrium point {0} of linear system (1) (e.g. 
(Michel and Wang, 1995), pp. 107): 

(a) for the discrete-time case: 

 0( )
0 00 ( ) 0, 0 1: ( ) ( ) : ( ) t tt t t tε δ ε ω δ ε εω −∀ > ∃ > < < ≤ ⇒ ∀ ≥ ≤x x ;(10a) 

(b) for the continuous-time case: 

 0( )
0 00 ( ) 0, 0 :|| ( ) || ( ) :|| ( ) || t tt t t t eωε δ ε ω δ ε ε −∀ > ∃ > < ≤ ⇒ ∀ ≥ ≤x x , (10b) 

where || || denotes an arbitrary vector norm in nR . 
 On the other hand, define the vector norm: 

 1|| || || ||−
∞ ∞=Dx D x , (11) 
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where the diagonal matrix 

 1diag{ , , }nd d=D "  (12) 

is built with the positive constants 0, 1, ,id i n> = " .  

Theorem 6 System (1) is CWEAS if and only if condition (10) is met with 
( )δ ε ε= , rω =  and for the vector norm || || ∞D  given by (11). 

Proof. The inequality 0|| ( ) ||t ε∞ ≤Dx  is equivalent to the componentwise 
inequality 0| ( ) |t ε≤x d and 
 (a) for the discrete-time case, the inequality 0( )|| ( ) || t tt rε −

∞ ≤Dx  is 
equivalent to the componentwise inequality 0( )| ( ) | t tt rε −≤x d for 0t t≥ ; 

 (b) for the continuous-time case, the inequality 0( )|| ( ) || r t tt eε −
∞ ≤Dx  is 

equivalent to the componentwise inequality 0( )| ( ) | r t tt eε −≤x d  for 0t t≥ .■ 

 Proving that the CWEAS property is obtainable from the general 
definition of the exponential asymptotic stability, this result motivates us to 
further explore the standard instruments used by the stability analysis of 
linear systems in order to characterize CWAS / CWEAS. 

4.  CWAS / CWEAS and properties of operator A 
 Theorems 4 and 5 are extremely valuable in characterizing the CWAS 
(CWEAS) of system (1), because they permit a complete exploration of the link 
between the scalar r, vector d and matrix A  constructed according to (5). 
Nevertheless, they are unable to link r and d directly to matrix A used in system 
(1). One can overcome this disadvantage, by introducing the matrix norm 
subordinate to the vector norm || || ∞D  defined in (11) with (12): 

 1|| || || || , n n− ×
∞ ∞= ∈DM D MD M R . (13) 

Theorem 7  Consider a square matrix A and the matrix A  built from it 
according to (5). A positive vector d and a constant r are a solution of 
inequality (7) if and only if  
 ( ) rµ ∞ ≤D A , (14) 

where ( )µ ∞D A  denotes a matrix measure defined by: 
(a) for A  built according to (5a): 

 ( ) || ||µ ∞ ∞=D DA A ; (15a) 

(b) for A  built according to (5b): 
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0

|| || 1
( ) lim

τ

τ
µ

τ
∞

∞ → +

+ −
= D

D
I A

A . (15b) 

Proof. Algebraic inequality (7) can be written as: 

 
1

(1/ ) , 1, ,
n

i ij j
j

d a d r i n
=

≤ =∑ … , (16) 

or, equivalently: 

 
1, , 1

max (1/ )
n

i ij ji n j
d a d r

= =

 
≤ 

 
∑"

. (17) 

 (a) For the discrete-time case, all the elements ija  constructed in 
accordance with (5a) are nonnegative and, therefore, (17) is equivalent to: 

 1|| || r−
∞ ≤D AD , (18a) 

which, taking into account (15a), means inequality (14). 
 (b) For the continuous-time case, in accordance with (5b) all the elements 

,ija i j≠ , are nonnegative. If the same big positive constant 21 || ||≥ Aτ , is 

added to both sides of each inequality (16), then all the elements 1iia + τ  
become also nonnegative and, therefore, (16) is equivalent to: 

 1 1 1|| ( ) || r
τ τ

−
∞+ ≤ +D I A D , (18b) 

which, taking into account (15b), means inequality (14).■ 

Remark 1. The matrix measure defined by (15b) for ID =  the identity 
matrix is frequently referred to as the "logarithmic norm" (Deutsch, 1975)], 
although it does not meet all the properties of a norm.  
Remark 2. The n inequalities given by (16), which are equivalent to 
CWEAS, express the condition that the generalized Gershgorin disks of the 
matrix A  lay inside the unit circle or in the left half plane of the complex plane. 
In the continuous-time case these disks are identical to those of the matrix A (as 
pointed out in (Voicu, 1984b)), and in the discrete-time case, they can be 
identical to those of the matrix A, or symmetrical with respect to the imaginary 
axis of the complex plane. Therefore the usage, in the very recent paper (Polyak 
and Shcherbakov, 2002), of condition (16) for the particular case 1id = , 

1, ,i n= … , as a parametric definition for a property called "superstability" has 
no reason and yields particular forms of the CWEAS results available from 
(Voicu, 1984a; b; 1987)], (Pastravanu and Voicu, 1999; 2002).  
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Theorem 8  The dominant eigenvalue max ( )λ A  introduced in Theorem 4 
fulfills the condition: 

 max { }
( ) min ( )

idiag d
λ µ ∞=

= DD
A A , (19) 

where ( )µ ∞D A  is defined by (15a) or (15b), in accordance with the 
procedure for building A  (5a) or (5b), respectively. 

Proof. (a) In the discrete-time case, (19) results from the equality proven in 
(Theorem 2, (Stoer Witzgall, 1962)) for nonnegative matrices: 

 1
max { }

( ) min || ||
idiag d

λ −
∞=

=
D

A D AD , (20a) 

together with: 
 1 1|| || || || ( )µ− −

∞ ∞ ∞= = DD AD D AD A . (21a) 

 (b) In the continuous-time case, (19) results along the same lines, by 
taking into consideration the nonnegativeness of the matrix +I Aτ , as well 
as the fact that for small 0τ >  (i.e. 21/ || ||τ ≤ A  satisfied) one can write: 

 
1

max { }

1 1( ) min || ( ) ||
idiag d

λ
τ τ

−
∞=

+ = +
D

I A D I A D  (20b)
 

and 

1 1

0 0

1 1 1 1lim || ( ) || lim || ( ) || ( )
τ τ

µ
τ τ τ τ

− −
∞ ∞ ∞→ + → +

   + − = + − =   
   

DD I A D D I A D A .■ (21b) 

Theorem 9  Linear system (1) is CWAS / CWEAS if and only if 
 (a) for the discrete-time case, there exists a vector with positive entries 

n∈d R , such that 
 ( ) 1µ ∞ <D A , (22a) 

 (b) for the continuous-time case, there exists a vector with positive entries 
n∈d R , such that  

 ( ) 0µ ∞ <D A , (22b) 

where ( )µ ∞D A  is defined according to (15a) and (15b), respectively. 

Proof. It results directly from Theorems 2 and 5 combined with Theorem 8. ■ 

5. CWAS / CWEAS and Lyapunov functions 
 The previous results fully motivates the idea of investigating CWAS by 
special Lyapunov functions, whose expressions contain precise information 
about the vector functions ( )th  used in Definition 1. 
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Theorem 10 Consider a vector function ( )th  that fulfills the conditions in 
Definition 1. System (1) is CWAS with respect to ( )th , if and only if  

 
1

1 2

( , ( )) || ( ) ( ) || ,
( ) diag{ ( ), , ( )}

V t x t t x t
t h t h t

−
∞=

=
H

H …
 (23) 

is a weak Lyapunov function for system (1). 
Proof. Given the properties of the vector function ( )th , in both discrete-time 
and continuous-time cases ( , ( )) 0V t t >x  for any t and ( ) 0t ≠x .  
 (a) In the discrete-time case, ( , ( ))V t tx  is a weak Lyapunov function for 
system (1) means: 

 ( 1, ( 1)), ( ) \ {0}:
( , ( ))

n V t tt t
V t t+
+ +

∀ ∈ = ∀ ∈
xT Z x R
x

 (24a) 

which can be also written as: 

 
1 1

1
|| ( ( 1) ( ))( ( ) ( )) ||

, ( ) \ {0}: 1
|| ( ) ( ) ||

n t t t t
t t

t t

− −
∞

+ −
∞

+
∀ ∈ = ∀ ∈ ≤

H AH H x
T Z x R

H x
. (25a) 

 If (25a) is true, then we have: 

 
1

1 1

|| ( ) ( )|| 1
: max || ( ( 1) ( ))( ( ) ( )) || 1

t t
t t t t t

−
∞

− −
+ ∞

=
∀ ∈ = + ≤

H x
T Z H AH H x , (26a) 

that is equivalent to the boundedness of the operator norm: 

 1:|| ( 1) ( ) || 1t t t−
+ ∞∀ ∈ = + ≤T Z H AH . (27a) 

 Now, taking into account the equality: 

 1 1: || ( 1) ( ) || || ( 1) ( ) || ,t t t t t− −
+ ∞ ∞∀ ∈ = + = +T Z H AH H AH  (28a) 

relationship (27a) yields: 

 1:|| ( 1) ( ) || 1t t t−
+ ∞∀ ∈ = + ≤T Z H AH , (29a) 

which means that inequality (4) is satisfied with ( )th  meeting conditions in 
Definition 1, i.e. system (1) is CWAS with respect to ( )th . 
 Conversely, if system (1) is CWAS with respect to ( )th , then 
relationship (27a) holds and allows writing: 

 

1 1

1

1 1
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1
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∞
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H x

(30a) 
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which shows that (25a) is true, i.e. ( , ( ))V t tx  defined by (23) is a weak 
Lyapunov function. 
 (b) In the continuous-time case, ( , ( ))V t tx  is a weak Lyapunov function 
for system (1) means that ( , ( ))V t tx is nonincreasing along any trajectory of 
system (1), i.e. 

 , ( ) \ {0}, 0: ( , ( )) ( , ( )) 0nt t V t t V t tτ τ τ+∀ ∈ = ∀ ∈ ∀ > + + − ≤T R x R x x ,  (24b) 

which, for small 0τ >  can be also written as: 

 
1 1

1
|| ( ( )( ) ( ))( ( ) ( )) ||

, ( ) \ {0}: 1
|| ( ) ( ) ||

n t I t t t
t t

t t
τ τ− −

∞
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∞

+ +
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H A H H x
T R x R
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If (25b) is true, then, for small 0τ > , we have: 

 
1

1 1
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t t t t tτ τ

−
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that is equivalent to boundedness of the operator norm: 

 1:|| ( )( ) ( ) || 1t t tτ τ−
+ ∞∀ ∈ = + + ≤T R H I A H . (27b) 

Now, taking into account the equality: 
1 1: || ( )( ) ( ) || || ( )( ) ( ) ||t t t t tτ τ τ τ− −

+ ∞ ∞∀ ∈ = + + = + +T R H I A H H I A H ,(28b) 

valid for small 0τ > , relationship (27b) yields: 

 1:|| ( )( ) ( ) || 1t t tτ τ−
+ ∞∀ ∈ = + + ≤T R H I A H , (29b) 

which means that inequality (4) is satisfied with h(t) meeting conditions in 
Definition 1, i.e. system (1) is CWAS with respect to h(t). 
 Conversely, if system (1) is CWAS with respect to h(t), then relationship 
(27b) holds and allows writing: 
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which shows that (25b) is true, i.e. ( , ( ))V t tx  defined by (23) is a weak 
Lyapunov function. ■ 

 For the particular case when testing CWEAS and the vector function 
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( )th  considered in Definition 1 is of exponential type (see Definition 2), the 
explicit time-dependence of the Lyapunov function becomes redundant as 
shown below.  

Theorem 11 System (1) is CWEAS with 0, 1, ,id i n> = " , if and only if 

 ( ( )) || ( ) ||V t t ∞= Dx x   (31) 

is a strong Lyapunov function. 

Proof. Given the particular form of matrix D used in (31), ( ( )) 0V t >x  for 
any t and ( ) 0t ≠x ), in both discrete-time and continuous-time cases. 
 (a) In the discrete-time case, ( ( ))V tx  is a strong Lyapunov function for 
system (1) means: 

 
( ( 1))

, ( ) \{0}: 1
( ( ))

n V t
t t

V t+
+

∀ ∈ = ∀ ∈ <
x

T Z x R
x

, (32a) 

which can be also written as: 

 
1 1
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|| ( ) ||
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If (33a) is true, then we have: 
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1 1
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: max || ( )( ( ) ( )) || 1

t t
t t t

−
∞

− −
+ ∞

=
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D x
T Z D AD D x , (34a) 

that is equivalent to boundedness of the operator norm: 

 1:|| || 1t −
+ ∞∀ ∈ = <T Z D AD . (35a) 

Thus, we have shown that 

 1( ) || || || || 1µ −
∞ ∞ ∞= = <D DA A D AD , (36a) 

which, in accordance with Theorem 9, ensures CWEAS of system (1) with 
0, 1, ,id i n> = " . 

 Conversely, CWEAS of system (1) with 0, 1, ,id i n> = " , means 
CWAS with respect to ( ) tt r=h d , 0 1r< < , which, according to Theorem 
10, is equivalent to: 

 
( 1) 1 1

1
|| ( )( ( )) ||
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t t
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(37a) 

or, furthermore: 
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D AD D x
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 (38a) 

 Thus, we have proved the validity of (33a) and, consequently of (32a), 
i.e. ( ( ))V tx  is a strong Lyapunov function for system (1). 
 (b) In the continuous-time case, ( ( ))V tx  is a strong Lyapunov function 
for system (1) means: 

 
0

( ( )) ( ( )), ( ) : lim 0n V t V tt R t
τ

τ
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→ +
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x xT x R , (32b) 

which, for small 0τ >  can be also written as: 
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If (33b) is true, then, for small 0τ > , we have: 
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that is equivalent to boundedness of the operator norm: 
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which, in accordance with Theorem 9, ensures CWEAS of system (1) with 
0, 1, ,id i n> = " . 

 Conversely, CWEAS of system (1) with 0, 1, ,id i n> = " , means 
CWAS with respect to ( ) rtt e=h d , 0r < , which, according to Theorem 10, 
is equivalent to: 
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or, furthermore: 
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 Thus, we have proved the validity of (33b) and, consequently, of (32b), 
i.e. ( ( ))V x t  is a strong Lyapunov function for system (1). ■ 

Remark 3. In papers (Kiendl et al, 1992), (Polanski, 1995), (Loskot et al, 
1998) the usage of Lyapunov function (31) is understood in the sense of 
standard AS, but pointing out the invariance of a time-independent 
polyhedral set. Papers (Blanchini, 1994; 1995) notice that Lyapunov 
function (31) induces a time-dependence of exponential type for the 
invariant polyhedral sets; however the stability analysis is addressed within 
the classical framework, without any interpretation of the componentwise 
meaning. Moreover, the case of invariant polyhedral sets with arbitrary time-
dependence (not only exponential) remains completely ignored by these two 
papers.  

6. Conclusions 
 By using the infinity norm, well-known results from the classical theory of 
stability can be particularized so as to characterize CWAS / CWEAS as a 
special type of asymptotic stability. Thus, our approach allows developing 
connections between the dynamics of system (1) and CWAS / CWEAS, by 
circumventing the usage of auxiliary system (4) and applying standard tools 
in stability theory directly to system (1). The key results refer to the 
exploitation of the following instruments: ε - δ formalism (Theorem 6), 
properties of operator A (Theorem 9), time-dependent Lyapunov functions 
for testing CWAS with respect to an arbitrary vector function (Theorem 10) 
and time-independent Lyapunov functions for testing CWEAS (Theorem 11).  
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A SYSTEMATIC DESIGN APPROACH 
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Abstract The paper presents aspects concerning the systematic design of fuzzy controllers 
(of Mamdani type and Takagi-Sugeno type) with dynamics. There are 
considered PI and PID fuzzy controllers resulting in fuzzy control systems 
which are type-II and type-III fuzzy systems according to Koczy (1996) and 
Sugeno (1999). The fuzzy controllers are applicable to a wide range of 
applications. 

Keywords: PI controllers, fuzzy controllers, dynamics, design, digital simulation 

1. Introduction 
 The “classical” engineering approach to the reality is essentially a 
qualitative and quantitative one, based on a more or less “accurate” 
mathematical modeling. In this context the elaboration of the control strategy 
and of the controller requires an “as accurate as possible” quantitative 
modeling of controlled plant (CP). Some advanced control strategies require 
even the permanent reassessment of the models and of the parameters values 
characterizing these (parametric) models. By many aspects the fuzzy control 
is more pragmatic by the capability to use a linguistic characterization of the 
quality of CP behavior and to adapt it as function of the concrete conditions 
of CP operation. 
 The basic fuzzy controllers (FCs) with dynamics have a specific 
nonlinear behavior, accompanied by anticipative, derivative, integral and – 
more general – predictive effects and adaptation possibilities to the concrete 
operating conditions. The “coloring” of the linguistic characterization of CP 
evolution – based on experience – will be done by means of parameters 
which enable the modification of FC features. 
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 In some applications the development of fuzzy control systems (FCSs) is 
often done by heuristic means that can be sometimes accompanied by failures. 
A systematic design approach can be advantageous; some design procedures 
developed by the authors and presented in this paper compensate the lack of 
general design methods applicable to certain categories of systems. 
 The authors thank the colleagues from the “Gh. Asachi” Technical 
University of Iasi for the possibility to meet and share opinions concerning 
controller development techniques, and for the opportunity offered by the 
Symposium on Automatic Control and Computer Science where the authors 
have presented research results; part of these results are included in this paper. 

2. Of fuzzy controllers: continuous time analysis 
 The shape of the non-linearity (Driankov, et al., 1993) of a FC can be 
modeled in a large variety of forms by an adequate choice of the variable 
parameters taking part to the FC informational modules. The FCs can obtain 
dynamic features by additional dynamic processing of some of system 
variables in terms of differentiation and / or integration. The effects of these 
components can be reflected either in permanent regimes – by the 
disturbance rejection or just the alleviation of the control error – or in 
dynamic ones, by improving the phase margin (in generalized sense), 
reducing the overshoot, the settling time, and / or relaxing the stability 
conditions. 
 The derivative (D) and integral (I) components can be implemented in 
conventional digital version; these components can create a quasi-
continuous (Q-C) equivalent of the analogue D and I components, 
respectively. Two methods for the accomplishment of Q-C D and I 
components are presented as follows. 
 Firstly, for the D component, the usual computation relation is given by 
the relation (1): 

 

∗∈−⋅= − Nkee
T

d kk
s

k ,)(1
1 , (1)

 
with Ts – the sampling period. In the case of a rapid variation of the input 
variable e(t) which could be harmful on the implementation of the D 
component, then either ek can be pre-filtered in terms of a first order delay 
(PT1) law, or the D component is obtained as function of the actual sample 
ek and of an “old sample” ek-m. 
 Secondly, for the I-component, a version of computation relation is given 
by the relation (2): 
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 Such characterizations will also permit a relative Q-C equivalence of the 
digital case; by using the first order Pàde approximation, these two 
components can be expressed as: 

 
)(
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)(,)(
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ssd
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⋅
⋅

⋅+
≈⋅

⋅+
≈ σ . (3)

 
 The equations (3) ensure a continuous pseudo-transfer function for the 
FC with dynamics; it justifies the analysis of FCs in the linear case (Siler and 
Ying, 1989). 
 By employing the widely accepted experience in the design of PI 
controllers and the very good control features offered by these controllers 
(zero steady-state, enhancement of control system (CS) dynamics – 
alleviation of the settling time and / or of the overshoot – by the pole-zero 
cancellation technique), the knowledge on linear PI controllers can be 
incorporated in the properties of strictly speaking FCs (without dynamics). 
 The PI fuzzy controllers (PI-FCs) are very useful because starting from 
the features of a basic linear PI controller can systematically develop them. 
But, the arbitrary introduction of dynamic components in the FC structure 
creates a lot of difficulties mainly concerning the interpretation of 
introducing the dynamics in CS behavior in different regimes, and the 
increase of the number of the degrees of freedom in controller design and 
implementation. The analysis of the behavior of some FCSs has been 
performed in (Precup and Preitl, 1995). 
 There will be obtained two versions of PI-FCs, the position type and the 
velocity type. The position type PI-FC can be further accomplished in two 
versions obtaining the integral component on either the output or the input of 
the FC, in structures of fuzzy controllers of Mamdani (Mamdani, 1974) or of 
Takagi-Sugeno type (Takagi and Sugeno, 1985). 
 The Mamdani version of position type PI-FC – presented here – is 
characterized by the presence of the integral component on FC output, with 
the basic relation: 

 
∫ ⋅⋅⋅+⋅⋅=
t

FdFi dekkekktu
0

21 ])()([)( τττ . (4)
 

 The relation (4) characterizes a typical dependence for a PI controller. By 
expressing (4) in its operational form, the Q-C equivalent of the PI-FC is 
obtained: 
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 Therefore, the expression of the pseudo-transfer function can be 
expressed: 
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 The position type PI-FC is characterized by the following discrete time 
equation obtained by differentiating (4) and using (1): 
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 Hence, the discrete time equation of an incremental PI-FC obtains 
immediately the form (8): 

 1221 )( −⋅⋅−⋅⋅+⋅⋅=∆ kFdkFdsFik ekkekkTkku , (8) 

where ∆uk = uk – uk -1 stands for the increment of control signal. 
 Using the presented approach there can be also developed many versions 
of PD fuzzy controllers (PD-FCs) and of PID fuzzy controllers (PID-FCs) 
(see, for example, Tang and Mulholland (1987) Kawaji, et al. (1991), 
Galichet and Foulloy (1995), Moon (1995), Mann, et al. (1999). 

3. Details regarding a design method for Mamdani PI 
fuzzy controllers 

 The standard version of the Mamdani type PI-FC with integration of 
output / control signal, Fig.1, is based on the numerical differentiation of the 
control error ek under the form of the increment of control error, ∆ek = ek – ek 

-1, and on the numerical integration of the increment of control signal ∆uk. 
The FCSs with Mamdani type PI-FCs are type-II fuzzy systems (Koczy, 
1996; Sugeno, 1999). 
 The design of this controller starts with expressing the discrete time 
equation of the Q-C digital PI controller (PI-C) in its incremental (velocity 
type) version: 
 )( kkPkIkPk eeKeKeKu ⋅+∆⋅=⋅+∆⋅=∆ α , (9) 

where the parameters {KP, KI, α} are functions of {kC, Ti}: 
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 On the basis of (10) and of the representation of ∆uk in the phase plane 
<∆e, ek>, Fig.2, the pseudo-fuzzy features of the Q-C digital PI-C are 
worthwhile: 
- there exists a “zero control signal line” ∆uk = 0, having the equation (11): 

 0=⋅+∆ kk ee α ; (11) 
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- this line divides the phase plane in two half-planes, with ∆uk > 0 and  
∆uk < 0; 

- the distance from any point of the phase plane to the “zero control 
signal line” corresponds to the absolute value of the increment of 
control signal |∆uk |; it is influenced by the properties of the strictly 
speaking FC. 

 The fuzzification can be solved as follows: for the input linguistic 
variables (LVs) ek and ∆ek there are chosen 5 (or more, but an odd number) 
linguistic terms (LTs) with regularly distributed triangular type membership 
functions (m.f.s) having an overlap of 1, and for the output LV ∆uk there are 
chosen 7 LTs with regularly distributed singleton type m.f.s, Fig.3, 
corresponding to the specific strictly positive parameters of this PI-FC, {Be, 
B∆e, B∆u}. These parameters are in connection with the shapes of the m.f.s of 
the LTs corresponding to the input and output LVs. The complete rule base 
can be expressed as a decision table in the form of Table 1. The inference 
and defuzzification methods represent the designer’s option (Driankov, et 
al., 1993). 

 
Figure 1. Structure of PI-FC with integration on controller output 

 

Figure 2. Phase plane representation of quasi-continuous digital PI controller 

 

Figure 3. Shapes of membership functions of Mamdani PI fuzzy controller with  
integration on controller output 
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Table 1. Decision table of Mamdani PI-FC with integration on controller output 

∆ek \ ek NB NS ZE PS PB 

PB ZE PS PM PB PB 
PS NS ZE PS PM PB 
ZE NM NS ZE PS PM 
NS NB NM NS ZE PS 
NB NB NB NM NS ZE 

 The main steps of the design method are: 
- the dependence (11) is valid for the “zero control signal line”, resulting in: 

 
e

e
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=α ; (12) 

- a further the condition in the form of (13) is fulfilled along the 
“constant control signal line”, ∆uk = B∆u: 

 ePkkPku BKeeKuB ∆∆ ⋅=⋅+∆⋅=∆= )( α ; (13) 

- the condition (13) can be transformed into:  

 eIePu BKBKB ⋅=⋅⋅=∆ α ; (14) 

based on designer’s experience; one of the parameters, for example Be, is 
chosen, and the other two parameters, B∆e and B∆u, result from (13) and (14). 
 It must be highlighted that by applying this method for tuning the FC 
parameters, {Be, B∆e, B∆u}, the parameters of the basic linear PI-C (10), kC 
and Ti, are taken into consideration in the design relations (13) and (14). 
Such controllers have been applied in several papers including (Precup and 
Preitl, 2001). 
 The obtained control signal in its incremental form ∆uk can be further 
used in the CS: directly, if the actuator contains the integral component (I), or 
by computing the actual value of control signal according to (15): 

 kkk uuu ∆+= − 1 . (15) 

4. Details regarding a design method for Takagi-Sugeno 
PI fuzzy controllers 

 The structure of a Takagi-Sugeno PI fuzzy controller is similar to that 
presented in Fig.1, but the FCSs with these FCs are type-III fuzzy systems 
(Koczy, 1996; Sugeno, 1999). The specific feature of Takagi-Sugeno FCs 
with dynamics is in the fact that the consequent of the rule base can contain 
expressions of conventional controllers resulting in a blend of conventional 
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controllers due to the interpolative property of the fuzzy control rules 
(Babuska and Verbruggen, 1996). 
 The FCS comprising a Takagi-Sugeno PI-FC presented in this Section 
will ensure desired behaviours of the FCSs in dynamic regimes with respect 
to the step modifications of the reference input (w) and of four types of 
disturbance inputs (v). This is ensured for the beginning by the separate 
design of two continuous time linear PI controllers of type (10). For the 
design of the Takagi-Sugeno PI-FC it is necessary to discretize these two 
continuous linear PI controllers. The use of Tustin’s method results in two 
incremental Q-C digital PI-Cs: 

 k
w
Ik

w
P

w
kk eKeKuu ⋅+∆⋅=∆=∆ , 

 k
v
Ik

v
P

v
kk eKeKuu ⋅+∆⋅=∆=∆ , (16) 

where the parameters of these two incremental digital PI controllers, {KP
w, 

KI
w} and {KP

v, KI
v}, are computed in terms of (17): 
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 The structure of the proposed Takagi-Sugeno PI-FC is presented in Fig.4, 
and it consists of: the strictly speaking PI-FC, the additional fuzzy block FB1 
for computing the current regime rk, the fuzzy block FB2 for computing the 
current status sk, and the linear blocks with dynamics. 
 The blocks {PI-FC, FB1, FB2} are Takagi-Sugeno fuzzy systems, and 
the inference and defuzzification methods can be selected according to the 
designer’s option. The fuzzification is done by the m.f.s from Fig.5 (∆wk = 
wk–wk -1 – increment of reference input) outlining the parameters of the 
Takagi-Sugeno PI-FC to be determined by the design method: {Be, B∆e, B∆w, 
Bs, Bw, Bv}. 
 The fuzzy block FB1 has the role of observing the dynamic regime by 
computing the variable rk. The linguistic terms “WR” and “VR” correspond 
to the dynamic regimes caused by the modification of w (wr) and v (vr), 
respectively. The fuzzy block FB2 that operates in parallel with PI-FC, 
computes the variable sk characterizing the current status of the fuzzy control 
system. The linguistic term “ZE” corresponds to an accepted steady-state 
regime with almost zero ek and ∆ek, and the linguistic term “P” corresponds to 
the situations when either ek is non-zero or ek is zero but it has the tendency to 
modify. The rule bases by Precup and Preitl (2002), expressed as decision 
tables, assist the inference engines of FB1 and FB2. 
 The inference engine of the strictly speaking PI-FC employs the rule base 
gathered in the decision table from Table 2. Such a decision table ensures 
quasi-PI behaviour of the PI-FC. An additional parameter α was introduced, 
α ∈ (0, 1], for the sake of FCS performance enhancement. 
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Figure 4. Structure of Takagi-Sugeno PI-FC 

 
Figure 5. Accepted input membership functions 

Table 2.  Decision table of Takagi-Sugeno PI-FC 

rk 

WR VR 

ek ek 

 

N ZE P N ZE P 

P ∆uk
w ∆uk

w α ∆uk
w ∆uk

v ∆uk
v α ∆uk

v 

ZE ∆uk
w ∆uk

w ∆uk
w ∆uk

v ∆uk
v ∆uk

v 

 
∆ek 

N α ∆uk
w ∆uk

w ∆uk
w α ∆uk

v ∆uk
v ∆uk

v 

 In comparison with the previous Section, the fuzzy controller design 
becomes more complex due to the increased number of fuzzy blocks, and it 
consists mainly in the following steps: 

- choose the values of the parameters Bw and Bv; since these values have 
to be different in order to create a clear difference between the two 
regimes, wr and vr; this is achieved by choosing Bw = 1 and Bv = 2; 

- choose the values of the parameters B∆w and Bs; these values must be 
sufficiently small to clearly point out the constant values of wk, and of 
ek and ∆ek, respectively; for a unit step modification of w and a 2% 
settling time is accepted the recommended values for these two 
parameters are B∆w = 0.02 and Bs = 0.02; 

- design two continuous PI-Cs (with respect to the reference input and 
with respect to the disturbance input) and compute the value of the 
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parameter Be there is applied the modal equivalences principle 
(Galichet and Foulloy, 1995) resulting in: 

 )2(2 s
m

iese TTBTB −⋅=∆ , (18) 

where Ti
m represents the medium value of the integral time constant, 

and Be is chosen in accordance with the experience of the control 
system designer. The relation (18) will ensure the approximate 
equivalence between the Takagi-Sugeno PI-FC and the separately 
designed two linear PI controllers (Precup and Preitl, 2002). 

5. Advanced structures of fuzzy controllers 
 By starting with the PI fuzzy controllers presented in Sections 3 and 4, 
there will be presented here design aspects regarding the controllers with 
fuzzy adaptation of conventional controller parameters and predictive fuzzy 
controllers. 

5.1. Controllers with fuzzy adaptation of conventional PI 
controller parameters 

 This class of controllers belongs to the class of self-tuning nonlinear 
controllers having some features. Firstly, the (basic) conventional controller 
used in the CS is developed on the basis of a classical design method, for a 
settled steady-state operating point. Secondly, depending on the modification 
of CP operating conditions, the parameters of the conventional controller are 
on-line adapted by the fuzzy adaptation block (F-AB) based on a specific 
fuzzy adaptation strategy (see also the results of De Silva (1991) and Zhao, et 
al. (1993)). 
 The structure of a CS comprising a Q-C digital PI-C (in incremental 
version (9)) with fuzzy adaptation of the parameters {kC, Ti} or {KP, KI} as 
function of ek and ∆ek is presented in Fig.6-a. This Q-C digital PI-C has at 
least two control features: 

- firstly, the integral term, KI⋅ek, mainly affects the overshoot; therefore, 
the value of KI is adjusted as function of the control error; 

- secondly, the proportional term, KP⋅∆ek, affects both the first settling 
time / the rise time and the overshoot; the increase of KP results in the 
increase of the overshoot and in the decrease of the first settling time. 
 In accordance with these features, the F-AB can be defined and 
designed by taking into account the following aspects: 

- the F-AB1 module adjusts the coefficient KP, and the F-AB2 module 
adjusts the coefficient KI; both modules of the F-AB admit as inputs 
the LVs ek and ∆ek; each input LV has 3 or 5 LTs with triangular type 
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m.f.s having initial distribution with an overlap of 1 (Fig.6-b); the 
specific parameters are {Be

P, B∆e
P} and {Be

I, B∆e
I}, respectively; 

 
Figure 6. CS with fuzzy adaptation of the parameters of a Q-C digital PI-C 

- the LTs corresponding to the output LVs, KP and KI, respectively, 
have regularly or non-regularly initially distributed singleton type 
m.f.s (Fig.6-c); the specific tuning parameters are {BP

S, BP
M, BP

B} and 
{BI

S, BI
M, BI

B}, respectively; 
- the rule base has to be defined by taking into account the particular 

features of the application involved. 

5.2 PID fuzzy predictive controllers 
 The PID fuzzy predictive controllers (defined here in the sense given 
by Tzafestas (1985)) can be developed by starting with the incremental 
version of the Q-C digital PID controller (PID-C): 

 kDkPkIk eKeKeKu 2∆+∆+=∆ , 

 211
2 2 −−− +−=∆−∆=∆ kkkkkk eeeeee , (19) 

where ∆2ek represents the second increment of control error, and {KP, KI, 
KD} are the parameters of the Q-C digital PID-C. These parameters can be 
derived from the parameters of the conventional continuous PID-C by a 
discretization method. 
 Two versions of PID fuzzy predictive controllers have been developed by 
the authors, the PID fuzzy predictive controller with first order prediction, 
and the PID fuzzy controller with second order prediction, based on the 
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prediction of the control error. The approach is quite different from that 
usually known under the name of fuzzy predictive control, which mainly deals 
with the use of fuzzy goals and fuzzy constraints in predictive control 
(Skrjanc, et al., 1996). 
 The PID fuzzy predictive controller with first order prediction is designed 
by starting with the prediction of the control error defined by: 

 212 −− −⋅= kkk eee , (20) 

and on the substitution of it into (19). The result is in the discrete time 
equation (21): 
 )( 11 −− ⋅+∆⋅=∆ kkPIk eeKu β , (21) 

with the parameters KPI and β computed by Precup and Preitl (1994). 
 This version of PID fuzzy controller is characterised by the fact that (21) 
is similar to the discrete time equation of a Q-C digital PI-C, (9). Therefore, 
an FC approximately equivalent to the controller characterised by (21) can 
be designed; this FC has two input LVs (ek–1 and ∆ek–1) and one output LVs 
(∆uk), and the rest of elements are as in Sections 3 and 4. 
 The PID fuzzy predictive controller with first order prediction is designed 
by starting with the prediction of the control error in terms of: 

 321 5.025.2 −−− ⋅+⋅−⋅= kkkk eeee . (21) 

Then, the substitution of ek from (21) into (19) yields: 

 )(5.0 111
2

−−− ⋅+∆⋅+∆⋅⋅=∆ kkPIkPIDk eeKeKu β , (22) 

with KPID as in (Precup and Preitl, 1994). 
 The equation (22) can be transposed in a fuzzy manner (for the sake of CS 
performance enhancement) by two ways resulting in two versions of FCs: 

- the first version: ∆u k is obtained by the addition of the crisp term 
1

25.0 −∆⋅⋅=∆ kPID
c
k eKu  to the increment of control signal I

ku∆  given 
by the PID fuzzy predictive controller with first order prediction 
presented before; 

- the second version: the term c
ku∆  can be provided by another FC 

resulting in a parallel connection of two FCs. 
 Both PID fuzzy predictive controllers can be implemented in either 
Mamdani versions or Takagi-Sugeno ones, and their design is performed by 
using the results from Section 3 and Section 4. 

6. Case study; implementation aspects 

 The case study corresponds to the class of CPs with the transfer 
functions: 
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 [ ])1(/)( Σ+= sTsksH PP    (a),  [ ])1)(1(/)( 1 Σ++= sTsTsksH PP    (b),(23) 

with TΣ – small time constant or time constant corresponding to the sum of 
parasitic time constants, TΣ < T2 < T1, which characterize well enough many 
control applications with electrical drives playing the role of CPs. 
 The goal of the case study is to design a Takagi-Sugeno PI-FC based on 
two methods for optimal tuning of controller parameters meant for 
controlling the low order benchmarks (23) with integral character, by taking 
into consideration the conventional CS structure (Fig.6, with a certain 
controller in the framed part). 
 The classical design approach is the ESO method by Preitl and Precup 
(1999) providing a PI or a PID controller that can ensure very good CS 
performance. In both cases, the open-loop and closed-loop transfer functions 
with respect to the reference input (w) have unified forms with the design 
parameter β chosen by the designer as a compromise between desired all 
control system performance. 
 An example of digital simulation results of the designed CSs with respect 
to w ensured by the Takagi-Sugeno PI-FC in comparison with the PI-C is 
illustrated in Fig.7 when controlling the benchmark (23), with kP = 1 and TΣ 
=1 sec. 
 Regarding the adaptive control structure in Fig.6 employing Mamdani PI-
FC there appear problems at the implementation because the parameters of 
the C are modified. 
 For ensuring a bump-less transfer from a digital PI-C to another one with 
different parameter sets, there are previously computed the “past values” 
which are necessary to the digital PI-C having the new set of parameters, 
Fig.8, with (Preitl and Precup, 2001): 

- for the old digital PI-C: 

 11 )( −− ⋅−⋅++= kIkIPkk eKeKKuu , (24) 

- for the new digital PI-C: 

 1
***

1 )( −− ⋅−⋅++= kIkIPkk eKeKKuu , (25) 

where {KP, KI} represent the parameters of the old digital PI-C, {KP
*, KI

*} 

 
Figure 7. Digital simulation results for CSs with PI-C and Takagi-Sugeno PI-FC 
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Figure 8. Transfer from the old digital PI-C to the new one 

are the parameters of the new digital PI-C and {ek -1
*} stand for the new 

initial conditions (“past values”). 
 This is a general implementation problem which appears also in variable 
structure Mamdani FCs. As a matter of principle, in the case of Takagi-
Sugeno FCs this problem is reported to be guaranteed by the FC operation 
principle itself. However, in the case of Mamdani FCs the relations (24) and 
(25) can be seen as linear equivalents of the FCs over the past and actual 
sampling interval (with appropriately computed parameters), and this is a 
version to ensure a bump-less transfer from one FC to another. 

7. Conclusions 
 The paper presents some aspects regarding attractive systematic design 
approaches to the development of FCs with dynamics offering design and 
implementation recommendations. For some applications the FCS 
performance indices are approximately guaranteed by the design methods. 
 The presented transparent methods, focussed on PI-FCs, enable the 
design of other FCs with dynamics including the PD and the PID ones. All 
presented PI fuzzy controllers can be extended without any difficulties to 
PID fuzzy controllers due to the fact that the conventional PID-C can be 
expressed – in some conditions – as a series connection of two conventional 
controllers, a PD one (implemented in fuzzy manner like the PI-FC but 
without the integration of controller output) and a PI one; such a solution 
reduces strongly the dimension of the rule base in comparison with the 
situation of PID fuzzy controllers with three input LVs. 
 The case study can correspond to the speed control of a separately excited 
DC drive, and validates the design approaches and controller structures. 
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Abstract Linear canonical (Hamiltonian) systems are familiar to the engineering
community both from Rational Mechanics and Control. In Rational
Mechanics an “evergreen” problem is that of the λ-zones of stability
in connection with parametric resonance while in Control these systems
belong to the field of Linear Quadratic Theory, being strongly connected
to Matrix Riccati Equation. In both cases some robustness problems
are met but they deal with different classes of systems: totally stable in
the first and hyperbolic in the second case.
The present survey gives an account of these topics especially of their
discrete-time counterpart.

Keywords: Hamiltonian systems, periodic coefficients, robustness

1. Introduction. Motivation and basic problems
Recently more attention is paid again to the theory of linear canon-

ical/Hamiltonian systems, with a special reference to the discrete time
case. There are several reasons for such an attention and we shall men-
tion here but a few. We start with a topic that is familiar to control
engineers - the linear quadratic control theory. More precisely, let us
consider the differential controlled system

ẋ = A(t)x + B(t)u(t) , x(t0) = x0, (1)

and an associated integral index

Jx0,u(t0, t1) =
∫ t1

t0

F(t, u(t), x(t))dt + G(x(t1)), (2)

297
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where the quadratic forms F and G are defined as

F(t, u, x) = u∗K(t)u + u∗L(t)∗x + x∗L(t)u + x∗M(t)x
(3)G(x) = x∗Gx,

the matrices K(t), M(t), G being Hermitian. The integral in (2) is
viewed as defined along the pairs (u , x) satisfying (1). Two basic
problems are stated for the system defined by (1), (2) and (3)

i) the Liapunov function problem : find a quadratic form V(t, x) =
x∗H(t)x such that there exists some δ > 0 in order that

x∗Ḣ(t)x + (A(t)x + B(t)u)∗H(t)x + x∗H(t)(A(t)x + B(t)u)
≥ −F(t, u, x) + δ(|x|2 + |u|2) , ∀x ∈ C

n, u ∈ C
m;(4)

ii) the optimization problem of minimizing (2) along all admissible
pairs satisfying (1).

These two problems, see, e.g. (Yakubovich, 1986;1991) are in fact con-
nected with some very actual problems in control theory : optimal sta-
bilization (problem ii) with G = 0 and t1 → ∞), stability radius and
absolute stability, forced oscillations a.o..

The above mentioned topics are connected with matrix Riccati dif-
ferential equation and it is a well established fact that the Riccati dif-
ferential equation is associated to a linear canonical (Hamiltonian in
the complex coefficient case) system. The discrete-time counterparts of
these topics are also well known to the researchers, especially the Riccati
equation occurring from the dynamic programming approach to the op-
timization problem (Halanay, 1962; Halanay, 1963; Tou, 1963; Halanay
and Răsvan, 2000).

As pointed out by Yakubovich (1991) there are several other problems
leading to Hamiltonian systems : non-oscillatory/oscillatory behavior in
differential equations, some self-adjoint boundary value problems, total
stability of linear Hamiltonian systems, parametric resonance.

Especially oscillation and boundary value problems are now studied in
the discrete-time framework due to the efforts of Erbe and Yan (1992a;
1992b; 1993; 1995), Bohner(1996), Bohner and Došlý(1997), Bohner,
Došlý and Kratz (to appear); see also the books (Ahlbrandt and Peter-
son, 1996; Kratz, 1995).

Parametric resonance represents an interesting applied topic that has
to be viewed in the context of the extensions of the results concerning
Hill equation and of some classical results due to Žukovskii(1891/1893)
and Liapunov(1899a; 1899b).

These topics send all to the theory of λ-zones of stability for lin-
ear Hamiltonian systems which has been considered in the monumen-
tal paper of M.G. Krein(1955). Other references are the survey of
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Krein and Yakubovich(1963) and the monograph by Yakubovich and
Staržinskii(1972).

The extension of the theory of λ-zones to the discrete-time case is an
urgent task and it is in progress (Halanay and Răsvan, 1999; Răsvan,
2000; Răsvan, 2002).

The two main topics mentioned here - the one connected to the linear
quadratic theory and the other one concerned with λ-zones - require
properties of the associated Hamiltonian systems that are quite different
in their nature. For this reason we shall present in this survey a model
problem for each case.

2. Forced oscilations in systems with sector
restricted nonlinearities

The study of forced oscillations in discrete-time affine systems is mo-
tivated by such applications as digital signal processing by nonlinear
signal processors (Wade, 1994). Here also the ”almost linear behav-
ior” i.e. existence of a unique bounded on the whole real axis solution
that is exponentially stable and of the same type as the forcing term
is of interest. We would like to insist on almost periodic signals since
they correspond to modulated signals; in the discrete-time case almost
periodic sequences (discrete signals) are obtained in a natural way by
sampling periodic signals when the sampling period and the period of the
continuous time signal are in an irrational ratio (Halanay and Wexler,
1968).

We shall consider here the system
xk+1 = Akxk − bkφk(c∗kxk) + fk (5)

under the following basic assumptions: i) the matrix sequences {Ak}k,
the vector sequences {bk}k, {ck}k and the sequence {φk(·)}k are N -
periodic sequences; ii) φk(σ) are continuous with respect to σ and satisfy

0 ≤ φk(σ1) − φk(σ2)
σ1 − σ2

≤ Φ (6)

for any σ1 �= σ2 and k = 0, N − 1; iii) fk has bounded components for
all integers k, possibly periodic or almost periodic. Also in the periodic
case the period of fk may equal N , the period of system’s coefficients,
but this is not compulsory.

In order to state the main result on discrete-time systems, we need
introduction of the following linear discrete-time Hamiltonian system:

xk+1 = (Ak − 1
2Φ

bkc
∗
k)xk − 1

Φ
bkb

∗
kpk+1

pk = − 1
4Φ

ckc
∗
kxk + (Ak − 1

2Φ
bkc

∗
k)

∗pk+1.
(7)
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We may now state:

Theorem 1. Consider system (5) under the basic assumptions i) - iii)
and assume additionally the following: iv) the multipliers of Ak are in-
side the unit disk D1 of the complex plane i.e. Ak defines an exponentially
stable evolution; v) the triple (Ak, bk, ck) and Φ are such that

det(Ak − 1
2Φ

bkc
∗
k) �= 0, 0 ≤ k ≤ N − 1. (8)

vi) the Hamiltonian system (7) is exponentially dichotomic and strongly
disconjugate (non-oscillatory).

Then there exists a bounded sequence satisfying (5) for all k ∈ Z,
which is periodic if fk is periodic and almost periodic if fk is almost
periodic. Moreover this solution of (5) is exponentially stable.

An explanation of the terms is here necessary : a linear periodic
Hamiltonian system with the general form

yk+1 − yk = Bkyk + Dkzk+1 (9)
zk+1 − zk = −Akyk − B∗

kzk+1 , Ak = A∗
k, Dk = D∗

k

is called exponentially dichotomic if its multipliers are not located on the
unit circle. Let y, z be m-dimensional and consider the m linearly in-
dependent solutions x1

k, . . . , xm
k corresponding to the multipliers which

are located inside the unit disk (here x is the 2m-column vector hav-
ing y and z as component vectors). If the m × m matrix (y1

k . . . , ym
k )

has rank m for k = 0, 1, . . . , N − 1, the Hamiltonian is called strongly
disconjugate.

Let us remark that if the Hamiltonian system (7) is such (i.e. expo-
nentially dichotomic and strongly disconjugate) then it can be shown
(Halanay and Ionescu, 1994) that the associated discrete-time Riccati
matrix equation

Hk − A∗
kHk+1Ak −

−(
1
Φ

− b∗kHk+1bk)−1(
1
2
ck − A∗

kHk+1bk)(
1
2
ck − A∗

kHk+1bk)∗ = 0 (10)

has a N -periodic global solution such that

1
Φ

− b∗kHk+1bk > 0 (11)

and this periodic solution is stabilizable in the following sense: if the
controlled system

xk+1 = Akxk + bkµk (12)
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is considered, by choosing the control (input) sequence as follows

µk = −(
1
Φ

− b∗kHk+1bk)−1(
1
2
ck − A∗

kHk+1bk)∗xk (13)

the ”closed loop” linear system

xk+1 = [Ak − bk(
1
Φ

− b∗kHk+1bk)−1(
1
2
ck − A∗

kHk+1bk)∗]xk (14)

is exponentially stable.
Let us remark also that exponential dichotomy and strong discon-

jugacy are robust with respect to system’s coefficients perturbations
(Yakubovich, 1990; 1991). This property is important for computa-
tional purposes: the matrix Riccati equation (9) may be replaced by the
discrete-time Riccati inequality

Hk − A∗
kHk+1Ak −

−(
1
Φ

− b∗kHk+1bk)−1(
1
2
ck − A∗

kHk+1bk)(
1
2
ck − A∗

kHk+1bk)∗ ≥ δI (15)

and this inequality by a Linear Matrix inequality (LMI)
(

Hk − A∗
kHk+1Ak

1
2ck − A∗

kHk+1bk

(1
2ck − A∗

kHk+1bk)∗ 1
φ
− b∗kHk+1bk

)

≥ δIn+1 (16)

together with the condition HN = H0. In fact this is a Dynamic Linear
Matrix Inequality but since we assumed tht Hk is N -periodic, a simple
dimension augmentation reduces (16) to a N(n+1)×N(n+1) LMI that
may be solved using the existing software.

3. Total stability and λ-zones. The second order
system

Total stability means boundedness of all solutions on R (Z). For linear
canonical systems total stability analysis goes back to Žukovskii(1891/
1893) and Liapunov(1899a; 1899b) who considered the simplest case of
a scalar equation

y
′′

+ λ2p(t)y = 0, (17)

where p(t) is T -periodic and λ is real. Obviously this reduces to the
simplest canonical system.

We call λ0 a λ-point of stability of (17) if for λ = λ0 all solutions of
(17) are bounded on R. If moreover all solutions of any equation of (17)
type but with p(t) replaced by p1(t) sufficiently close to p(t) (in some
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sense) are also bounded for λ = λ0 then λ0 is called a λ-point of strong
(robust) stability.

Remark that we might take p1(t) = λp(t) with λ �= λ0. In this case it
was established by Liapunov himself(Liapunov, 1899a; 1899b) that the
set of the λ-points of strong stability of (17) is open and if it is nonempty
it decomposes into a system of disjoint open intervals called λ-zones of
strong stability.

Equation (17) belongs to the more general class of linear periodic
Hamiltonian systems described by

ẋ = λJH(t)x (18)

with H(t) a T -periodic Hermitian 2m × 2m matrix and

J =
(

0 Im

−Im 0

)

. (19)

For this system the results of Liapunov have been generalized by M.
G. Krein (1955), Gelfand and Lidskii (1955), V. A. Yakubovich and
many other; the final part of this long line of research was the book
of Yakubovich and Staržinskii(1972). As pointed out by Krein and
Yakubovich(1963) this research is motivated by various problems in con-
temporary physics and engineering (e.g. dynamic stability of structures,
parametric resonance both in Mechanical and Electrical Engineering,
Quantum-Mechanical treatment of the motion of the electron in a peri-
odic field - see the book of Eastham(1973) - and other).

There exist discrete counterparts of the results concerning total stabil-
ity and λ-zones; the research is in progress (Halanay and Răsvan, 1999;
Răsvan, 2000; Răsvan, 2002).

Let us remark that the development of this research which follows
closely the line of M.G. Krein is top-down i.e. from most general frame-
work to its applications. Here we shall present one of the simplest cases
aiming to a better understanding of various generalizations. Consider
the real scalar version of (9) but with a parameter λ

yk+1 − yk = λ(bkyk + dkzk+1) (20)
zk+1 − zk = −λ(akyk + bkzk+1)

with ak, bk, dk being real and N -periodic. If we denote x = col(y , z)
then (20) may be written as the recurrence xk+1 = Ck(λ)xk with Ck(λ)
defined by

Ck(λ) =
(

1 −λdk

0 1 + λbk

)−1(1 + λbk 0
−λak 1

)

= (21)

=
1

1 + λbk

(
(1 + λbk)2 − λ2dkak λdk

−λak 1

)

.
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Obviously this is a matrix with rational items, having a real pole at
λ = −1/bk. At the same time det Ck(λ) ≡ 1 hence it is an unimodular
matrix. As known, for periodic systems the structure and the stabil-
ity properties are given by system’s multipliers - the eigenvalues of the
monodromy matrix UN (λ) = CN−1(λ) . . . C1(λ)C0(λ). As a product of
rational unimodular matrices UN (λ) is also rational and unimodular (un-
like the continuous-time case when it is an entire matrix function). It
follows that the characteristic equation of UN (λ) in this case is

�2 − 2A(λ)� + 1 = 0, (22)

where 2A(λ) = tr(UN (λ)) - the trace of the unimodular monodromy
matrix of (20); the functionA(λ) is called characteristic function of the
canonical system. Its properties are essential for defining and computing
the λ - zones. In the continuous time case A(λ) is an entire function while
in the case of (20) it is a rational function with its poles the real numbers
−1/bk, k = 0, N − 1 (these poles may not be distinct). In the following
we shall see, once more, that not all properties of A(λ) in the continuous
time case are valid mutatis mutandis in the discrete time case.

In the following we shall assume that (20) is of positive type in the
sense of Krein (1955) i.e. Hk ≥ 0,∀k,

∑N−1
0 Hk > 0. This positivity

assumption allows obtaining some basic properties of the characteristic
function A(λ) and of system’s multipliers - the roots of (22)

i) all zeros of the rational function A(λ) − α, where |α| ≤ 1, are real
and for |α| �= 1 are simple i.e. A

′
(λ) �= 0 for those λ such that

|A(λ)| < 1 ; the roots of A(λ) ± 1 are at most double ;
ii) the non-real multipliers with |�| = 1 (but � �= ±1) are of definite

type in the sense of Krein (1955) i.e. (Ju, u) �= 0 where ( , )
denotes the usual Euclidean scalar product, u is the eigenvector
associated to the multiplier and J , defined by (19), is taken for
m = 1.

Since the two non-real multipliers are conjugate, their eigenvectors are
such: if �(λ) has u as eigenvector, then �(λ) has ū as eigenvector. We
deduce that one multiplier is K-positive i.e. with (Ju, u) > 0 while the
other one is K-negative i.e. with (Jū, ū) < 0. (The term of K-positive
was coined by Ekeland(1991); the original terms of Krein were 1st kind
for K-positive and 2nd kind for K-negative).

There are also other properties of A(λ) and of F (λ) = A2(λ)−1 which
depend strongly on the structure of these functions. Generally speaking,
the elements of UN (λ) - the monodromy matrix - are rational functions
with −b−1

k as real poles. Using the analysis of A(λ) and F (λ) around
λ = 0 and the properties mentioned above we obtain
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A(λ) =
(1 − λ/α1)(1 − λ/α2) . . . (1 − λ/αK)
(1 + λb1)µ1(1 + λb2)µ2 . . . (1 + λbr)µr

(23)

F (λ) = A2(λ) − 1 = a2λ
2 (1 − λ/λ1)ν1(1 − λ/λ2)ν2 . . . (1 − λ/λq)νq

(1 + λb1)µ1(1 + λb2)µ2 . . . (1 + λbr)µr
,

where a2 < 0, νi ≤ 2 and
∑r

1 µi = N . We shall have

d2

dλ2
(ln A(λ)) =

A
′′
(λ)A(λ) − (A

′
(λ))2

(A(λ))2
=

= −
K∑

1

1
(λ − αi)2

+
r∑

1

µjb
2
j

(1 + λbj)2
.

If λ∗ is a critical point of A(λ) i.e. A
′
(λ∗) = 0 then

d2

dλ2
(ln A(λ)) |λ=λ∗=

A
′′
(λ∗)A(λ∗)
(A(λ∗))2

.

From now on we have to consider two different cases.
i) µj = 0, ∀j i.e. A(λ) and F (λ) are entire functions of polynomial

type; this was also the case for continuous time Hamiltonian systems
analyzed by Krein (1955), Yakubovich (e.g. Yakubovich and Staržinskii,
1972) and others. For any critical point we shall have A

′′
(λ∗)A(λ∗) < 0;

the critical points are extrema - maxima or minima - and |A(λ∗)| ≥ 1;
remark that in any case λ∗ = 0 is a maximum of A(λ), A(0) = 1.

Let the non-zero roots of F (λ) with their multiplicities (at most 2
each) be ordered as follows

. . . < λ−4 ≤ λ−3 < λ−2 ≤ λ−1 < 0 < λ1 ≤ λ2 < λ3 ≤ λ4 < . . . (24)

the sequence being obviously finite. The graphic of A(λ) is as in fig. 1
and its properties may be summarized as follows

Theorem 2. Let bk = 0, ∀k; all zeros of the polynomial A2(λ) − 1 are
real and among them at least one is positive and one negative. These
zeros may be indexed as in (24) and we have F (λ) as in fig.1. On any in-
terval (λ2k, λ2k+1), k ≥ 0 or (λ2k−1, λ2k), k ≤ 0 the function (−1)kA(λ)
is increasing and −1 < A(λ) < 1. On any interval (λ2k−1, λ2k), k ≥ 1
or (λ2k−2, λ2k−1), k ≤ 0 two cases are possible : either (−1)kA(λ) > 1
on that interval and the interval contains a maximum of (−1)kA(λ) and
only one, or λ2k−1 = λ2k(λ2k−2 = λ2k−1) and then the maximum is
(−1)kA(λ2k−1) = 1.
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Figure 1. The graphic of an entire A(λ)

If we use the formulae for the multipliers - roots of (22) - namely

�1,2(λ) = A(λ) ±
√

A2(λ) − 1

it is obvious that the intervals (λ2k, λ2k+1), k ≥ 0 or (λ2k−1, λ2k), k ≤ 0
correspond to stability zones (−1 < A(λ) < 1 imply �1,2(λ) = α ±

√

1 − α, |�j(λ)| = 1) while the other ones correspond to instability
zones; the “degenerate” intervals described by λ2k−1 = λ2k(λ2k−2 =
λ2k−1) are included in the stability zones.

ii) µj ≥ 1 i.e. assume that A(λ) and F (λ) are rational functions
with real poles. This situation is specific for discrete-time systems, show-
ing that not all properties of continuous-time systems migrate mutatis-
mutandis to discrete-time ones. Nevertheless some properties of A(λ)
and F (λ) from the previous case are indeed valid now also: the absence
of critical points of A(λ) within (−1, 1) and the multiplicity of the zeros
of F (λ) which is at most 2. But the poles of A(λ) induce the fact that
the behavior of A(λ) outside (−1, 1) might be more complicated than
previously. The fact that A(λ) is monotonic on (−1, 1) implies the al-
ternance of stability and instability zones in this case also. The central
zone - around the maximum A(0) = 1 - keeps its form and it is a stability
zone. Also any pole belongs to an instability zone but an instability zone
may contain more than one pole; instability zones without poles are also
possible as well as more than one critical point in the stability zone. A
possible representation of A(λ) is given in fig. 2. We may state

Theorem 3. Assume some bk �= 0. All zeros of A2(λ) − 1 are real,
among them being at least one positive and one negative. The non-zero
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roots of F (λ) - which are at most of multiplicity 2 - may be ordered as
in (24), their sequence being finite, and the representations of (23) are
valid. On any interval (λ2k, λ2k+1), k ≥ 0 or (λ2k−1, λ2k), k ≤ 0 A(λ)
is monotone and −1 < A(λ) < 1 . On any interval (λ2k−1, λ2k), k ≥ 1
or (λ2k−2, λ2k−1), k ≤ 0 one of the following situations may occur :
a) the interval does not contain any pole of A(λ) and |A(λ)| > 1 but
with finite values; if the interval is just a point (λ2k = λ2k+1, k ≥ 0 or
λ2k = λ2k−1, k ≤ 0) this point corresponds to an extremum equal to ±1;
b) the interval contains at least a pole of A(λ) and such an interval may
contain extrema of A(λ) (but not compulsory).

Figure 2. The graphic of A(λ) having real poles

4. Multipliers’ “Traffic rules”
The term “multiplier motion” was introduced by M. G. Krein and

reflects a property called by him strong stability and which turns out
to represent for the contemporary control engineer a special (and very
interesting) case of robust stability (for a class of linear systems).

For a better explanation we shall start from the well known problem
of robust stability (in the sense of Liapunov) of some linear systems with
constant coefficients. The necessary and sufficient condition of stability
is given by the location of the roots of system’s characteristic equation
in C

− (for continuous-time systems) or inside the unit disk D1 ⊂ C (for
discrete-time systems). A well known fact - the continuous dependence
of the roots of a polynomial on its coefficients - is the basis of another
well known fact : sufficiently small perturbations of the coefficients do
not modify the half-plane to which the roots belong (or, in the other case,
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the roots do not leave the interior or the exterior of D1) ; for this reason
the exponential stability of linear systems with constant coefficients is
robust.

The same type of analysis is valid for linear systems with periodic
coefficients (both continuous and discrete-time) since their solutions also
have a structure which is defined by the roots of a certain characteristic
equation - the characteristic equation of the monodromy matrix - the
multipliers of the system. In both cases - continuous and discrete-time
- the multipliers have to be located inside the unit disk D1 ⊂ C in order
to have exponential stability.

Let us turn now to the Hamiltonian systems with periodic coefficients.
Here the multipliers have a certain symmetry: they occur in pairs - one
inside D1, another outside D1 . Consequently exponential stability is
not possible but only boundedness on R (Z) otherwise the system has
an exponential dichotomy (half of its linearly independent solutions tend
exponentially to 0 for
t → ∞ while half tend exponentially to 0 for t → −∞). This bound-
edness of solutions on R (Z) is called stability and, due to linearity,
it corresponds to (non-asymptotic) stability. Therefore all multipliers
have to be located on the unit circle, being either simple or of simple
type (with simple elementary divisors).

Generally speaking such a location is not robust with respect to per-
turbations of the coefficients: the roots of the equation have to jump
either inside D1 or outside D1 . But the symmetry which is specific to
Hamiltonian systems introduces some corrections to these simple facts.
Indeed, if the multipliers are all simple the stability is robust since they
cannot leave the circle under small perturbations because this would
break the above mentioned symmetry.

If in some point of the unit circle ∂D1 = {z ∈ C|z = eθ} there is a
multiplier of multiplicity larger than 1 it could leave the circle without
affecting the symmetry since the multiple multiplier would split. But
this representation is far of being complete: speaking about multiplier
“motion” we viewed them just as points in C - a purely geometric vision.
In fact it is necessary that these points (complex numbers) were mul-
tipliers of a neighboring Hamiltonian system with respect to the basic
one. But such a perturbation is not always possible; in fact we require
existence of sufficiently small perturbations which preserve the Hamil-
tonian character of the system and this requirement depends essentially
on the kind of the multipliers that coincide at some point of ∂D1.

If these multipliers are of different kinds - such perturbed Hamilto-
nians do exist. But if they are of the same kind i.e. the non-simple
multiplier is definite (K-positive or K-negative, as well as its conjugate
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which has the opposite kind) then such a perturbed Hamiltonian - which
would imply the leaving of the unit circle ∂D1 - cannot exist.

We deduce that if one would imagine a continuous perturbation of
the Hamiltonian leading to an “encounter” of multipliers of the same
kind on ∂D1, they could not “jump” from the circle; on the contrary,
if the “encounter” is of multipliers of different kinds resulting in a non-
simple multiplier of mixed type, a certain perturbation (whose existence
is now ensured) would imply leaving of the circle and destabilizing the
Hamiltonian system.

We may conceive some kind of kinematic representation: since any
2m - dimensional strongly stable Hamiltonian system has exactly m
multipliers of one kind and m of the opposite, they might be numbered in
such a way that a multiplier with given number (“label”) would “move”
continuously on ∂D1 when the Hamiltonian would be perturbed by some
admissible perturbation. In their motion on the circle (fig. 3a) these
multipliers obey the so-called “multipliers’ traffic rules” formulated by
Krein (1955) :

κ1) if two multipliers of the same kind “cross” on ∂D1 they cannot
“jump” from the circle since, due to the spectral symmetry (Lia-
punov - Poincaré theorem) they should reach one the inside and
the other the outside of D1 ; but since they are of the same kind
they could reach only one side. This is a direct consequence of
Theorem 1.2 of (Krein, 1955) which gives also a sufficient condi-
tion of strong stability : all multipliers should be located on the
unit circle and be of definite kind (the necessity of this condition
has been proved later by Gelfand and Lidskii (1955).

κ2) if two multipliers of different kinds “cross” on ∂D1 then spectral
symmetry does not restrict any longer the “leave” of the unit circle.

5. The multiplier traffic in the scalar case
We consider again the second order system of Section 3. This system

has 2 multipliers and if λ belongs to a stability zone i.e. |A(λ)| < 1 then
one of them is K-positive and the other one K-negative. Let λ > 0 and
λ ∈ (λ2k, λ2k+1). For the K-positive multiplier we shall have (Yakubovich
and Staržinskii, 1972; Răsvan, 2002)

ϕ
′
1(λ) = − 1

(Ju1(λ), u1(λ))

N−1∑

0

[

ak|y1
k(λ)|2 + 2bk�(y1

k(λ)z1
k+1(λ))

+ dk|z1
k+1(λ)|2

]

(25)
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and therefore ϕ
′
1(λ) < 0 ; here ϕ1(λ) is the phase of the multiplier

�1(λ) = exp(ϕ1(λ)). It follows that the multiplier moves clockwise on
the lower semi-circle of ∂D1 , from +1 to −1 if A(λ) decreases from +1
to −1 and on the upper semi-circle from −1 to +1 if A(λ) increases
from −1 to +1. The K-negative multiplier moves counter-clockwise on
the complementary semi-circle.

Let now λ belong to an instability zone i.e. |A(λ)| > 1. The two
multipliers are real, given by the formulae of Section 3 ; moreover

d�1

dA
= 1 +

A√
A2 − 1

> 0,
d�2

dA
= 1 − A√

A2 − 1
< 0. (26)

These equations show that the multipliers move on the real axis outside
or inside the unit disk, keeping the well known symmetry with respect
to the unit circle. We have now to consider separately the two cases
analyzed previously at Section 3:

i) if A(λ) is a polynomial then in any instability zone (λ2k−1, λ2k)
it has a unique extremum. When λ covers this instability zone the
multipliers leave the encounter point (A(λ2k−1), 0) from ∂D1 to move
outside and inside the unit disk on the real axis up to some extremal
positions and further to return to the same point of the circle since
(A(λ2k−1), 0) = (A(λ2k), 0). Then the motion will continue on the circle
since a new stability zone follows. Since a stability zone with increasing
A(λ) is followed by an instability zone and next by another stability
zone with decreasing A(λ) a.s.o. it is obtained the image of a continuous
motion of the two multipliers which move each on its own semi-circle,
meet in (±1, 0), leave the circle remaining on the real axis inside and
outside the unit disk, return to the same point and follow the motion on
the other semi-circle preserving the sense of motion (fig.3b). If λ2k is an
extremum i.e. A

′
(λ2k) = 0 the multipliers continue the motion on the

circle since λ remains in a stability zone;
ii) if A(λ) is rational then an instability zone may contain poles or may
be pole-free. Assume first that the instability zone is such : in this case
the multiplier traffic is exactly as previously.

Let now be a single pole of even multiplicity in the instability zone.
This case is much alike to the pole-free case but the “extremum” is in-
finite. The multiplier of first kind may reach the origin while that of
second kind may reach ±∞ returning to the splitting point and contin-
uing on the corresponding semi-circles.

If the single pole within the instability zone is of odd multiplicity
then the multiplier of first kind crosses the origin, the one of second
kind “jumps from one infinity to the other” and the two multipliers
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Figure 3. Multiplier “traffic” (scalar case)

return to the point of the circle which is the diametrically opposed on
the real axis to the splitting one.

If within the instability zone there are several poles of A(λ) the mul-
tipliers may oscillate on the real axis in the sense that they tend to ±∞
(and 0), return approaching the circle, move away again etc. It is quite
clear the essential role of the summarized multiplicity of the poles within
the instability zone : if it is even the return to the circle passes through
the splitting point (fig.3c) and if it is odd - through the diametrically
opposed on the real axis (fig.3d).

6. The scalar equation
The discretized version of (17) is obtained by taking the symmetric

difference which preserves the Hamiltonian character

yk+1 − 2yk + yk−1 + λ2pkyk = 0. (27)

We may introduce

yk+1 − yk = λzk+1
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to obtain the system

yk+1 − yk = λzk+1 (28)
zk+1 − zk = −λpkyk

which is alike (20) but with bk = 0; in this case A(λ) is polynomial and
we may refer to fig.1 and to considerations made at Section 5, Case i).
Moreover, as pointed out in (Răsvan, 2002), the end points of the central
stability zone being the first(largest) negative and the first (smallest)
positive characteristic numbers of the skew -periodic boundary value
problem defined by (28) and the boundary conditions y0 = −yN , z0 =
−zN the estimates for the width of the central stability zone of Krein
type given in (Răsvan, 2002) are valid. Among them we would like
to mention the discrete version of the well known Liapunov criterion
formulated for (17)(Liapunov, 1899a).

Proposition 1. (Răsvan, 2002) All solutions of (27) are bounded pro-
vided pk ≥ 0,

∑N−1
0 pk > 0 and λ2 < 4/N(

∑N−1
0 pk).

In this way all assertions of Liapunov’s paper (Liapunov, 1899a) have
been extended to the discrete-time case using the general framework
developed in (Krein, 1955). Worth mentioning that even in this case the
Liapunov criterion is only a sufficient estimate of the stability zone while
not very conservative. The exact width of the central stability zone is
given by the inequality (Halanay and Răsvan, 1999).

λ2 < π/N(
N−1∑

0

pk).

As pointed out by Krein (1955), the results of Liapunov for the central
stability zone of (17) have been extended to the case when p(t) has values
of both signs (Liapunov, 1899b) but the cited reference contained no
proofs. The proofs are to be found following the line of (Krein, 1955)(see
Section 9 of this reference or (Yakubovich and Staržinskii, 1972)); the
discrete version can be obtained in an analogous way following the hints
contained in the cited references and using the results of (Halanay and
Răsvan, 1999).

7. Concluding remarks
We have surveyed throughout the paper some basic results on discrete-

time periodic Hamiltonian systems with particular reference to robust-
ness. The field is filled up with open problems. We do not have a com-
plete discrete analogue of the theorem of Yakubovich on linear quadratic
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theory (Yakubovich, 1986) and many of the Krein type results for the
theory of λ-zones and its applications are still under research for the
discrete-time case e.g. discrete-time parametric resonance.
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lag, Basel.



Discrete time linear periodic Hamiltonian systems and applications 313

[17] Halanay, A. and D.Wexler (1968). Qualitative Theory of pulse systems (in Ro-
manian). Editura Academiei, Bucharest ( Russian Edition by Nauka, Moscow,
1971).

[18] Kratz, W. (1995). Quadratic Functionals in Variational Analysis and Control
Theory, Mathematical Topics vol. 6, Akademie Verlag, Berlin.

[19] Krein, M.G.(1955). Foundations of the theory of λ-zones of stability of a canoni-
cal system of linear differential equations with periodic coeffi- cients (in Russian).
In In Memoriam A.A.Andronov, 413-498. USSR Acad. Publ.House, Moscow
(English version AMS Translations 120(2), 1-70, 1983).

[20] Krein, M.G. and V.A. Yakubovich (1963). Hamiltonian systems of linear differ-
ential equations with periodic coefficients (in Russian). In Proceedings of Int’l
Conference on Nonlin.Oscillations 1, 277-305. Ukrainian SSR Acad.Publ.House,
Kiev (English version AMS Translations 120(2), 139-168, 1983).
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Abstract The paper presents some connections between the solvability conditions 
expressed in terms of linear matrix inequalities and the ones using Riccati 
equations. It is shown that the methodology based on the Bounded Real Lemma, 
mainly used in the singular H ∞ control theory, can be successfully employed 
in nonsingular problems, providing solvability conditions in terms of the 
stabilizing solutions to algebraic Riccati equations. 
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1. Introduction 

 The H ∞  theory captured a major interest in control engineering and in 
applied mathematics over the last two and half decades. This interest is 
determined by the fact that the H ∞ optimization provides elegant solutions 
for many practical problems. Robust control, tracking, filtering, fault 
detection and identification are only some of the most known areas of 
applications. From an historical perspective, there were several directions 
in which the study of this problem has been orientated. Among them one 
can mention the methods based on operator theory and interpolation, 
mostly used in the early period (Adamjan et al., 1978), (Ball and Helton, 
1983), reduction to Nehari problems (Francis, 1986), polynomial 
approaches (Kwakernaak, 1986). A major contribution is brought by the 
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state-space results derived in (Glover and Doyle, 1988), (Doyle et al., 
1989) providing necessary and sufficient solvability conditions for the so-
called nonsingular H ∞  control problem. These conditions are expressed in 
terms of the stabilizing solutions of some game-theoretic algebraic Riccati 
equations (ARE). Explicit formulae and parameterization of the set of all 
solutions have been also obtained. State-space solutions for the nonsingular 
H ∞ control problem are also derived by a different technique using the 
generalized Popov-Yakubovich theory in (Ionescu et al., 1999), (Ionescu 
and Stoica, 1999). The singular  H ∞ control problem arises from the 
nonsingular case by removing some assumptions. The approaches develop 
in (Gahinet and Apkarian, 1994), (Boyd et al., 1994), (Iwasaki and 
Skelton, 1994) use a different methodology, based on the Bounded Real 
Lemma in inequality form. In this case the solvability conditions are 
expressed in terms of the feasibility of some specific linear matrix 
inequalities (LMI). In contrast with the nonsingular H ∞ control problem 
where the solvability conditions and the solution are derived starting from 
some particular problems fully exploiting the nonsingularity assumptions, 
in the singular case the developments are easily performed directly for the 
general case. Although efficient numerical algorithms to determine the 
solutions of the corresponding LMI have been developed, there are 
applications when ill conditioned numerical computations and instabilities 
occur (see e.g. (Gahinet and Apkarian, 1994)). In such cases it is preferable 
to replace, if possible, the conditions based on Riccati inequalities by 
Riccati equations for which several alternative algorithms to compute their 
stabilizing solutions are available.  
 The aim of this paper is to present some connections between the 
solvability conditions expressed in terms of LMI and the ones using ARE. 
It is shown that the general methodology based on the Bounded Real 
Lemma, mainly used in the singular H ∞ control theory, can be 
successfully employed in nonsingular problems, providing solvability 
conditions in terms of the stabilizing solutions to ARE.  

2. Problem formulation and preliminary results 
 Consider the generalized two-input, two-output system T  with the state 
space equations: 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 2 2

1 1 11 1 12 2

2 2 21 1 ,

x t Ax t B u t B u t

y t C x t D u t D u t

y t C x t D u t

⋅
= + +

= + +

= +

  (1) 

where ( ) nx t ∈R  is the state vector, 1
1 ( ) mu t ∈R  is the external input vector, 



On the connection between Riccati inequalities and equations in H ∞  353 

2
2 ( ) mu t ∈R  denotes the control variable, 1

1 ( ) py t ∈R  includes the regulated 
output variables and ( ) 2

2
py t ∈R  is the measured outputs vector. Then, the 

H ∞  control problem consists in finding a controller K  such that the 
resulting system obtained by (1) taking 2 2u Ky=  is internally stable and 

1 1u yT
∞
< γ , where 0γ >  is a given level of attenuation. 

1 1y uT  denotes the 

transfer function from 1u  to 1y  of the resulting system and the H ∞  norm of 
a stable system with the transfer function G(s) is defined as 

( ) ( )1/ 2
maxsup ( ) ( )TG s G j G j−∞<ω<∞∞

= λ − ω ω , max ( )λ ⋅  denoting the 

maximal eigenvalue of ( )⋅ . In the following, two preliminary results are 
stated. The first one is also known as the Bounded Real Lemma and an early 
proof of it is given in (Anderson and Vongpanitlerd, 1973). 

Lemma 1 (Bounded Real Lemma) Let ( ) ( ): , , ,H s A B C D=  be a stable 
system with , ,n n n m p nA B C× × ×∈ ∈ ∈R R R  and p mD ×∈R . Then the following 
assertions are equivalent: 
i) ( )H s

∞
< γ ; 

ii) There exists 0X >  such that: 

 

T T

T T 0 ;m

m

A X XA XB C
B X I D

C D I

 +
 −γ < 
 −γ    

iii) 2 T 0mI D Dγ − >  and the Riccati equation  

 ( )( ) ( )1T T 2 T T T T 0mA X XA XB C D I D D B X D C C C
−

+ + + γ − + + =   

has a stabilizing solution. 

 Based on the above result, the following theorem providing necessary and 
sufficient solvability conditions to the H ∞  control problem is proved in 
(Gahinet and Apkarian, 1994): 

Theorem 1  Consider the generalized system (1) and a scalar 0γ > . Then 
the following assertions are equivalent: 
i) It exists an kn -order controller such that the resulting system 

1 1u yT  is 

stable and 
1 1u yT

∞
< γ ; 

ii) There exist the symmetric matrices , , ,n nR S R > 0 S 0×∈ >R , such that: 
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1

1 1
1

11 1 1 11

12 1 11 12

1 11

0 0
0 0 0

0

T TT

p

T Tm mm

AR RA RC B
C R I D

I 0 IB D - I

    +     −γ <        γ    

N N

N N  (2) 

 
1

1 11

1 121 21

22 1 11 22

1 11

0 0
0 0 0

0 0

T TT

T T
m

p pp

A S SA SB C

B S I D
I IC D - I

 +   
    

−γ <    
    γ      

N N

N N  (3) 

 0, rank ,n n
k

n n

R I R I
n n

I S I S
   

≥ ≤ +   
   

 (4) 

where 11

12

 
 
 

N

N
 and 21

22

 
 
 

N

N
 denotes bases of the null spaces of the matrices 

2 12
T TB D 

   and [ ]2 21C D , respectively. 

 A crucial role for the further developments is played by the next 
proposition which proof can be found for example in (Gahinet, 1992): 

Proposition 1 If the pair ( ),C A where ,n n p nA C× ×∈ ∈R R  has no imaginary 
unobservable modes then the following assertions are equivalent: 
i) The Riccati type inequality 
 0T TAR RA RC CR Q+ + + <  (5) 

with 1 1 2 2
T T n nQ B B B B ×= − ∈R  symmetric has a symmetric matrix solution 

ˆ 0R > ; 
ii) The Riccati equation 

 0T TA X XA XQX C C+ + + =  (6) 

has a stabilizing solution X . 
If the conditions i) or ii) are accomplished then 1ˆ0 X R−≤ < . 

3. The nonsingular H ∞  control problem 
 In this section it is shown that the solvability conditions in the 
nonsingular H ∞  case expressed in terms of Riccati equations can be directly 
recovered via Proposition 1 by the general result stated in Theorem 1. 

Theorem 2  Assume that the following conditions hold: 
A1) 12 12 2

Trank D D m=  and 21 21 2
Trank D D p= ; 
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A2) The system ( )2 1 12, , ,A B C D  has no invariant zero on the imaginary axis, 
that is: 

 2
2

1 12
rank ,nA j I B

n m
C D
− ω 

= + ∀ω∈ 
 

R  . 

A3) The system ( )1 2 21, , ,A B C D  has no invariant zero on the imaginary axis, 
that is: 

 1
2

2 21
rank ,nA j I B

n p
C D
− ω 

= + ∀ω∈ 
 

R.  

Then the H ∞  control problem has an n -order solution if and only if: 

 
1 1

2 2
11 11 11 11

ˆ ˆ T T
p mI D D and I D Dγ > γ >  (7) 

and the game-theoretic Riccati equations: 

( ) ( )

( ) ( )
1 1

1 1

1 1
2 2

1 11 11 11 1 1 11 11 11 1

1 1
2 2

1 11 11 1 2 2 1 11 11 1

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0

T
T T T T

p p

T T T T T2
p p

A B D I D D C X A B D I D D C X

X B I D D B B B X C I D D C

− −

− −

   + γ − + + γ −      
 + γ − − + γ γ − =  

 (8) 

( ) ( )

( ) ( )
1 1

1 1

1 1
2 2

1 11 11 11 1 1 11 11 11 1

1 1
2 2

1 11 11 1 2 2 1 11 11 1 0

T T T T
m m

T T T T T2
m m

A B D I D D C Y A B D I D D C Y

Y C I D D C C C Y B I D D B

− −

− −

   + γ − + + γ −      
 + γ − − + γ γ − =  

 (9) 

have the stabilizing solutions 0X ≥  and 0Y ≥  respectively, satisfying the 
condition: 

 ( ) 2 ,XYρ < γ  (10) 

where ( )ρ ⋅  denotes the spectral radius of ( )⋅  and: 

 
( ) ( )

( )
( )

1 1

1

1

2 12 1 1 1 2 12 11 2 12

1 12 12 1 11 12 12 11

1 21 2 1 1 21 21

1 1 11 21 2 2 21 11 11 21 21

ˆ ˆ ˆ: , : , :
ˆ ˆ: , : ,

: , : ,

: , : , : .

2

p p

m

2 m

A A B D C B B B D D B B D

C I D D C D I D D D

A A B D C B B I D D

C C D D C C D C D D I D D

+ + +

+ +

+ +

+ + +

= − = − =

= − = −

= − = −

= − = = −

 (11) 
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Proof. The proof is based on Proposition 1 and on Theorem 1. Thus, 
Theorem 1 shows that the general H ∞  problem has a solution if and only if 
conditions (2)-(4) hold. In the particular case of the nonsingular H ∞  
problem studied in this section, a basis of the null space of the matrix 

2 12
T TB D 

   is given by: 

 11

12 12 2 12

0
,n

T T

I

D B U+

  
=    −    

N

N
 (12) 

where 12U  denotes a basis of the null space of 12
TD , that is 12 12 0TD U = . 

Then the inequality (2) yields: 

 

( )
( )

1

2 2 1 2 12 1

12 1 12 12 11

1 12

ˆ ˆ ˆ ˆ ˆ ˆ

0
ˆ

T T T

T T T T
2 12

T T
11 m

AR RA B B RC B U B

U C R B - U U U D

B D U I

 + − γ + γ
 
 + γ γ <
 
 −γ 

 (13) 

with 0R > . Further two properties of the matrix 12U  are further presented.  
According with the Singular Value Decomposition Theorem, it exists a 
unitary matrix 1 1p pU ×∈R  such that 

 
( )1 2 2

12 0 p m m

Σ
D U

− ×

 
=  

  
 , (14) 

where, by virtue of assumption A1, Σ  is nonsingular. Thus it results that: 

 ( )2 1 2

1
12 0 T

m p mD Σ U+ −
× −

 =    (15) 

and  

 
1 2

12

0
.

p m
U U

I −

 
=  

 
 (16) 

 Taking into account that U  is unitary, by the above equation it follows 
that  

 
1 212 12

T
p mU U I −=  (17) 

and 

 12 12 12 12 .TU U I D D += −  (18) 

 On the other hand, by (13) one deduces that  



On the connection between Riccati inequalities and equations in H ∞  357 

 
1

12 12 12 11

11 12

0.
T T

T
m

U U U D

D U I

 −γ
  <

−γ  
 

 Writing the Schur complement of the element (1,1) and taking into 
account (17) and (18), from the above inequality one obtains: 

 ( )1 1

1
11 12 12 11 0.T +

m pI D I D D D−−γ + γ − <  

 Based on the general properties of the pseudo-inverse one deduces that 

 ( ) ( )1 1 112 12 12 12 12 12

T+ + +
p p pI D D I D D I D D− = − −  , (19) 

which shows that the above inequality is equivalent with the first inequality 
(7). On the other hand, notice that 2 12

ˆ 0B U = . Using (17) and (18), the Schur 
complement of the element (2,2) of the matrix in the left side of (13) 
becomes: 

 
( ) ( )

( ) ( )

1

1

1 1 1

2 2 1
1 1 12 12 111

1 12 12 1

1 1
1 11 12 12 1 11 12 12 11

ˆ ˆ ˆ
ˆ

................... .................................. 0.
ˆ

T T
T +

pT +
p

T T + T +
p m p

AR RA B B
B RC I D D D

RC I D D C R

B D I D D C R I D I D D D

−
−

− −

 + − γ
 + γ −
 +γ −
 

< 
 

+ γ − −γ + γ − 
 
  

  

 Taking into account (19) and the notations (11) one directly obtains that 
the above inequality is equivalent with: 

 
1

1 1
2 2 1 1 1 1 11

1 1
1 11 1 11 11

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
0.ˆˆ ˆ ˆ ˆ

T T TT

T T T
m

AR RA B B RC C R B RC D

B D C R I D D

− −

− −

 + − γ + γ + γ
  <

+ γ −γ + γ  
 (20) 

 The Schur complement of the element (2,2) of the matrix in the left side 
of the above inequality has the property: 

 
( ) ( )

( ) ( )
1 1

1 1

1 1
2 2

1 11 11 11 1 1 11 11 11 1

1 1
2 2

1 11 11 1 1 11 11 1 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0.

T
T T T T

p p

T T T T T
p p

A B D I D D C R R A B D I D D C

RC I D D C R B I D D B B B

− −

− −

   + γ − + + γ −      
 +γ γ − + γ γ − − <  

 

 Denoting 1ˆ :R R−= γ , from the above inequality one obtains that: 
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( ) ( )

( ) ( )
1 1

1 1

1 1
2 2

1 11 11 11 1 1 11 11 11 1

1 1
2 2 2

1 11 11 1 1 11 11 1 2 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0.

T
T T T T

p p

T T T T T
p p

A B D I D D C R R A B D I D D C

RC I D D C R B I D D B B B

− −

− −

   + γ − + + γ −      

+γ γ − + γ − − <

.(21) 

 In the following one shows that the pair: 

 ( ) ( )1 1

1 1
2 22

11 11 1 1 11 11 11 1
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,T T T

p pI D D C A B D I D D C
− − 

γ − + γ −  
 

 (22) 

has no unobservable modes on the imaginary axis. Indeed, assuming that it 
exists ω∈R  such that 

 
( )

( )
1

1

1T T2
1 11 11 11 1

1
T2 2

11 11 1

ˆ ˆˆ ˆ ˆ ˆ
rank ,

ˆˆ ˆ

n p

p

j I A B D I D D C
n

I D D C

−

−

 ω − − γ − 
< 

 γ −  

 

by the above condition it results that: 

 

( )
( )

( )
( )

11

11

1 1T T2T T2 2 1 11 11 11 11 11 11 11

11
T2 2T2 2 11 11 111 11

1

ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
rank

ˆˆ ˆˆ ˆ

ˆ
rank .

ˆ

n pn p

pp

n

j I A B D I D D CI B D I D D

I D D C0 I D D

j I A
n

C

−−

−

   ω − − γ −γ −   
   
   γ −γ −     
 ω −

= < 
  

 

 Using the definitions of Â  and 1Ĉ  it results that: 

 ( )1

2 12 1

12 12 1

n

p

j I A B D C
rank n

I D D C

+

+

 ω − +
  <

−  
 

or equivalently, there exists ,nv v 0∈ ≠R  such that 

 ( )1

2 12 1

12 12 1

0.
n

p

j I A B D C
v

I D D C

+

+

 ω − +
  =
 − 

 

 On the other hand, from the above equation it follows that: 
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 2 12 1 2

1 12 12 1 12

0,
0

nj I A B D C B v

C D D C D

+

+

 − ω + −  
=   

−    
 

that is, 

 
2

2

1 12 12 1

0
0.

nn

m

Ij I A B
C D D C I+

 − ω + 
=   −    

 (23) 

 Since the vector: 

 
212 1 12 1

0
: 0,

0
n

m

I vv
w

D C I D C v+ +

    
= = ≠    − −      

 

by (23) it results that 

 2
2

1 12
rank ,nj I A B

n m
C D

− ω + 
< + 

 
 

contradicting thus the assumption  A2. Therefore the pair (22) has no 
imaginary unobservable modes and then, applying Proposition 1 for the 
inequality (21) it follows that the Riccati equation (8) has a stabilizing 
solution 0X ≥ . 
 The proof of the fact that the Riccati equation (9) has a stabilizing 
solution is similar and it is based on Proposition 1 together with the 
assumption A3. On the other hand, by Proposition 1 it also results that 

1 1ˆ0 X R R− −≤ < = γ and 1 1ˆ0 Y S S− −≤ < = γ . The first condition (4) in 
Theorem 2 is equivalent with 0nRS I− ≥ , from which (10) directly follows. 
The second condition (4) is automatically fulfilled for the case kn n= . The 
sufficiency part of the theorem simply results by the same steps of the 
necessity part, in reversed order. ■ 

4. A class of H ∞  controllers 
 The result presented in this section is inspired by the paper (Sampei et al., 
1990). It gives a strictly proper solution to the H ∞  control problem and it 
may be applied both in the singular and in the nonsingular case.  

Theorem 3 It exists an n -order strictly proper controller H ∞  controller 
( ): , , ,0k k kK A B C=  if and only if the two following conditions are 

accomplished 
i) 

1

2
11 11 0T

mI D Dγ − > , and 
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ii) There exist the matrices 2m nF ×∈R  and  2n pK ×∈R  such that:  
a) Either the Riccati equations: 

 ( ) 0F X =R  (24) 
and  
 ( ) 0K Y =S  , (25) 

where  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

2 2 1 1 12 11

1
2

11 11 1 1 12 11 1 12 1 12

: T T
F

TT TT
m

X A B F X X A B F XB C D F D

I D D XB C D F D C D F C D F
−

 = + + + + + + 

 × γ − + + + + + 

R

(26)   

and 

( ) ( ) ( ) ( )

( ) ( ) ( )( )
1

2 2 1 1 21 11

1
2

11 11 1 1 21 11 1 21 1 21

: T T T
K

T TT T T
p

Y A KC Y Y A KC YC B KD D

I D D YC B KD D B KD B KD
−

 = + + + + + + 

 × γ − + + + + + 

S

 (27) 

have the stabilizing solutions 0X ≥  and  0Y ≥ such that  

 ( ) 2XYρ < γ  (28) 

or, equivalently 
b) The Riccati inequalities  

 ( ) 0F X <R  (29) 

and 
 ( ) 0K Y <S  (30) 

have the solutions ˆ 0X >  and ˆ 0Y >  satisfying the condition  

 ( ) 2ˆ ˆXYρ < γ . (31) 

Moreover, if the conditions i) and ii) are satisfied then an H ∞  controller has 
the following realization in terms of the solutions to the Riccati inequalities 
(29) and (30) 

 

( ) ( )
( )

1
2

2 2

1
2

ˆ ˆ ˆ

ˆ ˆ

,

2
k n

2
k n

k

A A B F I YX KC YM

B I YX K

C F

−

−

= + + γ − γ −

= −γ γ −

=

 (32) 

where  
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( )

( ) ( )

( ) ( ) ( )1

2 12 1 12

1

21 1 12 11

1

11 11 1 11 1 12

ˆ:

ˆ ˆ ˆ

ˆ ˆ .

T T

T2
n k

T T T2
m F

M F B X D C D F

I YX Y B D B FD D

I D D B X D C D F X

−

−

 = + + 
 + γ − − +  

 × γ − + + −  R

 (33) 

Proof. Necessity. The condition i) immediately follows taking into account 
that 

1 1y uT
∞
< γ  implies   

 ( ) ( )1 1 2
max ,

T

R R R R R R R RC j I A B D C j I A B D− −   λ − ω − + ω − + < γ     

{ }∀ ω∈ ∪ ±∞R , from which making ω→∞ , it results that 

1

2T
R R mD D I< γ . Since 11RD D= , i) directly follows. Further one proves ii). 

Assume that it exists a strictly proper controller ( 0kD = ) solving the H ∞  
control problem for the generalized system (1). Then according with the 
Bounded Real Lemma it follows that it exists 0RX >  such that: 

 0Π <  , (34) 
where  

 
( )( )

( )
1

1
2: T T T

R R R R R R R R m R R

T T T
R R R R R R

Π A X X A X B C D I D D

B X D C C C

−
= + + + γ −

× + +
 (35) 

and 

 [ ]2 1
1 12 11

2 21
, , , .k

R R R k R
k k k

A B C B
A B C C D C D D

B C A B D
   

= = = =   
   

 (36) 

 Consider the partitions: 

 1
T T; , and ; ,n n n n

R R
S N R M

X S S X R R
N S M R

−× ×   
= ∈ = ∈   
   

R R . (37) 

 Without reducing the generality of the reasoning one can consider a 
solution 0RX >  of (34) such that the matrix M  introduced above is 
nonsingular. Indeed, if M  is singular one can always consider a small 
enough perturbation such that M  becomes nonsingular, 1

RX −  remains 
positive definite and condition (34) holds. Therefore, in the following it is 
assumed that M  is invertible. Define: 
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 : .
0n

R M
T

I
 

=  
 

 (38) 

 Since M  invertible, T  is invertible, too. Then the inequality (34) is 
equivalent with: 

 : 0.TΠ TΠT= <  (39) 

 Performing the partition 

 11 12
11

12 22

: 0, ,n n
T

Π Π
Π Π

Π Π
×

 
= < ∈ 
  

R  (40) 

direct algebraic computations using (35), (36), (38),  and the equations 
obtained from the equality 1

R RX X I− = , give: 

 

( ) ( )

( ) ( )
( ) ( ) ( )

1

11 2 2

1
2

1 1 12 11 11 11

1 11 1 12 1 12 1 12

T

T T
m

TT T

Π R A B F A B F R

B R C D F D I D D

B D C D F R R C D F C D F R

−

= + + +

 + + + γ − 
 × + + + + + 

  (41) 

and  

 
( ) ( ) ( )

( ) ( )
1

22 1 21 1 11

1
2

11 11 1 21 11 1 1 1,

T T

TT T T
m

Π S A KC A KC S S B KD C D

I D D B KD S D C C C
−

 = + + + + + + 

 × γ − + + + 

 (42) 

where the following notations have been introduced: 

 1 1: , : .T
k kF C M R K S NB− −= =  (43) 

 Since 0,Π <  it follows that 11 0Π <  and 22 0Π < . Further one can write 

11Π  given by (41) in the equivalent form: 

 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

1

1

1 1

1

1
2

2 1 11 11 11 1 12

1
2

2 1 11 11 11 1 12

1
2

1 12 11 11 11 11 1 12

1
2

1 11 11 1 0.

T T
m

T
T T

m

T T T
p m

T T
m

A B F B I D D D C D F R

R A B F B I D D D C D F

R C D F I D I D D D C D F R

B I D D B

−

−

−

−

 + + γ − +  

 + + + γ − +  
 + + + γ − +  

+ γ − <

 (44) 
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 Taking into account that 
1

2
11 11 0T

mI D Dγ − >  and 0R > , one deduces 
from (44) that the matrix  

 ( ) ( )
1

1
2

2 1 11 11 11 1 12
T T

mA B F B I D D D C D F
−

+ + γ − +  

is Hurwitz. Then applying Proposition 1 it results that the Riccati equation  

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1

1

1 1

1
2

2 1 11 11 11 1 12

1
2

2 1 11 11 11 1 12

1
2

1 11 11 1 1 12

1
2

11 11 11 11 1 12 0

T
T T

m

T T
m

TT T
m

T T
p m

A B F B I D D D C D F X

X A B F B I D D D C D F

XB I D D B X C D F

I D I D D D C D F

−

−

−

−

 + + γ − +  
 + + + γ − +  

+ γ − + +

 × + γ − + =  

 

has a stabilizing solution 10 X R−≤ < . Since the above equation coincides 
with (24) it follows that this equation has a stabilizing solution 0X ≥ . 
Further 22Π  given by (42) can be written in the equivalent form: 

 

( ) ( )
( ) ( )

( ) ( ) ( )

( )( ) ( )

1

1

1

1

1
2

22 1 21 11 11 11 1

1
2

1 21 11 11 11 1

1
2 2

1 21 11 11 11 11 1 21

1
2

1 21 1 21 1 11 11 1 0

T
T T

p

T T
p

TT T
p

T T T2 2
p

Π A KC B KD D I D D C S

S A KC B KD D I D D C

S B KD D I D D D B KD S

S B KD B KD S C I D D C

−

−

−
−

−
−

 = + + + γ −  
 + + + + γ −  

+ γ + γ − +

+ γ + + + γ γ − <
  (45) 

with 0S > . Applying again Proposition 1 it results that the Riccati equation: 

 

( ) ( )
( ) ( )

( )
( ) ( ) ( )

1

1

1

1 1

1
2

1 21 11 11 11 1

1
2

1 21 11 11 11 1

1
2

1 11 11 1

1
2 2

1 21 11 11 11 11 1 21 0

T
T T

p

T T
p

T T2
p

TT T
m p

A KC B KD D I D D C Y

Y A KC B KD D I D D C

YC I D D C Y

B KD I D I D D D B KD

−

−

−

−
−

 + + + γ −  
 + + + + γ −  

+ γ γ −

 + γ + + γ − + =    



ADVANCES IN AUTOMATIC CONTROL 364

has a stabilizing solution 10 Y S −≤ < . The above Riccati equation can be 
rewritten as 

 

( ) ( ) ( )

( ) ( )
( )( )

1

2 2
2 2 1 1 21 11

1
2 2

11 11 1 11 1 21

2
1 21 1 21 0.

T T T

T T T T
p

T

A KC Y Y A KC YC B KD D

I D D C Y D B D K

B KD B KD

−

−

−

 + + + + γ γ + + 

 × γ − γ + + 

+ γ + + =

 

 Multiplying the above equality by 2γ  and denoting : 2Y Y= γ , one directly 
obtains (25) and thus one concludes that it has the stabilizing solution 0Y ≥ . 
On the other hand, since 0RX > , it results that 0T

RTX T > . Taking into 
account again (37), and the equations obtained from the equality 

1
R R nX X I− =  one obtains: 

 0n

n

R I
I S
 

< 
 

, (46) 

from which it results 1R S −>  or equivalently, 1 1
nR S I− − < . Since, as shown 

earlier 10 X R−≤ <  and 10 : 2Y Y S− −≤ = γ < , the condition (31) in the 
statement directly follows. The inequalities (29), (30) and (31) follows by 
pre and post multiplication of (44) and (45) by 1R−  and 1S − , respectively. 
Sufficiency. Consider the nonsingular transform 

 ˆ
0

n n

n

I I
T

I
 

=  − 
 (47) 

and define 

 
( )

( )
2 1 2 1

2 1 2 1

ˆ ˆ ˆ
,

ˆ ˆ ˆ ˆR

Y Y X
X

Y X Y X

− −

− −

 γ − γ −
 =  − γ − γ −  

 (48) 

where ˆ 0X >  and ˆ 0Y >  satisfy (29), (30)  and (31). Then it follows that  

 
1

ˆ ˆ
ˆ ˆ .

ˆ ˆ
T

R 2

X X
TX T

X Y −

 −
=  

− γ  
 

 By a Schur complement argument, it results using (31) that ˆ ˆ 0T
RTX T >  

and therefore 0RX > . Consider now the controller with the state-space 
realization defined in (32) and (33). Computing ˆ ˆ ˆ: TΠ TΠT=  with T̂  defined 
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by (47) and with Π  having the expression (35), direct algebraic 
computations give: 

 
( )

( )2 1

ˆ 0
ˆ ,

ˆ ˆ ˆ0

F

1
F

X
Π

Y Y Y− −

 
 =  γ  

R

S
 

 Taking into account (29), (30) it follows that ˆ 0Π <  and thus 0Π < . Since 
0RX > , according with the Bounded Real Lemma it results that the strictly 

proper controller ( ), ,k k kA B C  is a solution to the H ∞  control problem. ■ 

5. Conclusions 
 The theoretical developments in Section 2 show that the well-known 
solvability conditions for the nonsingular H ∞  control problem can be easily 
obtained in a general form by Theorem 1 and Proposition 1. For 2

TF B X= −  
and 2

TK YC= − , (24) and (25) coincide with the Riccati equations derived in 
(Doyle et al., 1989).  
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Abstract We propose a numerically reliable computational approach for the design of
residual generators for fault detection and isolation filters. The new approach is
based on computing solutions of least dynamical orders of linear equations with
rational matrix coefficients in combination with special rational factorizations.
The main computational ingredients are the orthogonal reduction of the associ-
ated system matrix pencil to a certain Kronecker-like staircase form, the solution
of a minimal dynamic cover design problem, and the computation of stable and
proper rational factorizations with diagonal denominators. For all these com-
putations we discuss numerically reliable algorithms relying on matrix pencil
and descriptor system techniques. The proposed residual generator design ap-
proach is completely general, is applicable to both continuous- and discrete-time
systems, and can easily handle even unstable and/or improper systems.

Keywords: Fault detection, fault isolation, linear rational equations, rational factorizations,
numerical methods.

1. Introduction
In the model based fault diagnosis, the fault detection task is achieved by

detecting discrepancies between the outputs of the monitored plant and the
predictions obtained with a mathematical model. These discrepancies - called
also residuals - are indications of faults and are produced by special devices
called residual generators. From a system theoretic point of view, the resid-
ual generators are physically realizable systems having as inputs the measured
outputs and the control inputs of the monitored system, and as outputs the gen-
erated residuals. The residual generators are usually implemented as parts of
control algorithms or as independent monitoring procedures.

367
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Several algorithms underlying the design of residual generators require the
manipulation of rational matrices. For low dimensional systems, this is pos-
sible to some extent by using symbolic manipulation software as provided by
tools like Maple or Mathematica. However for large order systems, symbolic
computation is not anymore applicable because of tremendous manipulation
efforts, and therefore the use of numerical algorithms is the only possible op-
tion. The need to address the numerical issues encountered in designing fault
detection and isolation filters has been already recognized by (3). By using
recently developed numerically reliable descriptor system algorithms, many of
computational problems in the fault detection field can be addressed for high
dimensional systems.

We propose a new computational approach for the design of residual gen-
erators for fault detection and isolation filters based on solving linear equa-
tions with rational matrix coefficients. Additionally, rational factorization tech-
niques are employed to ensure the properness and stability of the resulting
residual generators. For the solution of these computational problems we pro-
pose numerically reliable algorithms relying on descriptor system techniques.
The main computational ingredient in solving linear equations with rational
matrices is the orthogonal reduction of the associated system matrix pencil to
a certain Kronecker-like staircase form. Using this form a solution can be eas-
ily constructed, without the need to explicitly invert any rational or polynomial
matrix. To determine stable and proper solutions of least dynamical orders,
minimal dynamic cover design techniques in combination with coprime fac-
torization procedures are employed. The proposed computational approach to
design residual generators for fault detection and isolation filters is completely
general, is applicable to both continuous- and discrete-time systems, and can
easily handle even unstable and/or improper systems. The design procedure of
residual generators can be easily implemented using the robust numerical tools
available in the DESCRIPTOR SYSTEMS Toolbox developed by the author1.

2. Design of fault detection and isolation filters
Consider the linear time-invariant system described by the input-output re-

lations

y(λ) = Gp(λ)u(λ) + Gf (λ)f(λ) + Gd(λ)d(λ), (1)

where y(λ), u(λ), f(λ), and d(λ) are Laplace- or Z-transformed vectors of the
p-dimensional system output vector y(t), m-dimensional plant input vector
u(t), q-dimensional fault signal vector f(t), and r-dimensional disturbance
vector d(t), respectively, and where Gp(λ), Gf (λ) and Gd(λ) are the transfer-
function matrices (TFMs) from the plant inputs to outputs, fault signals to
outputs, and disturbances to outputs, respectively. According to the system
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type, λ = s in the case of a continuous-time system or λ = z in the case of a
discrete-time system.

The fault detection and isolation (FDI) problem can be formulated as fol-
lows: determine a linear residual generator (or detector) of least dynamical
order having the general form

r(λ) = R(λ)
[

y(λ)
u(λ)

]

(2)

such that: (i) r(t) = 0 when f(t) = 0; and (ii) ri(t) �= 0 when fi(t) �= 0, for
i = 1, . . . , q. Besides the requirement that the TFM of the detector R(λ) has
least possible McMillan degree, it is also necessary, for physical realizability,
that R(λ) is a proper and stable TFM.

One possibility to determine a least order R(λ) is to solve the following
minimal design problem (18): choose a suitable diagonal M(λ) (i.e., stable,
proper and invertible) and find a least McMillan degree solution R(λ) of the
linear equation with rational matrices

R(λ)
[

Gf (λ) Gd(λ) Gp(λ)
O O Im

]

=
[

M(λ) O O
]

(3)

which is stable and proper. This equation arises by imposing for a detector
of the general form (2) the condition that r(λ) = M(λ)f(λ) for all d(λ) and
u(λ).

To solve the above equation for properly chosen M(λ), the minimum degree
algorithm of (23) can be considered as basis for a possible numerical approach
using polynomial techniques. Alternatively, provided [Gf (λ) Gd(λ) ] is left
invertible, a numerically reliable inversion based procedure has been proposed
by (18). Here we compute first (using a state space based approach) a least
order left-inverse G+(λ) of

G(λ) =
[

Gf (λ) Gd(λ) Gp(λ)
O O Im

]

and then determine R(λ) as the numerator of a stable and proper fractional
representation G+

1 (λ) = M(λ)−1R(λ), where G+
1 (λ) represents the first q

rows of G+(λ) and M(λ) is diagonal. Note that determining a least order
R(λ) is part of the computation of the left-inverse G+(λ), and can be explicitly
addressed.

In this paper we propose an alternative approach based on solving the ra-
tional equation (3) to obtain a least order stable and proper solution R(λ) by
choosing an appropriate M(λ). This computation can be performed in several
steps involving manipulation of rational matrices. For each step we propose
matrix pencil based reliable numerical algorithms which allow to determine
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the solution by computing exclusively with real matrices of state space mod-
els. By using the proposed approach, the fault detection and isolation filter
design problem can be solved in the most general setting. Thus our approach
represents a completely general solution to the FDI problem, being a numer-
ically reliable computational alternative to various inversion based methods
(4, 5, 10, 13, 8, 3, 9).

3. Solving rational equations
For the design of residual generators in the most general setting, we have to

solve a rational equation of the form (3), where we have the additional free-
dom of choosing a diagonal M(λ) such that the resulting R(λ) is proper and
stable. Since the solution is in general non-unique, we would like to compute
a solution which has the least McMillan degree.

In order to solve this problem, we consider, for convenience, the more gen-
eral dual problem to solve a linear rational system of the form

G(λ)X(λ) = F (λ)M(λ), (4)

where G(λ) and F (λ) are given p × m and p × q rational TFMs, respectively,
and we need to choose an invertible diagonal M(λ) such that the resulting
solution X(λ) is proper, stable and has the least possible McMillan degree.
It is a well known fact that the system (4) has a solution provided the rank
condition

rank G(λ) = rank [G(λ) F (λ) ] (5)

is fulfilled. We assume throughout the paper that this condition holds.
For a given M(λ) the general solution of (4) can be expressed as

X̂(λ) = X0(λ) + XN (λ)Y (λ),

where X0(λ) is a particular solution of (4) and XN (λ) is a rational basis ma-
trix for the right nullspace of G(λ). Thus a straightforward procedure to solve
(4) would be to compute first X0(λ) and XN (λ) for M(λ) = I , then to deter-
mine a suitable Y (λ) to obtain a solution X̂(λ) of least McMillan degree, and
finally to choose an appropriate M(λ) ensuring the stability and properness of
X(λ) = X̂(λ)M(λ).

The main difficulty using this approach is the computation of Y (λ) in the
case when X0(λ) is not proper. In this case the corresponding Y (λ) can be
improper as well and for this computation there is no known computational
procedure. In contrast, if X0(λ) and XN (λ) are proper rational matrices, then
the resulting proper Y (λ) can be determined by employing the approach pro-
posed by (12) based on minimal cover design techniques. The following con-
ceptual procedure is merely a refining of the above steps in order to guarantee
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the applicability of the approach of (12). For this, we determine M(λ) in a fac-
tored form M(λ) = Mf (λ)Ms(λ), where Mf (λ) is a proper and stable factor
chosen to ensure the properness of X0(λ) and Ms(λ) is a proper and stable
factor chosen to ensure the stability of the solution X(λ). In what follows we
formalize the main steps of the solution procedure and subsequently we dis-
cuss suitable computational methods based on pencil manipulation techniques
to perform these steps.

1. Compute a particular solution X0(λ) satisfying G(λ)X0(λ) = F (λ).

2. Compute a proper rational basis XN (λ) of the right nullspace of G(λ).

3. Compute a diagonal Mf (λ) having the least McMillan degree such that
X̂0(λ) := X0(λ)Mf (λ) is proper.

4. Determine a proper Y (λ), such that the solution

X̂(λ) = X̂0(λ) + XN (λ)Y (λ)

has the least possible McMillan degree.

5. Determine a diagonal Ms(λ) having the least McMillan degree such that
X(λ) := X̂(λ)Ms(λ) is stable.

In what follows we discuss numerically reliable state space computational
algorithms for each step of the above procedure.

3.1. Computation of X0(λ)

Let assume that the compound TFM [G(λ) F (λ) ] has a minimal descriptor
realization of order n of the form

Eλx(t) = Ax(t) + BGu(t) + BF ν(t)

ξ(t) = Cx(t) + DGu(t) + DF ν(t)
(6)

satisfying

[G(λ) F (λ) ] = C(λE − A)−1[BG BF ] + [DG DF ]. (7)

According to the system type, λ also represents here either the differential
operator λx(t) = ẋ(t) in the case of a continuous-time system or the advance
operator λx(t) = x(t + 1) in the case of a discrete-time system. Note that
for most of practical applications [G(λ) F (λ) ] is a proper TFM, thus we can
always choose a realization such that E = I . However, for the sake of gener-
ality, we only assume that the pencil A − λE is regular, without assuming E
is nonsingular. In this way, we will also cover the most general case of solving
rational linear systems.
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Let SG(λ) and SF (λ) be the system matrix pencils associated to the real-
izations of G(λ) and F (λ)

SG(λ) =
[

A − λE BG

C DG

]

, SF (λ) =
[

A − λE BF

C DF

]

.

Using the straightforward relations
[

A − λE BG

O G(λ)

]

=
[

In O
−C(A − λE)−1 Ip

]

SG(λ)

[
A − λE BF

O F (λ)

]

=
[

In O
−C(A − λE)−1 Ip

]

SF (λ)

it is easy to see that X(λ) is a solution of G(λ)X(λ) = F (λ) if and only if

Y (λ) =
[

Y11(λ) Y12(λ)
Y21(λ) X(λ)

]

satisfies
SG(λ)Y (λ) = SF (λ). (8)

The existence of the solution of (8) is guaranteed by (5), which is equivalent to

rank SG(λ) = rank [SG(λ) SF (λ) ]. (9)

It follows that instead of solving the rational equation G(λ)X(λ) = F (λ), we
can solve the polynomial equation (8) and take

X(λ) =
[

O Im
]
Y (λ)

[
O
Iq

]

.

In fact, since we are interested in the second block column Y2(λ) of Y (λ), we
need only to solve

[
A − λE BG

C DG

]

Y2(λ) =
[

BF

DF

]

(10)

and compute X(λ) as

X(λ) =
[

O Im
]
Y2(λ).

The condition (9) for the existence of a solution becomes

rank
[

A − λE BG

C DG

]

= rank
[

A − λE BG BF

C DG DF

]

. (11)
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To solve (10), we isolate a full rank part of SG(λ) by reducing it to a par-
ticular Kronecker-like form. Let Q and Z be orthogonal matrices to reduce
SG(λ) to the Kronecker-like form

SG(λ) := QSG(λ)Z =





Br Ar − λEr Ar,reg − λEr,reg ∗
0 0 Areg − λEreg ∗
0 0 0 Al − λEl



,

(12)
where Areg −λEreg is a regular subpencil, the pair (Ar −λEr, Br) is control-
lable with Er nonsingular and the subpencil Al − λEl has full column rank.
The above reduction can be computed by employing numerically stable algo-
rithms as those proposed in (15, 1).

If Y 2(λ) is a solution of the reduced equation

SG(λ)Y 2(λ) = Q

[
BF

DF

]

. (13)

then Y2(λ) = ZY 2(λ) and thus

X(λ) =
[

O Im
]
ZY 2(λ)

is a solution of the equation G(λ)X(λ) = F (λ). Partition

Q

[ −BF

−DF

]

=






B1

B2

B3






in accordance with the row structure of SG(λ). Since Al−λEl has full column
rank, it follows from (11) that B3 = 0. Thus, we can choose Y 2(λ) of the form

Y 2(λ) =








Y 12(λ)
Y 22(λ)
Y 32(λ)

O








,

where the partitioning of Y 2(λ) corresponds to the column partitioning of
SG(λ). Choosing Y 12(λ) = 0, we obtain

[

Y 22(λ)
Y 32(λ)

]

=
[

λEr − Ar λEr,reg − Ar,reg

O λEreg − Areg

]−1
[

B1

B2

]

.

Let partition [O Im ]Z in accordance with the column structure of SG(λ) as

[O Im ]Z = [Dr Cr Creg Cl ] (14)
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and denote

A − λE =
[

Ar − λEr Ar,reg − λEr,reg

O Areg − λEreg

]

, B =

[

B1

B2

]

,

C = [Cr Creg ]

Then a particular solution X0(λ) of the equation G(λ)X(λ) = F (λ) can be
expressed in form of a descriptor realization

X0(λ) = C(λE − A)−1B.

To compute X0(λ) we employed exclusively orthogonal similarity transforma-
tions. Therefore, this step is numerically stable, because we can easily show
that the computed system matrices in the presence of roundoff errors are exact
for an original problem with slightly perturbed data.

Some properties of X0(λ) can be easily deduced from the computed Kro-
necker -like form. The poles of X0(λ) are among the generalized eigenvalues
of the pair (A,E) and are partly fixed, and partly freely assignable. The fixed
poles represent the controllable eigenvalues of the pair (B2, Areg − λEreg).
The generalized eigenvalues of the pair (Ar, Er) are called the ”spurious”
poles, and they originate from the column singularity of G(λ). These poles
are in fact freely assignable by appropriate choice of a (non-orthogonal) right
transformation matrix (18).

If G(λ) and F (λ) have no common zeros then the pair (B2, Areg − λEreg)
is controllable. This condition is always fulfilled in the case of solving a sys-
tem (4) originating from FDI problems, where F (λ) = [I 0]T is a constant
full column rank matrix. In this case, the solution X0(λ) will be proper if
[Gf (λ) Gd(λ) ] (see (1) ) has no infinite zeros (i.e., all infinite eigenvalues
of the matrix pair (Areg, Ereg) are simple). Moreover, a stable and proper
solution will exist provided [Gf (λ) Gd(λ) ] is additionally minimum-phase.

More generally, the solution X(λ) of G(λ)X(λ) = F (λ) will have no pole
in γ (finite or infinite) if cγ(G) = cγ([G F ]), where cγ(G) is the content
of G(λ) in γ as defined by (21). Roughly, this is equivalent to say that the
pole and zero structures of G(λ) and [G(λ) F (λ)] at γ coincide. For practi-
cal computations, this implies that some or all of common zeros of G(λ) and
[G(λ) F (λ)] will cancel. This cancellation can be done either explicitly by
removing the uncontrollable eigenvalues of the pair (B2, Areg − λEreg) us-
ing orthogonal staircase algorithms (14), or implicitly at the next steps, during
determining X̂0(λ) and X̂(λ).

Remark 1. In this moment, we can easily determine a stable and proper so-
lution of (4) by choosing an invertible diagonal M(λ) such that X(λ) :=
X0(λ)M(λ) is stable and proper. The computation of M(λ) can be done using
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methods discussed in (18). Note however that the resulting solution is usually
not of least McMillan degree. Therefore, the next steps of the proposed proce-
dure address exclusively the least order aspect.

3.2. Computation of XN(λ)

Using the same reduction of SG(λ) to SG(λ) as in (12), a nullspace basis
XN (λ) of G(λ) can be computed from a nullspace basis YN (λ) of SG(λ) as

XN (λ) = [O Im ]ZY N (λ)

We can determine Y N (λ) in the form

Y N (λ) =







I
(λEr − Ar)−1Br

O
O





 .

With Cr and Dr defined in (14), we obtain a descriptor realization of XN (λ)
as

XN (λ) = Cr(λEr − Ar)−1Br + Dr.

Note that XN (λ) is a proper TFM which has least McMillan degree (19).
Moreover, the poles of XN (λ) are freely assignable by appropriately choos-
ing the transformation matrices Q and Z to reduce the system pencil SG(λ).

Remark 2. We can express XN (λ) to have the same state, descriptor and

output matrices as X0(λ). If we denote Br =
[

Br

O

]

, then XN (λ) can be also

expressed as
XN (λ) = C(λE − A)−1Br + Dr (15)

This representation is evidently not minimal, since all generalized eigenvalues
of the pair (Areg, Ereg) are uncontrollable.

3.3. Selecting Mf(λ)

In principle, this computation can be done simply by solving q independent
proper right coprime factorization (RCF) problems for the single-input sys-
tems corresponding to each of q columns of X0(λ). Assuming X0,i(λ) is the
i-th column of X0(λ), we can compute the proper RCF

X0,i(λ) =
X̂0,i(λ)
mf,i(λ)

,

where mf,i(λ) and X̂0,i are both proper and mutually coprime. The resulting
scalar transfer-function mf,i(λ) and rational vector X̂0,i(λ) are the i-th diago-
nal element of Mf (λ) and the i-th column of X̂0(λ), respectively.
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The transfer functions mf,i(λ) can be chosen, for example, in the form

mf,i(λ) =
1

(λ + α)n∞,i
,

where n∞,i is the number of infinity zeros of X0,i(λ) and α is an arbitrary
value, representing a desired stability degree for the solution. It is possible
to determine n∞,i efficiently from the resulting Kronecker-like form of the
system pencil SG(λ). We can assume that Areg−λEreg and B2 are partitioned
conformably and have the structure

Areg − λEreg =
[

Af − λEf Af,∞ − λEf,∞
O A∞ − λE∞

]

, B2 =

[

Bf

B∞

]

,

where Af −λEf and A∞−λE∞ contain the finite and infinite invariant zeros
of SG(λ). If we denote b∞,i the i-th column of B∞, then n∞,i + 1 is just the
order of the controllable part of the pair (A∞ − λE∞, b∞,i). To compute n∞,i

we can apply the generalized controllability staircase algorithm of (14) to the
pair (E∞ − λA∞, b∞,i) (note that A∞ and E∞ are interchanged).

After having determined a minimal state-space realization (AMf
−λI,BMf

,
CMf

, 0) for Mf (λ), it is necessary to compute a proper descriptor represen-

tation of X̂0(λ) = X0(λ)Mf (λ). This can be done in two steps: first, re-
move all uncontrollable infinite eigenvalues from the state-space realization of
X0(λ)Mf (λ) applying the algorithm of (14) and then remove the non-dynamic
part applying standard techniques (22). Both steps can be performed efficiently
by exploiting the inherited structure of the system matrices of X0(λ) from the
Kronecker-like structure of SG(λ). Note that in the first step we also eliminate
the uncontrollable infinite eigenvalues originating from the common infinite
poles and zeros of G(λ) and F (λ). We omit further details here because of
lack of space.

3.4. Computation of a least order ̂X(λ)

We assume that X̂0(λ) and XN (λ) are proper TFMs and possess state-space
representations sharing the same descriptor, state and output matrices

[

X̂0(λ) XN (λ)
]

=

[
Â − λÊ B̂ B̂r

Ĉ D̂ D̂r

]

(16)

with Ê non-singular. This can be easily achieved by performing all relevant
transformations employed to eliminate the non-proper part of X0(λ)Mf (λ)
also on the non-minimal realization (15) of XN (λ).

It was shown by (12) that computing a least order solutionX̂(λ) = X̂0(λ)+
XN (λ)Y (λ) by choosing an appropriate proper Y (λ) is equivalent to deter-
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mine a feedback matrix F̂r and a feedforward matrix L̂r to cancel the maxi-
mum number of unobservable and uncontrollable poles of

X̂(λ) =

[
Â + B̂rF̂r − λÊ B̂ + B̂rL̂r

Ĉ + D̂rF̂r D̂ + D̂rL̂r

]

.

It can be shown that if we start with a minimal realization of [G(λ) F (λ) ],
then we can not produce any unobservable poles in X̂(λ) via state-feedback.
Therefore, we only need to determine the matrices F̂r and L̂r to cancel the
maximum number of uncontrollable poles.

(12) has shown that this problem can be solved as a minimal order dynamic
cover design problem. Consider the set

J = {V : Im B + AV ⊂ Im Br + V},
where A := Ê−1Â, B := Ê−1B̂, and Br := Ê−1B̂r. Let J ∗ denote the set
of subspaces in J of least dimension. If V ∈ J∗, then a pair (F̂r, L̂r) can be
determined such that

(A + BrF̂r)V + Im (B + BrL̂r) ⊂ V.

Thus, determining a minimal dimension V is equivalent to a minimal order
cover design problem, and a conceptual approach to solve it has been indicated
by (12). The outcome of his method is, besides V , the pair (F̂r, L̂r) which
achieves a maximal order reduction by forcing pole-zero cancellations. This
approach has been turned into a numerically reliable procedure by (20). In this
procedure F̂r and L̂r are determined from a special controllability staircase
form of the pair (Â − λÊ, [ B̂r B̂ ]) obtained by using a numerically reliable
method relying on both orthogonal and non-orthogonal similarity transforma-
tions. An additional feature of this procedure is that all uncontrollable eigen-
values of the pair (Â − λÊ, B̂), arising from common poles or zeros of G(λ)
and F (λ) are also eliminated.

3.5. Selecting Ms(λ)

The computation of Ms(λ) can be done simply by solving q stable RCF
problems for the single-input systems corresponding to each columnX̂i(λ) of
X̂(λ)

X̂i(λ) =
Xi(λ)
ms,i(λ)

.

One distinctive feature of these single-input factorization problems is that each
X̂i(λ), has generally an uncontrollable descriptor realization. This aspect is
handled automatically when employing the Algorithm GRCF-P of (16). Since
each of resulting ms,i(λ) has least McMillan degree, the resulting diagonal
matrix Ms(λ) has least McMillan degree as well.
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4. Examples
Example 1. Consider the following simple continuous-time example taken

from (6):

Gp(s) =







1
s + 1

1
(s + 1)2





, Gf (s) =

[
0
1

]

, Gd = 0.

A minimal order left-inverse of Gf (s) is Q(s) = [ 0 1 ], which is proper
and stable. According to (4), a residual generator can be determined in the
observer-like form

r(s) = Q(s)(y(s) − Gp(s)u(s)).

This leads to a second order stable and proper detector

R(s) = Q(s)[ I − Gp(s) ] =
[

0 1 − 1
(s + 1)2

]

which is however not of least possible order.
We apply now the proposed approach to compute a least order detector. For

this simple model we will explicitly manipulate rational matrices instead of
state space matrices. The TFMs defining the equation (4) are given by

G(s) =





0 1 0
1

s + 1
1

(s + 1)2
1



 , F =
[

1
0

]

.

A particular solution X0(s) of the equation G(s)X(s) = F and a rational
nullspace basis XN (s) of G(s) are

X0(s) =







0
1

− 1
(s + 1)2





 , XN (s) =







−1
0
1

s + 1





 .

Note that XT
0 (s) is the second order detector determined previously. If we

choose Y (s) =
1

s + 1
, then we obtain a first order stable and proper detector

R(s) = (X0(s) + XN (s)Y (s))T =
[

− 1
s + 1

1 0
]

having the least possible McMillan degree.
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Example 2. This example is the descriptor system described in (11) corre-
sponding to a linearized three-links planar manipulator model. This model has
state vector dimension n = 11, command input vector dimension m = 3, fault
vector dimension q = 2, no disturbance input, and output vector dimension
p = 4 . This model is not minimal and a minimal realization has order 5 and
is proper.

The method proposed by (11) is essentially equivalent to design two inde-
pendent FDI filters. By considering the fault input 1 as fault and fault input 2
as disturbance, a 4-th order FDI filter R1(s) has been designed by (11). Sim-
ilarly, by considering fault input 2 as fault and fault input 1 as disturbance, he
obtained a 4-th order FDI filter R2(s). In this way, a FDI filter of order 8 has
been determined by stacking the two designed filters

R(s) =
[

R1(s)
R2(s)

]

.

By using the new approach proposed in this paper we can determine a resid-
ual generator which has a least order equal to 2. In the rational system (4) to
be solved G(s) is 5× 7 and F (s) is 5× 2, thus R(s) = XT (s) will be a 2× 7
matrix. A particular solution X0(s) has been determined having a state space
realization of order 10, with the pair (A,E) having 3 finite and 7 infinite gen-
eralized eigenvalues. The nullspace basis XN (s) is 7 × 2 and has dynamical
order 3. With Mf (s) of the form Mf (s) = 1

s+1I2, we can eliminate all infinite

poles of X0(s) and the resulting proper solution X̂0(s) = X0(s)Mf (s) has
order 5. After performing the minimum cover design, we get a stable solution
X(s) = X̂(s) of order 2 with both eigenvalues stable and equal to -1. For
reference purposes we give the resulting 2-nd order FDI filter

R(s) =







−0.01042s + 0.04455
s + 1

0.03462
s + 1

−0.03899s + 1.936
s + 1

1
s + 1

s

s + 1
0

· · ·
−0.02753s + 1.377

s + 1
0

0.03899
s + 1

0.02753
s + 1

0 − 1
s + 1

0 0




 .

5. Conclusions
We proposed numerically reliable approaches to solve several basic com-

putational problems encountered in the design of FDI filters, namely: (1) the
solution of linear rational equations; (2) the computation of rational nullspace
bases of rational matrices; (3) the reduction of the dynamical orders of the so-
lutions by employing minimal dynamic cover design techniques; and (4) the
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computation of stable and proper rational factorizations with diagonal denomi-
nators. Each of these computations can be performed using numerically stable
or numerically reliable algorithms. Using such algorithms, the FDI problem
can be solved in the most general setting. Our approach provides, for the first
time, a satisfactory numerical solution to this problem. Note that least order
residual generator design algorithms have been already proposed to solve the
simpler fault detection problem (i.e., without isolation) by (7) using a polyno-
mial basis approach, and by (19) using state space computational techniques.

For the implementation of the proposed residual generator design approach,
all necessary basic numerical software is available in the DESCRIPTOR SYS-
TEMS Toolbox for MATLAB (17), as for example, the computation of Kro-
necker -like staircase forms, computation of standard and special controllabil-
ity forms (required in minimum cover design), computation of poles and zeros
of descriptor systems, determination of minimal realizations, stable coprime
factorization, etc. The basic computational tools in this toolbox are several
functionally rich MEX-functions, representing MATLAB interfaces to power-
ful and numerically robust Fortran subroutines partly available in the control
and systems library SLICOT (2).

Notes
1. http://www.robotic.dlr.de/control/num/desctool.html
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Abstract On the background of the design of sliding motion controller based on flow – 
invariance method, the paper presents a solution for setting up the reference 
input. It uses a state transformation which contains, as a component of the new 
state vector, the error between the reference input v(t) and the plant output y(t). 
It is shown that the feedback sliding mode controller ensures the closed-loop 
tracking performance y(t) = v(t) = VsinΩt under certain conditions in the 
amplitude – frequency domain (V, Ω). 

Keywords:  reference input, feedback control, sliding motion control, flow – invariance 
method, tracking performance 

1. Introduction 
 In this paper, based on two necessary and sufficient conditions, obtained 
via flow – invariance method, which allow a unified design of the sliding 
domain reaching and sliding motion, one approaches the problem of setting 
up the reference input. 
 Some preliminaries on sliding motion control and the necessary and 
sufficient conditions for sliding motion and for sliding domain reaching are 
presented in section 2. In section 3 one presents a solution for setting up the 
reference input which takes the natural advantage of the feedback control 
explicitly and directly dependent on the error between the reference input 
and the plant output. Some concluding remarks are formulated in section 3. 
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2. Reaching and sliding motion control 
 Consider the linear time – invariant system: 

 n qu ,t , ,u ,
.

+= + + ∈ ∈ ∈ ∈R R R Rx Ax b Dz x z , (1) 

 ,y y= ∈ Rhx ,  (2) 

where x is the state (completely and directly available for measurement), u 
and y are the scalar control and output respectively, and z is a disturbing 
input; : ( ), : ( ), : ( )ij j ija b d= = =A b D  and )(: jh=h  are constant matrices of 
appropriate dimensions. 
 Let us associate with system (1), (2) the following switching hyperplane: 

 { }: ; 0n TS s= ∈ = =Rx c x , (3) 

where [ ]1: T
nc c= …c , with 1nc = , is a constant vector and T)(  

symbolizes the transposition. 
 Defining the state transformation from [ ]1 1: T

n nx x x−=x  to 

[ ]1 1
T

nx x s−=� …x , with Ts = c x , by: 

 1

( )

0
, : 1

n
T
n

− 
= =  

  
�

I
x Px P c , (4) 

where In–1 is the unit matrix of order n–1, and c(n) denotes the vector obtained 
by deleting the n-th element of c, system (1), (2) becomes: 

 ( ) ( ) ( ) ( ) ( )
n

n n n n nu z= + + +�x Ex a s b D , (5) 

 ( ) ( ) ( ) ,T n T T n T T
n n n u = − + + + �s c A a c x c a s c b c Dz  (6) 

 xhP ~1−=y . (7) 

 In (5) – (7) ( )ij in j: a a c= −E  is an ( 1) ( 1)n n− × −  matrix, A(n) and D(n) 
denote the matrices obtained by deleting the n – th row and column of A and 
D respectively, an is the n-th column of A; ( ) ( ), n

n nx a  and ( )nb  denote the 
vectors obtained by deleting the n-the component of x, an and b, respectively.  
 The achievement of sliding motion of x on S towards an equilibrium 
point in S⊂Rn consists in the synthesis of control ( , )u t �x , discontinuous on 



Setting-up the reference input in sliding motion control 385 

S, such that the following three requirements are fulfilled:  

1. For every initial pair )\(),( 00 St nRR ×∈ +x , with 00 )( xx =t , system 
(1) evolves towards S, i.e. its state reaches hyperplane S, in a reaching 
point, after a finite time interval 00 ],,[ tt >ττ . This is the reaching 
condition. 

2. Since the reaching instant τ, corresponding to the reaching point, the 
state of system (1), (2) remains to evolve on S. This evolution is called 
the ideal sliding motion and S is the ideal sliding domain for system 
(1), (2). This is the ideal sliding motion condition. 

3. The ideal sliding motion (on S) must be asymptotically stable towards 
an equilibrium point (usually or conventionally 0~ == xx ) belonging to 
S. (Subsidiary and implicitly the disturbance rejection is (eventually) 
desirable.) This is the stability condition of the ideal sliding motion. 

 Chronologically (i.e. in the dynamics of system (1), (2)), conditions 1o 
and 2o must be successively fulfilled, while 2o and 3o must be simultaneously 
satisfied. This means that for each pair (t0, x0)∈R+×(Rn \ S) the whole 
evolution of system (1), (2) covers two concatenated time intervals: first, a 
finite one, [t0, τ], according to condition 1o, followed by the second one, (τ, 
tf), finite or not, according to conditions 2o and 3o. 
 This essential and, as a matter of fact, natural concatenation of the 
reaching process followed by the ideal sliding motion has been approached 
in a unified manner by Voicu and Moroşan (1989; 1991; 1997), Moroşan 
and Voicu (1994), and Moroşan (1994) using the flow – invariance method, 
see (Voicu, 1984a; 1984b; 1987; Voicu and Pastravanu, 2003). According to 
(Voicu and Moroşan, 1997), the starting point of this approach was 
formalized by Definition 1 (pertaining to the ideal sliding domain) and 
correspondingly characterized by Theorem 4 (based on the flow – invariance 
method), and, via the flow structure of the state space induced by sliding 
motion control (unfolded by Theorem 1), by Theorem 5 which characterizes 
the reaching process as a natural flowing precursor of the ideal sliding 
motion. 
 In view of Definition 1 and Theorems 4 and 5 (Voicu and Moroşan, 
1997) it follows that for the control design only equation (6) rewritten in the 
following equivalent form is to be used: 

 
1

1

( )
n

T i n T n T T
i i

i

s c x s u
−

=

= − + + +∑� c a a c a c b c Dz , (8) 

where ai is the i-th column of A. Taking into account the possibility that 
cT(ai – ci an) = 0 for some i, let us define the index sets: 

 { } { }1, 2, ..., 1 , ; ( ) 0T i n
iI n J i I c c= − = ∈ − ≠a a .  (9) 
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 For cTb ≠ 0, one can synthesize the following control algorithm: 

 ( ) ( )( ) ( ) ( )r s n z nu u s u u= − − −x x , (10) 

where 

 
0

0

, 0,
( ) , 0, 0,

, 0,
r r r

s
u s s s

s

<
= + = =
− >

δ
ρ δ δ

δ
 (11) 

has to control the reaching process; 

 ( )
, 0,

( ) ,
, 0,

i i
s n i i i

i ii J

x s
u x

x s∈

<
= Ψ Ψ =  >

∑x
β
α

 (12) 

is the sliding motion control; 

 0
( )

0

, 0,
( )

, 0,z n
s

u
s

<
=  >

x
β
α

 (13) 

ensures the disturbance rejection. 
 Clearly, ρ, δ0,αi, β i  (i ∈ J) and α 0, β0 are the design parameters of the 
variable structure controller which are to be adjusted in order to fulfill the 
requirements 1o – 3o. 
 Using inequalities (15) and (16) of Theorem 4 (Voicu and Moroşan, 
1997), for equation (8) the following result can be formulated. 

Theorem 1  Hyperplane S is the ideal sliding domain for system (1) – (4), 
(10) – (13), with cTb ≠ 0, if and only if 

 
( )
( ), ,

T T i n
i i

T T i n
i i

α
i J

 ≥ −


≤ − ∈

c b c a c a
c b c a c aβ

 (14) 

 
0

0

sup ( )

inf ( ).

T T

t
T T

t

t

t

≥

≤

c b c Dz

c b c Dz

α

β
 (15) 

 In order to characterize the reaching process as a precursor of the sliding 
motion, let us introduce the following reaching function: 

 
0( )

0 0(| | ) sgn( ), [ , ],
( )

0 , ( , ),

t t

f

s e s t t
r t

t t

− − + − ∈ = 
∈

λδ δ τ

τ
 (16) 

where s0
 = : s(x0) = s(x(t0)), and δ > 0, λ > 0, τ > t0 are pre-assignable 
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parameters. It is easy to verify that the reaching function (16) satisfies the 
statements 1o and 2o of Theorem 5 (Voicu and Moroşan, 1997), with 

( ) 00
1

0 ||1ln tst >++= − δλτ  (τ being the reaching instant, i.e. r(τ) = 0). Using 
the statement 3  of Theorem 5 (loc cit) with (11) – 13), under (14), (15), one 
can formulate the following result. 

Theorem 2  For each pair (t0, x0)∈R+×(Rn \ S) the state of system (1) – (4), 
(10) – (13), with cTb ≠ 0, reaches ideal sliding domain S if and only if 

 
0 .

T T n

T T n

≥ +

≤

c b c a
c b c a

ρ λ
δ

 (17) 

 Equations (10) – (13) and inequalities (14), (15) and (17) define the 
(variable) structure and the adjustable parameters of the controller according 
to requirements 1o and 2o. 
 Using the equivalent control method (Utkin, 1978), i.e. by solving the 
equation: 
 0s =�  (18) 

(according to (6)) with respect to u and replacing the result, with s = 0, into 
(5), one obtains the ideal sliding equations: 

 1 1
( ) ( ) ,n n= +�x A x D z  (19) 

 0s =   (20) 

where matrices A1 and D1 can be appropriately calculated. 
 If 
 rank rank [ ],=b b, D  (21) 

then (Utkin, 1978) 
 1 0=D  (22) 

and the disturbance rejection is ensured. 
 The stability of system (19) depends on A1 only and may be improved 
(according to requirement 3o) by an additional state/output feedback in (10). 
Under these circumstances the state (and output) trajectories of system (1) – 
(4), (10) – (13) evolve with pre-assignable velocity (for the state only) from 
each initial state x0

 ∈ Rn \ S towards ideal sliding domain S and then towards 
the final equilibrium point 0~ == xx  (and y = 0 respectively). 

3. Setting up the reference input 
 The problem of setting up the reference input in the control (variable) 
structure with a sliding motion controller may be solved in the following two 
manners. 
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 The first solution, presented and analyzed by Utkin (1978), consists in the 
introduction of an additional term in equation (10), depending on the scalar 
reference input v. This means that (10) has to be replaced by: 

 ,v cu u u= +  (23) 

where 
 vu vα=  (24) 

is the reference input term with α = constant, and 
 ( ) ( )( ) ( ) ( )c r s n z nu u s u u= − − −x x  (25) 

is the reaching, sliding motion and rejection control. Because output y should 
track reference input v, coefficient α is to be chosen, e.g. pertaining to the 
steady state of the whole system, such that: 
 ss ssy v=  (26) 

(subscript ss denotes the steady state), i.e. 

 0det,)( 11 ≠−= −− AbhAα . (27) 

 Unlike this solution, the second one, which is addressed in the sequel, 
takes the natural (and classical) advantage of the feedback control explicitly 
and directly dependent on the error between reference input v and plant 
output y, i.e. (for instance): 

 1 :x v y= − . (28) 

 In order to expose this solution, let us consider the plant: 

 qn utu RRRR ∈∈∈∈++= + zxzDbxAx ,,,,�  (29) 

 y = hx ,  (30) 

where x  is the state (completely and directly available for measurement), 
and , ,A b D  and h  are time – invariant matrices of appropriate 
dimensions. 
 The trivial case 1: 0nh h = = …h  being excluded, for the sake of 

simplicity, let us suppose that: 

 1 0h ≠  (31) 
(as it was subsidiary assumed by (28)). In this case, error (28), with (30), 
may be taken into consideration, for instance, by the transformation: 

 1v= −x i Qx  (32) 
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where 

 1 (1)

1
: ,

0 n

h

−

 
=  

  

h
Q

I
 (33) 

i1 is the first column of In and (1)h  is obtained by deleting the first element of 

row matrix h . 
 Using the transformation (32) with (33) for the plant described by (29) 
and (30), one obtains: 

 u= + + +�x Ax b Dz Fw , (34) 

 y v= +hx ,  (35) 

where 

 
[ ]

1

1 1

: , : , ,

: , , : 1 0 0

−= = − = −

 = − = −  …
A QAQ b Qb D QD
F a i h

 (36) 

 [ ] 2: Tv v= ∈ R�w . (37) 

 In comparison with equation (1), equation (36) contains the disturbing 
term Fw and, in control equation (10) the term uz has to be replaced with uzw 
accordingly. Under these circumstances Theorem 1 must be adequately 
completed as follows. 

Theorem 3  Hyperplane S is the ideal sliding domain for system (34), (35), 
(3), (4), (10) – (13), with cTb ≠ 0, if and only if (14), (15) are met and 

 
0

0

sup ( )

inf ( )

T T

t
T T

t

t

t

 ≥



≤

c b c Fw

c b c Fw

α

β
. (38) 

 At the same time, for the reaching function (16), Theorem 2 is to be 
applied to system (34), (35), (3), (4), (10) – (13). 
According to (19) and (20), the ideal sliding equations are now: 

 1 1 1
( ) ( )n n= + +�x A x D z F w , (39) 

 0s = ,  (40) 

where matrices A1, D1 and F1can be appropriately calculated. 
 In addition to (21), (22), one has to point out that if  

 rank rank [ , ]=b b F  (41) 
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then 

 1 0=F  (42) 

and the rejection of disturbance w is also ensured. 
 Clearly, related to the steady state of the whole system, one may assert 
that if A1 is Hurwitzian, then 0= =�x x , together with (32), (33), as a final 
result of the control (10), yield the steady state (26) as a natural consequence 
of the feedback control explicitly and directly dependent on the error 
between v and y. Moreover, for any w (see (37)) satisfying conditions (38), 
the system (34), (35), (3), (4), (10) – (13), after a settling time depending on 
x0, λ  and δ  (from (16)) and the greatest real part of the eigenvalues of 
Hurwitzian matrix A1, achieves the closed-loop tracking performance: 

 ( ) ( )y t v t= . (43) 

4. Closed-loop tracking performance 
 The employment of (15) and (38) pertaining to the choice of parameters 
α0 and β0 demands some knowledge about disturbance z and reference input 
v (see (37)). In order to illustrate the tracking performance of the closed-loop 
system and, correspondingly, to determine the tracking conditions in the 
amplitude – frequency domain, let us consider that the system is not 
disturbed by z, i.e. z = 0, and the reference input has the following form: 

 v(t) = VsinΩt. (44) 

 Using (44) in (38), with (36), (37), and by assuming that cTb > 0 and 
000 >−= βα , one successively obtains: 

 ),cossin(sup 1
1

00 ΩtΩctΩV T

t

TT +−≥−= acbcbc βα  

 ( ) ( ) .
2/1

2
1

21
00 






 +≥−= ΩcV TTT acbcbc βα  (45) 

 Tacking into account that usually 

 max000 αβα ≤−=< ,  (46) 

where maxα depends on some technological limits (saturation, limited 
control power) characterizing the plant (30), from (45) and (46) one obtains 
for the closed-loop tracking performance (43) the following admissible 
amplitude – frequency domain: 
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( ) ( ) ( ) ( ) ,
2/1

2
1

21
max

2/1
2

1
21

0

−−






 +≤






 +≤ ΩcΩcV TTTT acbcacbc αα (47) 

which is ensured by the feedback control explicitly and directly dependent 
on the error (28) between reference input v and plant output y. 
 Finally, let us remark that suitable transformations such as (32), which 
include the input – output error (28) and some other errors pertaining to the 
velocity, acceleration etc, may be taken into consideration in order to 
improve the tracking behavior of the feedback control systems with sliding 
motion controller. 

5. Concluding remarks 
 In this paper, on the background of two necessary and sufficient 
conditions, obtained via flow – invariance method, which allow a unified 
design of the (variable structure) state feedback controller ensuring the 
sliding – domain reaching and the sliding motion, one gives a solution for 
setting-up the reference input for the whole system containing a variable 
structure controller. Unlike the usual solution (which consists in an 
additional term dependent on the reference input, in the plant control), the 
solution presented in the paper uses a state transformation (e.g. (32), (33)) 
which contains, as a component of the new state vector, the error between 
the reference input v and the plant output y. Under these circumstances the 
feedback controller based on this new state vector, under certain conditions 
and after an inherent settling time, ensures the closed-loop tracking 
performance ( ) ( )y t v t= . 
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Abstract This paper represents a survey of the main contributions of the two
authors to the application of the flow-invariance method in control sys-
tem analysis and design. By considering time-dependent state hyper-
intervals, a componentwise approach has been developed for the evalua-
tion of the behaviour of continuous-time dynamical systems, in general,
and of their stability (regarded as a free response) in particular. Thus, a
special type of asymptotic stability, called componentwise (exponential)
asymptotic stability was introduced, which allows individual monitoring
of each state variable, unlike the standard concept of asymptotic sta-
bility offering a global characterisation in terms of vector norms. Con-
sequently, new and refined instruments were created for the analysis
of linear and nonlinear dynamical systems, with constant or interval
type coefficients. These instruments are equally useful in synthesis for
dealing with componentwise stabilizability and detectability. The same
framework constructed on the flow-invariance background is also able to
accommodate the design of the sliding motion control. The paper does
not contain proofs for the enounced results in order to keep the size of
the text under some moderate limits, but these proofs can be found in
the cited references.

Keywords: control systems, time dependent flow-invariance, componentwise asymp-
totic (exponential) stability, componentwise absolute stability, robust-
ness, interval matrix systems, nonlinear uncertain systems, componen-
twise detectability and stabilizability, sliding motion control

1. Introduction
Generally speaking, the object of flow-invariance theory is the “stream”,
in the state space X of a dynamical system  (described by a differential
equation), of state trajectories x(t), 0 0[ , ],f ft t t t t  , starting in the

initial states 0 0( )x t x X  and arriving in the corresponding current

states ( )x t X . More precisely, the evolution operator :t X X  ,



394 ADVANCES IN AUTOMATIC CONTROL

which generates the flow of Σ, is the application that transforms the
(set of) initial states into (the set) of current states and, under certain
assumptions and details, Σ itself can be represented by x(t) = Φt(x0).
As expected, the notion of flow and the entire conceptual vision around
it, based on the investigations of Φt and by means of Φt, offer more
refined instruments for the qualitative analysis of differential equations
that may unfold more subtle structural properties and characterizations
of dynamical systems. In this respect the classical attributive (joint)
concept of invariance opened a special field of research that studies the
existence and characterizations of some (nonempty) flow-invariant sub-
setsXi ⊆ X (not necessarily time-invariant) having the property that for
each x0 ∈ Xi system Σ fulfils x(t) ∈ Xi for each t ∈ [t0, tf ]. It is worth
to be noticed here that such behaviour, interesting by itself because it
certainly occasions a deeper insight into the structure of dynamical sys-
tems, characterizes large classes of real dynamical systems encountered
in engineering (electric circuits and networks, neuronal networks, con-
trol systems), biology, ecology, pharmacokinetics etc. In these cases the
system evolution must satisfy certain state and control constraints con-
cerning and conditioning their normal functioning and their very phys-
ical existence respectively. In this context the theoretical research can
ensure a meaningful non-conventional knowledge of significant classes of
real systems and, at the same time, accurately enlighten subtle aspects
of theoretical and practical interest for various applications.

The method of flow-invariance emerged, in the theory of differen-
tial equations, from the pioneering research developed by Nagumo [1]
and Hukuhara [2] at the middle of the last century. Further signifi-
cant contributions have been brought by many well-known mathemati-
cians, among which Brezis [3], Crandall [4], Martin [5]. Two remarkable
monographs on this field are due to Pavel [6], and Motreanu and Pavel
[7]. Voicu, in [8] – [20], by using the flow-invariance method for state
hyper-intervals, defines and characterizes the componentwise asymptotic
stability (CWAS) and the componentwise exponential asymptotic sta-
bility (CWEAS) and analyses their subsidiary aspects and connections
with some other properties pertaining to the sphere of stability concept.
Recent results extend the concepts of CW(E)AS for interval matrix sys-
tems and for a certain class of nonlinear systems, including the analysis
of robustness and of the preservation of CW(E)AS under certain dis-
turbances, (Păstrăvanu and Voicu, [21] – [29]), for time-delay systems
and 1D and 2D linear discrete-time systems (Hmamed, [30], [31]), for
non-symmetrical hyper-intervals (Hmamed and Benzaouia, [32]), and for
time-discrete neural networks (Chu, [33]). Further results on the synthe-
sis problems of the CWEAS state feedback controller and of the CWEAS
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state observer are reported by Voicu [34] – [40], Voicu and Bulea [41],
and by Voicu [42]. A unified approach, due to Păstrăvanu and Voicu
[43], efficiently solves these two problems by using a convex optimisa-
tion procedure with a cost function expressed by a matrix infinity norm
equivalently involving CWEAS. According to Voicu and Moroşan [44] –
[50], Moroşan [51] – [56], and Moroşan and Voicu [57], [58], another field
of successful application of the concept of CWEAS is that of variable
structure (sliding motion) control. Recently, the flow-invariance prin-
ciples have been adapted by Păstrăvanu and Voicu in order to address
refined objectives in the analysis [21] - [23] and synthesis [43] of linear
systems with discrete-time dynamics.

The current paper is a survey that collects (partially according to the
leading idea of [59]) the principal results generated by the application
of the flow-invariance method (on time-dependent state hyper-intervals)
for the componentwise evaluation of the evolution and of the stability
of dynamical systems (Sections 2 – 4, and 5). The remainder of the pa-
per deals with the characterization of componentwise detectability and
stabilizability (Section 6) and the synthesis of the sliding motion con-
trol based on the flow-invariance approach (Section 7). Motivated, on
the one hand, by the natural necessity of a cursive and compact presen-
tation of the results (definitions and the afferent theorems, pertinently
commented) and, on the other hand, by some constraints viewing the
maximum length of the text, the paper does not contain any proof of
the enounced theorems. For these proofs the cited references are recom-
mended. Finally (Section 8), some concluding remarks are formulated
and further research directions are identified.

2. Constrained Evolution of Dynamical Control
Systems

2.1. General Definition and Characterizations, [15]
Consider the nonlinear continuous-time dynamical system:

ẋ = f(t,x,u), t ∈ R+,x ∈ Rn,u ∈ Rm, (2.1)

where x is the state, u is the control, and f is a vector function.
According to the usual attributes of a dynamical control system, as-

sume that u belongs to the following set of admissible controls:

U =:
{
u ∈ C0; u(t) ∈ U(t) ⊂ Rm, t ∈ T

}
, (2.2)

where C0 is the set of the piecewise continuous vector functions (i.e. left
discontinuous in a number of points) on the time interval:
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T =: [t0, t1) ⊆ R+, t1 > t0, (2.3)

and U(t) is a compact (time-dependent) subset. In compliance with
these control constraints, one has to assume that x(t) also belongs to
a certain compact (time-dependent) subset X(t) ⊂ Rn. Under these
circumstances the problem concerning the constrained evolution of con-
trol system (2.1) on T × U ×X is consistent and can be dealt with the
flow-invariance method.

Definition 2.1 The evolution of control system (2.1) is called T U X–
constrained evolution if for each x(t0) =: x0 ∈ X(t0) and for each u ∈ U
the response of control system (2.1) satisfies:

x(t) ∈ X(t) ∀t ∈ T. � (2.4)

According to [60] the T U X–constrained evolution of control system
(2.1), under the condition that the Cauchy solution is unique (i.e. f
is continuous and locally Lipschtzian in x), is equivalent with the flow-
invariance of X(t) for each u ∈ U on T . This means that the general
result on flow-invariance given in [1] (apud [6]) may be used in order
to characterize the T U X–constrained evolution. For the simplicity of
writing of the next result, let us denote by d(v;V ) the distance from
v ∈ Rn to the set V ⊂ Rn.

Theorem 2.1 The control system (2.1), with f continuous and locally
Lipschitzian in x, has a T U X–constrained evolution if and only if:

lim
h↓0

inf h−1d (v + hf(t,v,u(t));X(t+ h)) = 0 ∀(t,u,v) ∈ T × U ×X.

(2.5)
This general result may be used both for analysis and design of con-

trol system (2.1) for previously given f and specifiable T , U and X.
In this respect many possibilities to investigate the dynamics of control
systems may be considered. As in other cases of general results that
have in view the applications too, the tangential condition (2.5) must be
appropriately converted into more transparent and easier to handle for-
mulas. A possibility, involving a very simple calculation of the distance
d, consists in the specialization of X(t) in form of a hyper-interval in Rn

which leads to an evaluation of system constrained evolution by its state
components.

2.2. Componentwise Constrained Evolution, [15]
For a concise formulation of the next results, let us introduce some

notations. Let v =: (vi), w =: (wi) ∈ Rk; |v| =: (|vi|); v ≤ w (v <
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w) or v ≥ w (v > w) mean the componentwise inequalities: vi ≤
wi (vi < wi) or vi ≥ wi (vi > wi), respectively. V⊂Rn is a com-
pact set and g:V→Rn, with g =: (gi), is continuous, and z=: (zi)∈V is
fixed; Cz

v denotes the operator which “catches” g(v) at z∈V in a diago-
nal manner, i.e. Cz

v {g(v)} =: [g1(z1, v2, ..., vn), ..., gi(v1, ..., zi, ..., vn), ...,
gn(v1, ..., vn−1, zn)]∗ ([ ]∗ means transposition); further, extV Cz

v {g(v)}
denotes the vector with the components extV gi(v1, ..., zi, ..., vn), where
ext may be min or max. Let a : T → Rn, a : T → Rn, a(t) ≤ a(t), be
differentiable, and let b : T → Rm, b : T → Rm, b(t) ≤ b(t), be contin-
uous. Usually both x and u are subject to certain prescribed constraints
which in the most cases have in view their components. Thus, with the
two pairs of functions the following time-dependent hyper-intervals may
be respectively defined:

X(t) =: {v ∈ Rn; a(t) ≤ v ≤ a(t)} , t ∈ T, (2.6)

U(t) =:
{
w ∈ Rm; b(t) ≤ w ≤ b(t)

}
, t ∈ T. (2.7)

They are associated with the dynamical control system (2.1) in order to
confer to its constrained evolution (due to physical, constructive and/or
technological reasons) a more pragmatic meaning, namely by expressing
it componentwise. Such an approach allows a more subtle and detailed
evaluation of the dynamical behaviour instead of the global evaluation
by means of the vector norm. This may be necessary especially when the
state and control components are physically different and/or of different
importance for the normal process evolution. At the same time, X(t)
(see (2.6)) allows an explicit conversion of the tangential condition (2.5),
as it will be shown in the sequel. On the other hand, by this conversion
the specific form of U(t) (for instance (2.7)) does not play an essential
role.

Theorem 2.2 The control system (2.1), with f continuous and locally
Lipschitzian in x, has a T U X–constrained evolution for X(t) given by
(2.6) and a compact U(t) if and only if:

min
T×U×X

[Ca
v {f(t,v,u(t))} − ȧ(t)] ≥ 0, (2.8)

max
T×U×X

[
Ca
v {f(t,v,u(t))} − ȧ(t)

]
≤ 0. (2.9)

The inequality form of (2.8) and (2.9) means that certain classes of
systems associated with the compacts X(t) (see (2.6)) and U(t) have
to be considered. As a matter of fact, for the given X(t) (with given
a(t) and a(t) in (2.6)) and U(t) (e.g. (2.7) with given b(t) and b(t))
inequalities (2.8) and (2.9) may provide, on the one hand, classes of
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solutions f(t,x,u) and, on the other hand, open the approach of the
componentwise constrained evolution (CCE) (and its robustness) as a
practicable form of T U X–constrained evolution.

The hyper-intervals (2.6) and (2.7) may be respectively replaced by:

X(t) =: {v ∈ Rn;a(t) ≤ p(v) ≤ a(t)} ,

U(t) =:
{
w ∈ Rm;b(t) ≤ q(w) ≤ b(t)

}
, t ∈ T,

where p : Rn → Rn and q : Rm → Rm are invertible and derivable
and respectively invertible and continuous. Thus, the transformations
x̃ = p(x), ũ = q(u) translate the discussion in terms of the equivalent
hyper-intervals X̃(t) and Ũ(t) and of equivalent CCE for x̃, ũ.

2.3. Linear Time-Invariant Control Systems, [15]
To obtain more applicative formulas, consider the system:

ẋ = Ax + Bu, t ∈ R+, x ∈ Rn, u ∈ Rm, (2.10)

where A and B are constant matrices of appropriate dimensions. T =
R+ and for (2.6) and (2.7) the following conditions are respectively as-
sumed:

−a(t) = a(t) =: a > 0, t ∈ R+, (2.11)

−b(t) = b(t) =: b > 0, t ∈ R+. (2.12)

Clearly, the control system (2.10) has in U × X a symmetry point,
namely u=0, x=0, and the constant CCE (i.e. X(t) and U(t) are
time-invariant (constant); see (2.6), (2.7)) is simply expressed by:

|x(t)| ≤ a, |u(t)| ≤ b, t ∈ R+, (2.13)

for each x(t0) and each u ∈ C
0, both compatible with (2.13). Now

conditions (2.8) and (2.9) are expressing a certain relation between A,
B and a, b. To formulate it in a simple manner, supplementary notations
are needed. M =: (mij) being a real (q× r) matrix, then |M| =: (|mij |),
and M =: (mij) is the matrix with mii = mii and mij = |mij |, i 6= j.

Theorem 2.3 The linear control system (2.10) has a constant CCE if
and only if:

Aa + |B|b ≤ 0. (2.14)

From (2.14) it is obvious that the constant CCE necessarily implies
that all the diagonal elements of A (and of A too) be strictly negative.
This condition leads to the investigation of the case u= 0, i.e. that one
of the CCE of the free response of both control systems (2.1) and (2.10).
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3. Stability Analysis Via CCE
The T U X–constrained evolution may be used, under certain assump-

tions on X(t) and U(t), in order to derive some special type of stability
results. For instance, the constant CCE, according to (2.13), defines the
componentwise bounded input – bounded state stability and the inequal-
ity (2.14) is a necessary and sufficient condition for this kind of stability.
Similar results may be obtained for the internal stability.

3.1. Componentwise Asymptotic Stability, [15]
Consider the free nonlinear dynamical system:

ẋ = f(t,x), t ∈ R+, x ∈ Rn, (3.1)

with the assumption f(t, 0) =0, t ∈ R+. Since x=0 is an equilibrium
state, one may associate with system (3.1) the symmetric hyper-interval:

Xh(t) =: {v ∈ Rn; |v| ≤ h(t)} , t ∈ R+, (3.2)

where h : R+ → Rn is differentiable and h(t) > 0, t ∈ R+. Concern-
ing the asymptotic behaviour of x(t) the following condition plays an
essential role:

lim
t→∞

h(t) = 0. (3.3)

Definition 3.1 The equilibrium state x=0 of system (3.1) is called com-
ponentwise asymptotically stable with respect to (w.r.t.) h(t) (CWASh)
if for each t0 ≥ 0 and for each x0, with |x0| ≤ h(t0), the system (3.1)
satisfies:

|x(t)| ≤ h(t), t ≥ t0. � (3.4)

Notice that, under condition (3.3), the inequality (3.4) holds only
if the equilibrium state x=0 is asymptotically stable, i.e. CWASh of
x=0 implies its asymptotic stability. Inequality (3.4) does not evidence
only certain bounds for x(t). CWASh actually belongs to the sphere
of stability, as it is obvious from its definition. The main advantage of
CWASh consists just in the componentwise evaluation, which is more
subtle and detailed than the global evaluation (by means of a norm)
involved by the asymptotic stability. An extension of Definition 3.1
referring to CWASh with Xh(t) of polyhedral type is considered and
discussed in [61].

In general the asymptotic stability of x=0 does not imply CWASh.
And this is because in Definition 3.1 the condition “for each x0, with
|x0| ≤ h(t0)” (motivated also by the flow-invariance approach to be
afterwards performed), corresponds in the standard definition of the
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(Liapunov) stability, formulated in (ε, δ)–terms, to the special case ε= δ.
Remind that the stability (necessary to be fulfilled for the asymptotic
stability) is defined, [14], as follows: “equilibrium state x=0 is called
stable if for each ε > 0 there exists δ > 0 such that ‖x0‖ < δ implies
‖x(t)‖ < ε, t ≥ t0” (‖ ‖ denotes any norm in Rn). Clearly, it follows that
actually δ ≤ ε and by setting δ = ε a special type of stability definition
is considered, not necessarily satisfied by all the systems which fulfil the
original definition. More details are given in [62].

The characterization of CWASh can be easily derived from Theorem
2.2 for u(t) = 0 and Xh(t) given by (3.2).

Theorem 3.1 The equilibrium state x=0 of system (3.1) is CWASh if
and only if:

maxt≥0, |v|≤h(t)

[
C±h(t)
v {±f(t,v)} − ḣ(t)

]
≤ 0. (3.5)

Inequality (3.5) is a sufficient condition for the asymptotic stabil-
ity of x=0 and the set Xh

AS =:
{
v ∈ Rn; |v| ≤ maxR+h(t)

}
is one of

its asymptotic stability regions. The advantage of CWASh previously
evoked is reinforced now by (3.5), which is a necessary and sufficient
condition for it.

Related to Xh
AS one can state now the question of some kind of global

CWASh. A possibility of its consistent definition is the following.

Definition 3.2 Replace h(t) in Definition 3.2 with ρh(t), ρ ≥ 1. The
equilibrium state x=0 of system (3.1) is globally CWASh (or simply the
system (3.1) is CWASh) if x=0 is CWASh for all ρ ≥ 1. �

Theorem 3.2 The system (3.1) is CWASh if and only if:

max
t≥0, |v|≤h(t), ρ≥1

[
1
ρ
C±h(t)
v {±f(t, ρv)} − ḣ(t)

]
≤ 0. (3.6)

This is also a sufficient condition for the asymptotic stability in the
large.

In order to instrument Theorem 3.2 and to open a way towards some
more significant and concrete evaluations of type (3.4), [10], [11], let us
consider now the free evolution of linear system (2.10), described by:

ẋ = Ax, t ∈ R+, x ∈ Rn. (3.7)

Theorem 3.3 The linear system (3.7) is CWASh if and only if:

maxR+

[
Ah(t)− ḣ(t)

]
≤ 0. (3.8)

The solvability of Ah(t)− ḣ(t) ≤ 0 w.r.t. h(t) leads to the following.
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Theorem 3.4 The linear system (3.7) is CWASh if and only if:

h(t) ≥ eA(t−t0)h(t0), for each t0 ≥ 0 and for each t ≥ t0. (3.9)

Theorem 3.5 A necessary and sufficient condition for the existence of
h(t) such that the linear system (3.7) be CWASh is that A be a Hur-
witzian matrix.

Let H be the Abelian semigroup of the solutions of (3.8) or (3.9) with
A Hurwitzian. Linear system (3.7) is CWASh for each h ∈ H, and for
each h1,h2 ∈ H, CWASh1 is equivalent to CWASh2 . In this context and
taking into account the right hand term in (3.9), one has to investigate
if H may contain (or be endowed with) simpler exponential functions.

3.2. Componentwise exponential asymptotic
stability, [10], [11], [15]

Consider
h(t) = de−β(t−t0), t ≥ t0 ≥ 0. (3.10)

where d =: [d1 d2...dn]∗ > 0 and β > 0 (scalar).

Definition 3.3 The equilibrium state x=0 of system (3.1) is called
componentwise exponential asymptotically stable (CWEAS) if there exist
d > 0 and β > 0 such that for each t0 ≥ 0 and for each |x0| ≤ d the
system (3.1) satisfies:

|x(t)| ≤ de−β(t−t0), t ≥ t0. � (3.11)

Definition 3.4 Replace d in Definition 3.3 with ρd, ρ ≥ 1. The equi-
librium state x=0 of system (3.1) is called globally CWEAS (or simply
the system (3.1) is CWEAS) if x=0 is CWEAS for all ρ ≥ 1. �

Theorems 3.1 and 3.2, with (3.10), lead to the following results.

Theorem 3.6 The equilibrium state x=0 of system (3.1) is CWEAS if
and only if:

max
t≥0, |v|≤d

[
eβtC±d

v

{
±f(t,ve−βt)

}]
≤ −βd. (3.12)

Theorem 3.7 The system (3.1) is CWEAS if and only if:

max
t≥0, |v|≤d, ρ≥1

[
1
ρ
eβtC±d

v

{
±f(t, ρve−βt)

}]
≤ −βd. (3.13)

In order to derive some results for the linear system (3.7), pertinent
notations are needed, namely:

Ad =: diag{1/d1, 1/d2, ..., 1/dn}Adiag{d1, d2, ..., dn};
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Gi(Ad) =:

sC; |s− aii| ≤
1
di

∑
j=1,...,n,j 6=i

|aij | dj

 , i = 1, ..., n,

are the d-Gershgorin’s discs associated with A (C is the set of complex
numbers); Ak, k = 1, ..., n, are the leading principal minors of matrix A;
for any matrix M the inequality M > 0 means mij > 0 for all i and j.

Theorem 3.8, [10], [11] The next statements are equivalent:
1◦ Linear system (3.7) is CWEAS.
2◦ Ad ≤ −βd.
3◦ 0 < β ≤ min i

(
−aii − 1

di

∑
j=1,...,n, j 6=i |aij |dj

)
.

4◦ Ad < 0.
5◦ −A is an M-matrix.
6◦ A is Hurwitzian.
7◦ ∪i=1,...,nGi(Ad) ⊂ {sC; <e s < 0}.
8◦ (−1)kAk > 0, k = 1, ..., n.
9◦ detA 6= 0,

(
−A

)−1 ≥ 0.

For linear systems, CWASh is equivalent to CWEAS and this is a spe-
cial type of asymptotic stability. CWEAS depends on the vector basis
in Rn (see Theorem 3.8-4◦) and there exist vector bases in which a given
asymptotically stable linear system is CWEAS. It is a row property of A
in the sense of a certain dominance of the first diagonal elements along
the corresponding rows, necessarily implying that the first diagonal ele-
ments are strictly negative (see Theorem 3.8-3◦). Using definitions that
specialize Definition 2.1 for nonsymmetrical hyper-intervals, detailed re-
sults for CWEAS of continuous-time delay linear systems and for 1D
and 2D linear discrete-time systems have been reported in [30], [31] and
[32].

3.3. Componentwise absolute stability, [15]
The inequality form of condition (3.12) and Theorem 3.8 suggest a

special approach for the following class of nonlinear systems:

ẋ = F(t,x)x, t ∈ R+, x ∈ Rn, (3.14)

which are encountered in engineering (transistor circuits, electrical nets),
economics, biology, ecology, pharmacokinetics etc. For system (3.14) the
asymptotic connective stability via Liapunov direct method and based on
a direct elementwise boundedness of F(t,x) has been studied in [63] and
[64]. Unlike this study the CWEAS based approach allows to consider
a class of (n × n) continuous matrices F(t,x) that are bounded in the
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following sense: for a given real constant (n × n) matrix A there exist
d > 0, (d ∈ Rn) and β > 0 (scalar) such that the next elementwise
inequality holds:

C±d
v

{
F (t, ρve−βt)

}
≤ A, t ≥ 0, |v| ≤ d, ρ ≥ 1, (3.15)

where C±d
v is to apply to each column of F(t,x). Clearly, there exists a

nonempty class FA of continuous matrices F(t,x), which satisfy (3.15).
Accordingly, the linear control system (3.7) is called the linear element-
wise C-majorant (LECM) of systems (3.14) with F ∈ FA.

Definition 3.5 The nonlinear system (3.14) is called componentwise
absolutely stable (CAS) if it is CWEAS for all F ∈ FA. �

Theorem 3.9 The nonlinear system (3.14), with F ∈ FA, is CAS if
and only if its LECM (3.7) is CWEAS (A is Hurwitzian).

3.4. Robustness analysis of CWEAS, [22], [23]
Let us explore the preservation of the componentwise asymptotic sta-

bility for general classes of perturbations affecting the dynamics of the
linear system (3.7). To this goal, let us get a deeper insight into the
mutual relationship between the compatibility of inequality system:

Ad ≤ −βd, d ∈ Rn, d > 0, β > 0, (3.16)

and the spectrum location of matrix A which are referred to in Theorem
3.8, item (2◦) and (6◦), respectively.

Theorem 3.10, [21] Given an arbitrary square matrix A ∈ Rn×n,
denote by λi(A), i=1,...,n, the eigenvalues of matrix A.
a) Matrix A has a real eigenvalue (simple or multiple), denoted by
λmax(A), which fulfils the dominance condition

<e[λi(A)] ≤ λmax(A), i = 1, ..., n. (3.17)

b) The system of inequalities (3.16) is compatible (has a solution d > 0)
if and only if

λmax(A) ≤ −β. (3.18)

Consider the situation when system (3.7) exhibits a perturbed dy-
namics, described by:

ẋ(t) = (A + B∆C)x(t), x(t0) = x0, (3.19)

where A ∈ Rn×n is the same matrix as used in (3.7), B ∈ Rn×m, C ∈
Rp×n and ∆ ∈ Rm×p is a componentwise bounded matrix:

−D ≤ ∆ ≤ D, D ≥ 0. (3.20)
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Denote by |B| ∈ Rn×m, |C| ∈ Rp×n the matrices obtained from B
and C, respectively, by replacing the original entries with their absolute
values. Our robustness analysis relies on the following main result.

Theorem 3.11 Assume system (3.7) is CWEAS and the spectrum of A
is dominated by λmax(A) in the sense formulated by Theorem 3.10. For
an arbitrary σ ∈ R, if λmax(A) < σ, then:

a) |C| · (σIn −A)−1 · |B| ·D is a nonnegative matrix;
b) λmax

(
|C| · (σIn −A)−1 · |B| ·D

)
< 1 ensures λmax

(
A + BC

)
< σ

for the perturbed system (3.19).

Using the robustness property of eigenvalue location, let us first deal
with the case when unstructured perturbations affect the dynamics of
the linear continuous-time system. The preservation of componentwise
asymptotic stability under this class of disturbances can be addressed
within the framework built in Theorem 3.11, by searching an upper
bound for ‖D‖, where ‖ ‖ denotes an arbitrary matrix norm.

Theorem 3.12 Assume system (3.7) is CWEAS and the spectrum of A
is dominated by λmax(A) in the sense formulated by Theorem 3.10. If
λmax(A) < σ ≤ 0 and if, for an arbitrary matrix norm ‖ ‖, matrix D
in (3.20) meets the condition:

‖D‖ < 1/
∥∥∥|C| · (σIn −A

)−1 · |B|
∥∥∥ , (3.21)

then the perturbed system (3.19) is CWEAS for any β > 0, with λmax(A)<
−β<σ and adequate d > 0 satisfying (A + |B| ·D · |C|)d ≤ −βd.

Now, let us focus on the case when structured perturbations affect
the dynamics of the linear continuous-time system (3.7). Assume that
matrix D used in (3.20) for bounding the perturbation matrix ∆ can be
expressed in the following particular form:

D = Ωω, Ω ∈ Rm×p, 0 ≤ Ω, 0 < ω, (3.22)

where Ω is a known matrix, specifying the actions of a given class of
structured perturbations. The preservation of componentwise asymp-
totic stability under this type of disturbances will be approached within
the framework built in Theorem 3.11, by searching an upper bound for
the positive constant ω occurring in expression (3.22).

Theorem 3.13 Assume system (3.7) is CWEAS and the spectrum of A
is dominated by λmax(A) in the sense formulated by Theorem 3.11. If
λmax(A) < σ ≤ 0 and if ω in (3.22) meets the condition:

ω < 1/λmax

(
|C| · (σIn −A)−1 · |B| · Ω

)
, (3.23)
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then the perturbed system (3.19) is CWEAS for any β > 0, with λmax(A)<
−β<σ and adequate d > 0 satisfying (A + |B| ·D · |C|)d ≤ −βd.

Theorems 3.12 and 3.13 can also be regarded as providing conditions
for the preservation of the componentwise asymptotic stability, when-
ever system (3.7) is used in a closed-loop architecture, with proportional
output (or state) feedback, whose gain factors are constrained according
to (3.20) or (3.22).

4. Free response analysis of interval matrix
systems, [21], [29]

Consider the free response of an interval matrix system (IMS) de-
scribed by the equation:

ẋ(t) = AIx(t); x(t0) = x0; t, t0 ∈ T, t ≥ t0, (4.1)

where the interval matrix AI is defined as:

AI = {A ∈ Rn×n : A− ≤ A ≤ A+}. (4.2)

Relying on the background laid out in sections 2 and 3, we are now
interested to investigate the flow-invariance, CWASh and CWEAS prop-
erties of IMS (4.1).

4.1. Flow-invariance of time-dependent
rectangular sets

Consider IMS (4.1) and let Xh(t) be the time-dependent rectangular
set (TDRS) defined by (3.2). For the beginning, assume that there
exists no requirement of type (3.3) for vector function h(t), referring to
its behaviour to infinity.

According to CCE concepts for the particular case of null inputs,
TDRS (3.2) is flow-invariant (FI) w.r.t. IMS (4.1) if for any t0 ∈ T and
any initial condition x(t0) =x0 ∈ Xh(t0), the whole state trajectory x(t)
corresponding to x(t0) remains inside the set Xh(t), i.e.

∀t0, t ∈ T, t ≥ t0, ∀x(t0) = x0 ∈ Xh(t0) : x(t) ∈ Xh(t). (4.3)

This property is formulated in terms of the state-space trajectories of
IMS (4.1), and our interest now focuses on a characterization based on
the interval matrix AI (4.2).

Theorem 4.1 TDRS Xh(t) (3.2) is FI w.r.t. IMS (4.1) if and only if

∀t ∈ T : ḣ(t) ≥ Ah(t), (4.4)
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where A denotes a constant matrix constructed from the interval matrix
AI (4.2) as follows:

aii = sup
A∈AI

{aii} = a+
ii , i = 1, ..., n, (4.5−a)

aij = sup
A∈AI

{|aij |} = max{|a−ij |, |a
+
ij |}, i 6= j, i, j = 1, ..., n. (4.5−b)

Matrix A built according to (4.5) is essentially nonnegative (i.e. the
off-diagonal entries are nonnegative) and it can be uniquely expressed
as a sum of two real matrices:

A = AD + AE , (4.6)

where AD is a diagonal matrix containing the diagonal entries of A, and
AE ≥ 0 is a nonnegative matrix with zero diagonal entries, containing
the off-diagonal entries of A.

In general, matrix A does not belong to the interval matrix AI (4.2),
and for any A ∈ AI one can write the following matrix inequalities:

∀A = AD + AE ∈ AI : AD ≤ AD, |AE | ≤ AE , (4.7)

where AD and AE are two real matrices containing the diagonal and
off-diagonal entries of A, respectively.

Inequalities presented in (4.7) show that matrix A dominates a sym-
metric convex set of matrices MC , including the interval matrix AI (4.2),
which is defined as follows:

MC =
{
M =: MD + ME ∈ Rn×n : MD ≤ AD, |ME | ≤ AE

}
, (4.8)

where MD and ME are two real matrices containing the diagonal and
off-diagonal entries of M, respectively. In the space of coefficients, sym-
metry with respect to the space origin refers only to the extra-diagonal
elements.

Based on this domination of matrix A, we will also say that the linear
constant system:

ẋ(t) = Ax(t), x(t0) = x0; t, t0 ∈ T, t ≥ t0, (4.9)

dominates any system belonging to the family of systems generating
IMS (4.1). Moreover, one can simply notice that linear constant system
(4.9) dominates the whole family of systems generated with matrices
belonging to the convex set MC defined by (4.8). This fact should be
interpreted as a key point in model construction when dealing with flow
invariance, because A ultimately characterizes an IMS with symmetric
uncertainties in the sense formulated above, even if interval matrix AI

(4.2) does not exhibit such a symmetry.
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Although system (4.9) is not necessarily a member of the family of
systems that defines IMS (4.1), the state-transition matrix of constant
system (4.9)

Φ(t0, t) = eA(t−t0); t, t0 ∈ T, t ≥ t0, (4.10)

plays an important role in characterizing the flow-invariance with respect
to IMS (4.1), as revealed by the next result.

Theorem 4.2 TDRS Xh(t) (3.2) is FI w.r.t. IMS (4.1) if and only if

∀ t0, t ∈ T, t ≥ t0 : Φ(t0, t)h(t0) ≤ h(t). (4.11)

A direct consequence of Theorems 4.1 or 4.2 is the fact that the flow-
invariance of the setXh(t) (3.2) with respect to IMS (4.1) guarantees the
existence of this property for the whole class of rectangular sets X̃h(t)
homothetic to Xh(t), the time-dependence of which is defined by the
vector functions:

h̃(t) = ch(t), c > 0, t ∈ T. (4.12)

4.2. CWASh of an IMS
Consider TDRS Xh(t) (3.2) with vector function h(t) meeting the

supplementary condition (3.3) that refers to the behaviour to infinity.
Thus, we can approach the CWASh for IMS (4.1).

Theorem 4.3 IMS (4.1) is CWASh if and only if the constant matrix
A built from the interval matrix AI (4.2) according to (4.5) is Hurwitz
stable.

Now, once we have got this necessary and sufficient condition, we
are interested to explore its algebraic background in terms of matrix
stability. For the proposed development, the result formulated below
plays a crucial role.

Theorem 4.4 Let A be a constant matrix built according to (4.5) from
the interval matrix AI (4.2). The eigenvalue λmax(A), which dominates
the spectrum of A in the sense formulated by Theorem 3.10, also dom-
inates the spectrum of any arbitrary matrix A ∈ AI in the same sense,
as follows:

∀A ∈ AI : <e[λi(A)] ≤ λmax(A), i = 1, ..., n. (4.13)

It is worth also noticing that the domination of the eigenvalue λmax(A)
remains valid in the sense formulated by Theorem 4.4 for the whole
symmetric convex set of matrices MC defined by inequalities (4.8).

Now, resuming our discussion on the stability of matrix A versus the
stability of the interval matrix AI , we can simply formulate an immedi-
ate consequence of Theorem 4.4.
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Corollary 4.1 Let A be a constant matrix built according to (4.5) from
the interval matrix AI (4.2). If A is Hurwitz stable, then AI is Hurwitz
stable.

The result formulated in Corollary 4.1 can be also found in [65]. How-
ever, the noticeable achievement of our work consists in revealing the
complete meaning of the algebraic condition of stability for matrix A,
based on the stronger concept of componentwise asymptotic stability.
Thus, the stability of matrix A operates only as a sufficient criterion for
the asymptotic stability of IMS (4.1) – result already known, whereas
it represents a necessary and sufficient condition for the component-
wise asymptotic stability of IMS (4.1) – new result. Moreover, for A
stable, our recent insight demonstrates that the usage of the dominant
eigenvalue λmax(A) as a stability margin for IMS (4.1) (proposed in [66]
for standard asymptotic stability) fully characterizes only the situation
when the margin refers to the componentwise asymptotic stability of
IMS (4.1).

In the light of these comments, if IMS (4.1) is CWASh, the dominant
eigenvalue λmax(A) is expected to provide supplementary information
with regard to the time-dependent evolution of those TDRSs Xh(t) (3.2)
& (3.3) that are FI w.r.t. IMS (4.1).

Theorem 4.5 Let IMS (4.1) be CWASh and consider a set Xh(t) (3.2)
& (3.3) which is FI w.r.t. IMS (4.1). For any two arbitrary time instants
t0, t ∈ T , t > t0, for which h(t) < h(t0), define the decreasing rate of
Xh(t) between t0 and t, denoted by d(t0, t), as the minimal subunitary
value ensuring the fulfilment of the following inequality:

h(t) ≤ d(t0, t)(t0). (4.14)

The decreasing rate of Xh(t) has a lower bound that can be expressed as
a time-dependent exponential function of parameter λmax(A):

eλmax(A)(t−t0) ≤ d(t0, t). (4.15)

Although standard asymptotic stability of IMS (4.1) represents only
a necessary condition for the componentwise asymptotic stability, one
can identify several classes of IMSs for which this condition is also suffi-
cient. In this paragraph we restraint our presentation to three classes of
IMSs, whose particular structures correspond to special types of interval
matrices AI (4.2), where the stability of AI is equivalent to the stability
of A.

(i) Assume that all the extra-diagonal entries of AI (4.2) are nonneg-
ative. IMS (4.1) is CWASh if and only if it is asymptotically stable.

(ii) Assume that AI (4.2) is either lower- or upper-triangular. IMS
(4.1) is CWASh if and only if it is asymptotically stable.



A survey on flow-invariance based results in control systems 409

(iii) Assume that V = VD + VE is an extreme vertex of the hyper-
rectangle described in Rn×n by AI (4.2), such that VD = AD, |VE | =
AE , with AD, AE defined by (4.6), i.e. V is also a vertex of the con-
vex set of matrices MC defined by (4.8). Assume that VE or −VE

is a Morishima matrix, [65]. IMS (4.1) is CWASh if and only if it is
asymptotically stable.

4.3. CWEAS of an IMS
Consider TDRS Xh(t) (3.2) with vector function h(t) meeting the

additional condition (3.10), which allows us to address the CWEAS for
IMS (4.1). Since condition (3.10) is more restrictive than condition (3.3)
that was assumed in the previous paragraph for CWASh analysis, it is
perfectly reasonable to explore the relationship between the CWASh and
CWEAS of IMS (4.1).
Theorem 4.6 IMS (4.1) is CWASh if and only if it is CWEAS.

For testing the componentwise (exponential) asymptotic stability of
IMS (4.1), besides the investigation of Hurwitz stability for constant
matrix A, built according to (4.5) from the interval matrix AI (4.2),
one can apply the equivalent criteria presented by Theorem 3.8 in the
previous section.

5. Free response analysis for a class of nonlinear
uncertain systems, [24] – [28], [67]

Consider the class of nonlinear uncertain systems (NUSs) defined as:
ẋ = f(x), x ∈ Rn, x(t0) = x0, t ≥ t0;

fi(x) =
n∑

j=1

aijx
pij

j , pij ∈ N, i = 1, ..., n, (5.1)

where the interval-type coefficients:
a−ij ≤ aij ≤ a+

ij (5.2)

are chosen to cover the inherent errors which frequently affect the accu-
racy of model construction.

Relying on the background laid out in sections 2 and 3, we are now
interested to investigate the flow-invariance, CWASh and CWEAS prop-
erties of NUS (5.1).

5.1. Flow-invariance of time-dependent
rectangular sets

Consider NUS (5.1) and let Xh(t) be the time-dependent rectangular
set (TDRS) defined by (3.2). For the beginning, assume that there exists
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no requirement of type (3.3) for vector function h(t) =: [h1(t) ... hn(t)]∗

(∗ means transposition), referring to its behaviour to infinity.
According to CCE concepts for the particular case of null inputs,

TDRS (3.2) is flow-invariant (FI) with respect to (w.r.t.) NUS (5.1) if
for any t0 ∈ T and any initial condition x(t0) = x0 ∈ Xh(t0), the whole
state trajectory x(t) corresponding to x(t0) remains inside the set Xh(t),
i.e.

∀ t0, t ∈ T, t ≥ t0, ∀x(t0) = x0 ∈ Xh(t0) : x(t) ∈ Xh(t). (5.3)

This property is formulated in terms of the state-space trajectories of
NUS (5.1), and our interest now focuses on a characterization based on
the interval-type coefficients (5.2).

Theorem 5.1 TDRS Xh(t) (3.2) is FI w.r.t. NUS (5.1) if and only if
the following inequalities hold for t ∈ [t0, θ), θ > t0:

ḣ(t) ≥ g(h); gi(h) =
n∑

j=1

cijh
pij

j , i = 1, ..., n, (5.4−a)

ḣ(t) ≥ g̃(h); g̃i(h) =
n∑

j=1

c̃ijh
pij

j , i = 1, ..., n, (5.4−b)

where cij, c̃ij have unique values, derived from the interval-type coeffi-
cients aij of NUS (5.1) as follows:

cii = a+
ii , for pii odd or even; cij

i6=j

=


max

{∣∣∣a−ij∣∣∣ , ∣∣∣a+
ij

∣∣∣} , if pij odd

max
{

0, a+
ij

}
, if pij even

;

(5.5−a)

c̃ii =

 a+
ii , if pii odd

−a−ii , if pii even
; c̃ij

i6=j

=


max

{∣∣∣a−ij∣∣∣ , ∣∣∣a+
ij

∣∣∣} , if pij odd

max
{

0,−a−ij
}
, if pij even

.

(5.5−b)
Theorem 5.2 There exist TDRSs (3.2) which are FI w.r.t. NUS (5.1) if
and only if there exist common positive solutions (PSs) for the following
differential inequalities (DIs):

ẏ ≥ g(y) (5.6−a)

ẏ ≥ g̃(y). (5.6−b)

Theorem 5.3 There exist TDRSs (3.2) which are FI w.r.t. NUS (5.1)
if and only if there exist PSs for the following DI:

ẏ ≥ g(y); gi(y) = max
y∈Rn

{gi(y), g̃i(y)} , i = 1, ..., n. (5.7)



A survey on flow-invariance based results in control systems 411

Let us study the family of TDRSs that are FI w.r.t. a given NUS
(5.1). We start with the qualitative exploration of the solution of the
following differential equation (DE):

ż = g(z), (5.8)

which is obtained from DI (5.7) by replacing “≥“ with “=“.
Lemma 5.1 DE (5.8) with arbitrary t0 and arbitrary initial condition
z(t0) = z0 has a unique solution z(t) = z(t; t0, z0) defined on [t0, θ), for
some θ > t0.
Lemma 5.2 For any t0 and any positive initial condition z(t0) = z0 > 0,
the unique solution z(t) = z(t; t0, z0) of DE (5.8) remains positive for
its maximal interval of existence [t0, θ).

One can easily see that Lemma 5.2 guarantees the existence of PSs for
DI (5.7) in the particular case when “≥“ is replaced by “=“. However
DI (5.7) might have PSs that do not satisfy DE (5.8) and, therefore, we
further establish a connection between the PSs of DI (5.7) and the PSs
of DE (5.8).
Lemma 5.3 Let y(t) > 0 be an arbitrary PS of DI (5.7), with the
maximal interval of existence [t0, θ). Denote by z(t) an arbitrary PS of
DE (5.8), corresponding to an initial condition z(t0) which satisfies the
componentwise inequality:

0 < z(t0) ≤ y(t0). (5.9)

Denote by zy0(t) the unique PS of DE (5.8) corresponding to the initial
condition of y(t), i.e.

zy0(t0) ≡ y(t0). (5.10)

For t ∈ [t0, θ) the following inequalities hold:

0 < z(t) ≤ zy0(t) ≤ y(t). (5.11)

We are now able to formulate a comparison between three different
types of TDRSs, FI w.r.t. NUS (5.1), which are built (according to
Theorem 5.3) by the help of the PSs of DI (5.7).
Theorem 5.4 If Xy(t), Xy0(t) and Xz(t) denote three TDRSs, FI
w.r.t. NUS (5.1), generated by the following three types of PSs of DI
(4.7): y(t) – arbitrary PS of DI (5.7); zy0(t) – unique PS of DE (5.8),
with zy0(t0) = y(t0); z(t) – arbitrary PS of DE (5.8), with z(t0) ≤ y(t0),
then:

Xz(t) ⊆ Xy0(t) ⊆ Xy(t) ∀ t ∈ [t0, θ), (5.12)

where [t0, θ) denotes the maximal interval of existence for Xy(t).
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Given a TDRS which is FI w.r.t. NUS (5.1), we can also formulate
a condition for the existence of other TDRSs, strictly included in the
former one, which are FI w.r.t. NUS (5.1) too.

Theorem 5.5 Denote by Xy(t) a TDRS, FI w.r.t. NUS (5.1) for its
maximal interval of existence [t0, θ). If there exist n functions δi(t) ∈ C1,
non-decreasing, positive and subunitary 0 < δi(t) < 1, i = 1, ..., n, such
that

g (∆(t)y(t)) ≤ ∆(t)g (y(t)) ; ∆(t) =: diag {δi(t), ..., δn(t)}, (5.13)

then the TDRS X∆y(t), generated by the vector function ∆(t)y(t) is also
FI w.r.t. NUS (5.1) and

X∆y(t) ⊂ Xy(t), t ∈ [t0, θ). (5.14)

A great interest for practice presents those TDRSs, FI w.r.t. NUS
(5.1), which are defined on [t0,∞) and remain bounded for any t ∈
[t0,∞). Therefore our next theorem deals with the case of infinite-time
horizon, for which it gives a necessary condition, formulated directly in
terms of interval-type coefficients aii and exponents pii in NUS (5.1).

Theorem 5.6 For the existence of TDRSs, FI w.r.t. NUS (5.1), which
are bounded on [t0,∞), it is necessary (but not sufficient) that aii and
pii of NUS (5.1) meet the following requirement, for i=1,...,n:

(pii odd, a+
ii ≤ 0) OR (pii even, a−ii = a+

ii = 0). (5.15)

5.2. CWASh of a NUS
Consider TDRS Xh(t) (3.2) with vector function h(t) meeting the

supplementary condition (3.3) that refers to the behaviour to infinity.
Thus, we can approach the CWASh for NUS (5.1).

Theorem 5.7 Equilibrium state ES {0} of NUS (5.1) is CWASh if and
only if there exist common PSs h(t) > 0 for DI (5.6-a) & (5.6-b), with
lim
t→∞

h(t) = 0.

Theorem 5.8 ES {0} of NUS (5.1) is CWASh if and only if there exist
PSs h(t) > 0 for DI (5.7), with lim

t→∞
h(t) = 0.

As the boundedness of TDRSs on [t0,∞) introduces some restrictions
for the exponents pii and interval-type coefficients aii of NUS (5.1) (for-
mulated in Theorem 5.6), more restrictive conditions are expected when
replacing boundedness of vector function h(t) with the stronger require-
ment (3.3).
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Theorem 5.9 A necessary condition for ES {0} of NUS (5.1) to be
CWASh is

pii odd, a+
ii < 0, i = 1, ..., n. (5.16)

We now resume our qualitative analysis of the solutions of DI (5.7)
and DE (5.8), in order to allow a refined interpretation of the result
stated in Theorem 5.8.
Lemma 5.4 Let pii be odd and a+

ii < 0 for all i=1,...,n. Consider an
arbitrary PS y(t) > 0 of DI (5.7), with its maximal interval of existence
[t0, θ). If z(t) denotes an arbitrary solution of DE (5.8) corresponding
to the initial condition z(t0) which satisfies:

−y(t0) ≤ z(t0) ≤ y(t0), (5.17)

then the following inequalities hold for t ∈ [t0, T ):

−y(t) ≤ z(t) ≤ y(t). (5.18)

This lemma completes the picture on the topology of the solutions
(not only positive) for DE (5.8) in the vicinity of {0}, fact which permits
revealing the link between condition (3.3) and the nature of ES {0} for
DE (5.8).
Theorem 5.10 ES {0} of NUS (5.1) is CWASh if and only if ES {0}
of DE (5.8) is asymptotically stable.

For practice, it might be rather difficult to handle DE (5.8) in order
to check its asymptotic stability. A more attractive approach is to find
just a sufficient condition for CWASh, based on an operator with a more
tractable form than g in DE (5.8).
Theorem 5.11 Consider the DE:

ż = ĝ(z); ĝi(z) =
n∑

j=1

ĉijz
pij

j , i = 1, ..., n, (5.19)

where the coefficients ĉij are defined by:

ĉij = max {cij , c̃ij} i, j = 1, ..., n. (5.20)

(i) If ES {0} is asymptotically stable for DE (5.19), then ES {0} is
CWASh for NUS (5.1).

(ii) In the particular case when the interval-type coefficients aij of
NUS (5.1) satisfy the inequalities given below, for each i, i=1,...,n:

IF pij
i6=j

even THEN (a+
ij ≥ −a−ij for all j OR a+

ij ≤ −a−ij for all j),

(5.21)
the sufficient condition stated at (i) is also necessary for the ES {0} of
NUS (5.1) to be CWASh.
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5.3. CWEAS of a NUS
Consider TDRS Xh(t) (3.2) with vector function h(t) meeting the

additional condition (3.10), which allows us to address the CWEAS for
NUS (5.1). It is natural to understand this particularization of the
function h(t) as a new restriction on the time-dependence of TDRS
Xh(t) (3.2), which imposes a certain decreasing rate that should be
followed by the state trajectories of NUS (5.1). Such a restriction is
reflected by more severe conditions on the exponents pii and interval-
type coefficients aii of NUS (5.1) than stated in Theorem 5.9.
Theorem 5.12 A necessary condition for the ES {0} of NUS (5.1) to
be CWEAS is that

pii = 1, a+
ii < 0, i = 1, ..., n. (5.22)

Theorem 5.13 ES {0} of NUS (5.1) is CWEAS if and only if the
following nonlinear algebraic inequalities are compatible (have solutions
di > 0, i=1,...,n, r < 0):

n∑
j=1

cijd
pij

j /di ≤ r; i = 1, ..., n, (5.23−a)

n∑
j=1

c̃ijd
pij

j /di ≤ r; i = 1, ..., n. (5.23−b)

Theorem 5.14 ES {0} of NUS (5.1) is CWEAS if and only if the
following nonlinear algebraic inequalities are compatible (have solutions
di > 0, i=1,...,n):

n∑
j=1

cijd
pij

j /di < 0; i = 1, ..., n, (5.24−a)

n∑
j=1

c̃ijd
pij

j /di < 0; i = 1, ..., n. (5.24−b)

Conditioning the existence of CWEAS to the values of pii in NUS
(5.1) (as stated in Theorem 5.12) raises a direct question about the link
between CWEAS and CWASh.

Theorem 5.15 For pii =1 and a+
ii < 0, i=1,...,n, the ES {0} of NUS

(5.1) is CWASh if and only if it is CWEAS.
The nonlinear algebraic inequalities (5.23) and (5.24) can be written

compactly in a matrix form, using norm ∞, by considering the square
matrices M, M̃ ∈ Rn×n with the following entries:

(M)ij = cijd
pij

j /di, (5.25−a)
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(M̃)ij = c̃ijd
pij

j /di, (5.25−b)

and a positive real number:
s ≥ |ĉii| i = 1, ..., n. (2.26)

Theorem 5.16 ES {0} of NUS (5.1) is CWEAS if and only if there
exist di > 0, i=1,...,n, and r < 0 such that

max
{∥∥M + sI

∥∥
∞ ,

∥∥∥M̃ + sI
∥∥∥
∞

}
≤ r + s. (5.27)

Theorem 5.17 ES {0} of NUS (5.1) is CWEAS if and only if there
exist di > 0, i=1,...,n, and r < 0 such that

max
{∥∥M + sI

∥∥
∞ ,

∥∥∥M̃ + sI
∥∥∥
∞

}
< s. (5.28)

As already discussed in the general case of CWASh, it might be prefer-
able to use a sufficient condition generated from DE (5.19) in Theorem
5.11. Therefore, consider the square matrix P̂ ∈ Rn×n, with the follow-
ing entries:

(P̂)ij = ĉijε
pij−1, ε > 0, (5.29)

where ĉij , i, j=1,...,n, are defined by (5.20) in Theorem 5.11. Denote
by λmax(P̂) the eigenvalue of P̂ (simple or multiple) with the greatest
real part. As ĉij ≥ 0, i 6= j, i, j=1,...,n, according to Theorem 3.10,
λmax(P̂) is a real number.

Theorem 5.18 If, for a given ε > 0, matrix P̂ is Hurwitz stable, then
the ES {0} of NUS (5.1) is CWEAS for some 0 < di ≤ ε, i=1,...,n,
and λmax(P̂) ≤ r < 0.

According to Theorem 5.11, whenever inequalities (5.21) are satisfied,
the existence of a positive ε > 0 for which matrix P̂ is Hurwitz stable
represents a necessary and sufficient condition for the ES {0} of NUS
(5.1) to be CWEAS.

5.4. CWASh and CWEAS in linear approximation
The linear approximation of NUS (5.1) is an uncertain system with

interval matrix of form (4.1), preserving only those elements aijx
pij

j in
fi(x), i, j = 1, ..., n, for which pij =1. Thus, it is necessary to have
pii =1, i=1,...,n, because, otherwise, the linear approximation of NUS
(5.1) cannot be CWASh (or equivalently CWEAS), according to The-
orem 4.3. In other words CWASh and CWEAS in linear approxima-
tion are equivalent concepts, and the linear approximation inherits the
CWEAS property from NUS (5.1) as shown below.
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Theorem 5.19 Let pii =1 and a+
ii < 0, i=1,...,n. ES {0} of NUS

(5.1) is CWEAS if and only if the linear approximation of NUS (5.1) is
CWEAS.

The equivalence stated by this theorem should be understood just in
qualitative terms, around the ES {0}, since, for the IMS representing
the linear approximation of NUS (5.1), CWEAS is a global property
(as resulting from Section 4), whereas Theorem 5.19 refers to a local
property of NUS (5.1).

6. Componentwise detectability and
stabilizability

6.1. CWEAS state observer, [42]
Consider the linear time-invariant control system:

ẋ = Ax + Bu, t ∈ R+, u ∈ Rm, x ∈ Rn, (6.1)

y = Cx, y ∈ Rp, (6.2)

with x(t0) = x0, t0 ∈ R+, where A, B and C are appropriate matrices.
In many cases the state feedback control relies on an estimate x̂ (in-

stead of x – not measurable) that can be obtained using the observer:
˙̂x = (A− LC)x̂ + Bu + Ly, t ∈ R+, x̂ ∈ Rn, (6.3)

with x̂(t0) = 0. The matrix L (when it exists) must be determined such
that:

lim
t→∞

[x(t)− x̂(t)] = 0. (6.4)

However, in practice the estimation error:
xε =: x− x̂ (6.5)

must converge to zero as quickly as possible, with not too many oscilla-
tions, and at the same time it must satisfy some prescribed constraints.

In order to use the results on CWEAS (see 3.2), let X0 be the bounded
set of all possible x0, i.e. the bounded set of all xε(t0) =x0. Under these
circumstances there may be determined an appropriate constant hyper-
interval Xd =: =: {v ∈ Rn, |v| ≤ d}, with d > 0, d ∈ Rn such that
X0 ⊆ Xd.
Definition 6.1 The observer (6.3) is called CWEAS w.r.t. d and to
a prescribed scalar β > 0 if for each (t0,xε(t0)) the estimation error
satisfies:

|xε(t)| ≤ de−β(t−t0), t ≥ t0. � (6.6)

Elimination of x, x̂ and y between (6.1) – (6.3) and (6.5) yields:

ẋε = (A− LC)xε, t ∈ R+, xε(t0) = x0, (6.7)
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called the equation of estimation error, for which (6.6) is the CWEAS
condition. According to Theorem 3.8-2◦ the characterization corre-
sponding to Definition 6.1 is the following.

Theorem 6.1 he observer (6.3) is CWEAS w.r.t. d and β if and only
if there exists at least one gain matrix L such that:

(A− LC)d ≤ −βd. (6.8)

Further the existence problem of a matrix or in general of a set of
matrices L that satisfy (6.8) can be dealt with by applying results on the
solvability [68] of a system of inequalities or by exploiting the convexity
[69] of the set of L matrices involved in (6.8). The first approach yields
existence and rather computational results while the second one provides
a better insight into the structure of both the set of observers and the
observed system.

To present the second approach, assume that L is the set of all ma-
trices L∗ (transpose of L) satisfying (6.8). It is a simple matter to prove
the following.
Theorem 6.2 L is a convex set.

To check the no emptiness of L, let us observe that (6.8) is equivalent
to the assignment of the d-Gershgorin’s discs (see the sentence preced-
ing Theorem 3.8) associated with the rows of matrix F =: A − LC in
the complex half plane {<e s ≤ −β} (see Theorem 3.8–7◦) via an ad-
equate choice of gain matrix L (if there exists). Thus, the spectrum
Λ =: {λk, k = 1, ..., n} of F, i.e. of observer (6.3), satisfies <eλk ≤ −β,
k=1,...,n. The evaluation of =mλk, k=1,...,n (the eigenfrequencies of
F), is possible by the d-Gershgorin’s discs of F =: (fij) : Gi(Fd) =:{
sC; |s− fii| ≤ ri =: 1

di

∑
j=1,...,n j 6=i |fij |dj

}
, i=1,...,n. They have the

property Λ ⊆ ∪i=1,...,nGi(Fd) that allows the immediate evaluation:
maxk |=mλk| ≤ max i ri. Clearly, if =mλk, k=1,...,n, are too great, then
xε may be too oscillatory, even when condition (6.6) is fulfilled. Conse-
quently, it is more natural to prescribe already from the beginning of the
design a certain assignment region for the d-Gershgorin’s discs (implic-
itly for Λ) in {<e s ≤ −β} (see Theorem 3.8-7◦). Thus, the simplest pos-
sibility in this respect seems to be ri =0, i=1,...,n, which are met if and
only if F satisfies fij =0, i, j=1,...,n, i 6= j. Then F = diag{f11, ...., fn n}
would result, but it remains to examine if fii ≤ −β, i=1,...,n, can be
fulfilled, i.e. if there exists L∗ ∈ L such that F = A − LC is diagonal.
A pertinent analysis in this respect can be achieved in the context of
maximization of β.

An essential aspect in the design of a CWEAS observer is that of the
adequate choice of β in order to establish a good vanishing speed for
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xε. In this respect it is natural to choose the maximum value of β for
which there still exists a CWEAS observer for system (6.1), (6.2). Now,
as suggested by Theorem 6.2, a convex optimisation problem is to solve.

In this respect one has to start by defining the convex functions:

fi(z) =
1
di

d∗(a∗i −C∗z), z ∈ Rp, i = 1, ..., n. (6.9)

where d =: (di) and ai, i=1...,n, are the rows of matrix A. For (6.9)
the following set of clarifying statements may be formulated.

Theorem 6.3 L is nonempty if and only if

max
i

min
z∈Rp

fi(z) ≤ −β. (6.10)

Definition 6.2 The observer (6.3) is called β-maximal if β > 0 from
Definition 6.1 has the maximum possible value βmax. �

To conveniently express the next result let us consider the equations:

C∗
(i)z = a∗(i), z ∈ Rp, i = 1, ..., n, (6.11)

where C∗
(i) and a∗(i) are to be obtained by deleting the row c∗i from C∗

and respectively the element aii from a∗i .

Theorem 6.4 Assume that (6.6) hold for any d > 0. Then the fol-
lowing statements are equivalent: 1◦ L is nonempty. 2◦ There exists a
β-maximal observer.

3◦ rankC∗
(i) = rank

[
C∗

(i),a
∗
(i)

]
, i = 1, ..., n, (6.12)

max
i

inf
z∈Zi

(aii − c∗i z) ≤ −β, (6.13)

where Zi ⊆ Rp, i=1,...,n, are respectively the solution sets of (6.11).

The result (6.12), (6.13) shows that for any d > 0 a β-maximal ob-
server, individualized by some L∗0, has F = diag {f1 min, .., fn min}, with

fi min =: min
z∈Rp

fi(z) = inf
z∈Zi

(aii − c∗i z), i = 1, ..., n, (6.14)

βmax = −max
i
fi min ≥ β. (6.15)

The β-maximal observer for any d > 0 is the best in the following
sense: d does not play any role more in (6.6) and (6.8); the vanishing
velocity of xε(t) is the greatest possible; F is diagonal. According to
(6.11) and Theorem 6.4, the gain matrix can be determined as follows:

L∗0 ∈
{

[z1 z2 ... zn]; zi ∈ Zi ⊆ Rp, i = 1, ..., n, max
i

inf
z∈Zi

(aii − c∗i z ≤ −β
}
.
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At the same time, the result (6.12), (6.13) refers only to the observ-
ability pair (A, C), reflecting after all a certain property of system (6.1),
(6.2) which is defined and characterized by the following statements.

Definition 6.3 The system (6.1), (6.2) is called CWEAS-detectable if
there exists an observer (6.3) that satisfies (6.6) with (6.5). �

Clearly, according to (6.6), a necessary condition that system (6.1),
(6.2) be CWEAS-detectable is that the pair (A, C) be detectable.

Theorem 6.5 Assume that (6.6) hold for any d > 0. Then system
(6.1), (6.2) is CWEAS detectable if and only if (6.12) and

max
i

inf
z∈Zi

(aii − c∗i z) < 0 (6.16)

are met.

6.2. CWEAS of state feedback control system
Consider for the control system (6.1), (6.2) the state feedback control:

u = −Kx + Mv, v ∈ Rq, (6.17)

where v is the new control and K and M are appropriate matrices.
By replacing (6.17) into (6.1) it results the equation of state feedback
system:

ẋ = (A−BK)x + BMv. (6.18)

Concerning the CWEAS of system (6.18) w.r.t. d, i.e. the hyper-
interval Xd =: =: {v ∈ Rn, |v| ≤ d} (including the bounded set X0 of
all possible x0 of (6.18)), and a prescribed β > 0, Theorem 3.8-2◦ yields
the following result.

Theorem 6.6 The system (6.18) is CWEAS w.r.t. d and β if and only
if

(A−BK)d ≤ −βd. (6.19)

By analogy with Theorem 6.2, observe that for the set K of all solution
matrices K of (6.19), i.e. the set of all controllers for which system (6.18)
is CWEAS, the following result may be derived.

Theorem 6.7 K is a convex set.

The no emptiness of K (the solvability of (6.19)) may be checked by
duality according to 6.1. A more direct alternative is to simply examine
if there exists K ∈ K for which the matrix G =: A−BK, [40], is diagonal
and satisfies (6.19) for any d > 0. Then, Definition 6.3 and Theorems
6.3-6.5 will be used. To proceed conveniently, consider the equation:

BK = A−G, (6.20)
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where A, B and G =: (gij) are given and K is unknown. Denote by ac
i ,

gc
i and kc

i , i=1,...,n, the columns of A, G and K respectively, and by
bi, i=1,...,n, the rows of B. Now, (6.20) may be equivalently rewritten
as:

B(i)k
c
i = ac

(i) − gc
(i), (gc

(i) = 0), i = 1, ..., n, (6.21)

gii = aii − bikc
i , i = 1, ..., n, (6.22)

where ac
(i), gc

(i) and B(i) are to be obtained by deleting the elements aii,
gii from ac

i , gc
i and respectively the row bi from B.

Theorem 6.8 Assume that for system (6.18) condition (3.11) hold for
any d > 0. Then K is nonempty if and only if

rankB(i) = rank
[
B(i),a

c
(i)

]
, i = 1, ..., n, (6.23)

max
i

inf
w∈Wi

(aii − biw) ≤ −β, (6.24)

where Wi ⊆ Rm, i=1,...,n, are respectively the solution sets of (6.21).

From equation (6.21) and Theorem 6.8 it follows that matrix K0, for
which G is diagonal, can be determined as follows: K0 ∈ {[w1 w2 ...wn];
wi ∈Wi ⊆ Rm, i = 1, ..., n, maxi infw∈Wi(aii − biw) ≤ −β} .

Clearly, the result (6.23), (6.24) refers only to the controllability pair
(A, B), reflecting a certain property of system (6.1) that is defined and
characterized by the following statements.

Definition 6.4 The system (6.1) is called CWEAS-stabilizable if there
exists a controller (6.17) such that system (6.18) satisfies (3.4) with
(3.11). �

Clearly, according to (3.11), a necessary condition that system (6.1)
be CWEAS-stabilizable is that the pair (A, B) be stabilizable.

Theorem 6.9 The system (6.1) is CWEAS stabilizable for any d > 0
if and only if (6.23) and

max
i

inf
w∈Wi

(aii − biw) < 0 (6.25)

are met.

7. Design of sliding motion control, [50]

7.1. Preliminaries on sliding motion
Consider the nonlinear continuous-time control system (2.1), endowed

with a state feedback discontinuous control and described by:

ẋ = f(t,x,u(t,x)) =: F(t,x), t ∈ R+, x ∈ Rn, u ∈ Rm, (7.1)
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with x =: (xi), and the control switching hyperplane:
S =: {x ∈ Rn; xn = 0} . (7.2)

The achievement of sliding motion of x on S towards an equilibrium
state in Rn consists in the synthesis of control u(t, x), discontinuous on
S, such that the following three requirements are fulfilled:

1◦. For every initial pair (t0, x0) ∈ R+ × (Rn \ S), with x(t0) = x0,
system (7.1) evolves towards S, i.e. its state reaches S, in a reaching
point, after a finite time interval [t0, τ ], τ > t0. This is the reaching
condition.

2◦. Since the reaching instant τ the state of system (7.1) remains
to evolve on S, which is called the ideal sliding motion and S is the
ideal sliding domain for system (7.1). This is the ideal sliding motion
condition.

3◦. The ideal sliding motion (on S) must be asymptotically stable
towards an equilibrium state (usually or conventionally x = 0) belonging
to S. This is the stability condition of the ideal sliding motion.

Chronologically, conditions 1◦ and 2◦ must be successively fulfilled,
while 2◦ and 3◦ must be simultaneously satisfied. This means that for
each pair (t0, x0) ∈ ∈ R+ × (Rn \ S) the whole evolution of system
(7.1), covers two concatenated time intervals: first, a finite one, [t0, τ ],
according to condition 1◦, followed by the second one, (τ, tf ), finite or
not, according to conditions 2◦ and 3◦. This essential and, as a matter
of fact, natural concatenation of the reaching process followed by the
ideal sliding motion can be approached in a unified manner by using
adequately Theorem 2.2.

7.2. Some supporting results for the application of
Theorem 2.2

Assume that F : R+ × Rn → Rn is a continuous and locally Lip-
schitzian function, i.e. for each (t0, x0) ∈ R+ × Rn system (7.1) has a
unique solution x(t), with x(t0) = x0, defined on a maximal time interval
(ta, tb) ⊆ R+, with t0 ∈ (ta, tb).

The solutions x−(t) = x(t), t ∈ (ta, t0], and x+(t) = x(t), t ∈ [t0, tb),
are respectively called negative (or to the left) and positive (or to the
right) solutions through the point (t0,x0).
Definition 7.1 A setX(t) ⊆ Rn, t ∈ R+, is called negatively or positively
flow-invariant w.r.t. system (7.1) if for each (t0,x0) ∈ R+ × Rn the
conditions: x−(t) ∈ X(t), t ∈ (ta, t0] or x+(t) ∈ X(t), t ∈ [t0, tb) are
respectively met. �

Theorem 7.1 X(t) is positively flow-invariant w.r.t. system (7.1) if
and only if Rn \X(t) is negatively flow-invariant w.r.t. system (7.1).
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Consider now that X(t) is defined by (2.6), with a(t) =: (ai(t)) and
a(t) =: =: (ai(t)). Applying Theorem 2.2 for system (7.1), with F =:
(Fi), ((2.8), (2.9) expressed componentwise) the following result may be
derived.

Theorem 7.2 X(t) defined by (2.6) is positively flow-invariant w.r.t.
system (7.1) if and only if:Fi(t, x1, ..., xi−1, ai(t), xi+1, ..., xn) ≥ ȧi(t)

Fi(t, x1, ...., xi−1, ai(t), xi+1, ..., xn) ≤ ȧi

,i=1, ..., n, ∀ (t, x)∈R+×X(t).

(7.3)

7.3. Flow structure pertaining to ideal sliding
motion

Theorems 7.1 and 7.2 may be used for proving the flow structure of
state space generated by the ideal sliding motion occurring in system
(7.1).

As a matter of fact, system (7.1), with (7.2), has a variable structure
and is constituted of two switching subsystems according to the equation:

ẋ =

F−(t,x), x ∈ S−

F+(t, x), x ∈ S+
, t ∈ R+, (7.4)

S− =: {x ∈ Rn, xn < 0}, S+ =: {x ∈ Rn, xn > 0} being the functioning
subsets.

In keeping with system (7.4) one may also define the systems:

ẋ = F−(t, x), (t, x) ∈ R+ × Rn, (7.5)

ẋ = F+(t, x), (t, x) ∈ R+ × Rn, (7.6)

which are called the adjacent systems of (7.4) to S.
Definition 7.2 Switching surface S is an ideal sliding motion domain for
system (7.4) if S does not contain any trajectory segments of adjacent
systems (7.5), (7.6) and for each ε > 0 and each xs ∈ S there exists a
neighbourhood V s of xs such that for each fixed x0 ∈ V s \ S the state
of system (7.4) evolves inside the domain Sε =: {x ∈ Rn; |xn| ≤ ε} for
each t ∈ [t0,+∞). �

To emphasize the state space flow structure of system (7.4), let us
assume that F∓ : R+×Rn → Rn are continuous and locally Lipschitzian
and F∓ =:

(
F∓i

)
.
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Theorem 7.3 Assume that adjacent systems (7.5), (7.6) have no tra-
jectory segments on S. Then for system (7.4) the following statements
are equivalent:

1◦ S is the ideal sliding domain.
2◦ Each functioning subset is negatively flow-invariant w.r.t. its own

switching subsystem.
3◦ The complementary of each functioning subset is positively flow-

invariant w.r.t. the switching subsystem corresponding to the respective
functioning subset.

4◦ limh↓0 inf h−1d(x+hF∓(t,x); S∪S±) = 0, ∀ (t,x) ∈ R+×(S∪S∓).

5◦

F−n (t, x1 ... xn−1, 0) ≥ 0

F+
n (t, x1, ..., xn−1, 0) ≤ 0

, ∀ (t, [x1, ..., xn−1]∗ ∈ R+ × Rn−1. (7.7)

Besides the cardinal result stated by 5◦ (that allows to solve the ideal
sliding motion problem (and control design) through conditions on S
only, unlike the sufficient classical ones that must hold on a vicinity of S,
[70], [71]), this theorem, by 3◦ and 4◦, depicts the global flow structure of
the state space of system (7.4) induced by its ideal sliding domain. Thus,
precisely this flow structure allows deriving further results concerning the
reaching process as a natural flowing precursor of the ideal sliding motion,
i.e. the ideal sliding motion as a natural goal and as final (chronological)
part of the reaching process.

7.4. Reaching process – flowing precursor of ideal
sliding motion

The reaching process may be adequately dealt with Theorem 7.2,
namely as suggested by Theorem 7.3-2◦.

Theorem 7.4 For each (t0,x0) ∈ R+×(Rn\S) the state of system (7.4)
reaches ideal sliding domain S if and only if there exists a differentiable
function r : R+ → R, depending on (t0,x0), that satisfies the following
conditions:

1◦ There exists τ ∈ (t0,+∞) such that r(τ) = 0.

2◦

 If x0n < 0 then x0n ≥ r(t0)

If x0n > 0 then x0n ≤ r(t0)
; x0n =: xn(t0).

(7.8)

3◦

 If x0n < 0 then F−n (t, x1, ..., xn−1, r(t)) ≥ ṙ(t)

If x0n > 0 then F+
n (t, x1, ..., xn−1, r(t)) ≤ ṙ(t)

.

(7.9)
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∀ (t, [x1...xn−1]∗) ∈ [t0, τ ]× Rn−1.

Notice that this theorem is consistent w.r.t. conditions (7.7) because
for r(t) ≡ 0 in (7.9) one obtains (7.7). Since conditions (7.7) are equiva-
lent to the existence of the ideal sliding domain of system (7.4), it results
that Theorem 7.4 also includes (unlike the classical approach, [70], [71])
the case of ideal sliding motion as a chronological subsequent part of the
reaching process. In order to use Theorem 7.4 for the synthesis of sliding
motion control, one has to appropriately choose the reaching function
r(t) that allows, to some extent, to prescribe the velocity of the reaching
process.

7.5. Sliding motion control of a linear disturbed
plant

Consider the linear time – invariant disturbed plant:

ẋ = Ax + bu+ Dz, t ∈ R+, x ∈ Rn, u ∈, z ∈ Rq, (7.10)

where the state x is available for measurement, u is the scalar control,
and z is the disturbance; A =: (aij), b =: (bj), D = (dij) are appropriate
matrices.

Let us associate with system (7.10) the switching hyperplane:

Sc =: {x ∈ Rn; s = c∗x = 0} , (7.11)

where c =: [c1 ... cn−1 1]∗. Using the transformation x̃ =: [x1 ... xn−1 s]∗ =

Px, where P =:

 In−1
... 0

. . . . . . . . . .
c∗(n)

... 1

, In−1 is the unit matrix of order n− 1,

and c(n) is obtained by deleting cn =1 of c, system (7.10) becomes:

ẋ(n) = Ex(n) + ac
(n)s+ b(n)u+ D(n)z, (7.12)

ṡ =
n∑

i=1

c∗(ac
i − ciac

n)xi + c∗ac
ns+ c∗bu+ c∗Dz. (7.13)

In (7.12), (7.13) E =: (aij −aincj) is an (n−1)× (n−1) matrix, A(n)

and D(n) denote the matrices obtained by deleting the n-th rows and
columns of A and D respectively, ac

i is the i-th column of A; x(n), ac
(n)

and b(n) are obtained by deleting the n-th components of x, ac
n and b,

respectively.
According to Theorems 7.3, 7.4 it follows that for the control design

only (7.13) is to be used. For c∗b 6= 0, consider the control algorithm:

u = −ur(s)− us(x(n))− uz(x(n)), (7.14)
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ur(s) = ρs+ δr, δr =


δ0, s < 0,

0, s = 0,

−δ0, s > 0,

, (7.15)

us(x(n)) =
∑
i∈J

ψixi, ψi =

{
βi, xis < 0,

αi, xis > 0,
(7.16)

uz(x(n)) =

{
β0, s < 0,

α0, s > 0,
(7.17)

where ur(s), us(x(n)) and uz(x(n)) have to control the reaching process,
the ideal sliding motion, and the disturbance rejection respectively; ρ,
δ0, αi, βi, (i ∈ J =: =: {i ∈ {1, 2, ..., n − 1}; c∗(ac

i − ciac
n) 6= 0}), and

α0, β0 are adjustable parameters. Using (7.7) for (7.13) the following
result can be formulated.

Theorem 7.5 S is the ideal sliding domain for system (7.10), (7.14),
with, c∗b 6= 0, if and only if

αic∗b ≥ c∗(ac
i − ciac

n), βic∗b ≤ c∗(ac
i − ciac

n), i ∈ J, (7.18)

α0c∗b ≥ sup
t

c∗Dz(t), β0c∗b ≤ inf
t

c∗Dz(t).

In order to design the reaching process as a precursor of the ideal
sliding motion, let us use the following reaching function:

r(t) =


[
(|s0|+ δ)e−λ(t−t0) − δ

]
sgn(s), t ∈ [t0, τ ],

0, t ∈ (τ, tf ),
(7.20)

where s0 =: s(x0) = s(x(t0)), and δ > 0, λ > 0, τ > t0 are pre-assignable
parameters. Using Theorem 7.4-3◦ (1◦ and 2◦ are satisfied with r(τ) = 0,
τ = = t0 + λ−1 ln (1 + |s0|/δ) > t0), with (7.15) – (7.17), under (7.18),
(7.19), one can formulate the following result.

Theorem 7.6 For each pair (t0,x0) ∈ R+× (Rn \S) the state of system
(7.10), (7.14), with c∗b 6= 0, reaches ideal sliding domain S if and only
if

ρc∗b ≥ c∗ac
n + λ, δ0c∗b ≤ c∗ac

n. (7.21)

The equations (7.14) – (7.17) and the inequalities (7.18), (7.19) and
(7.21) define the (variable) structure and the adjustable parameters of
the controller in order to fulfil requirements 1◦ and 2◦ from 7.1.
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By solving the equation ṡ = 0 (according to (7.13)) w.r.t. u and re-
placing the result into (7.12) (s=0), one obtains the ideal sliding equa-
tion:

ẋ(n) = A1x(n) + D1z, (7.22)

where matrices A1 and D1 can be appropriately calculated. If rankb =
rank [b, D], then D1 =0 and the disturbance rejection is ensured.

The stability of system (7.22) depends only on A1 and may be im-
proved (requirement 3◦ from 7.1) by an additional state feedback. Thus,
the state trajectories of system (7.10), (7.14) evolve with pre-assignable
velocity from each initial state x0 ∈ Rn\S towards ideal sliding domain
S and then towards the final equilibrium state x=0.

8. Conclusions
The flow-invariance method proves to be an efficient tool for a more

subtle characterization of the temporal evolution of the dynamical sys-
tems. It certainly occasions a deeper insight into the system behav-
ior, fact which becomes extremely relevant when the flow-invariant set
considered in the state space is a time-dependent hyper-interval. In
this case, a componentwise characterisation is available for the state
variables. Such a characterisation is useful especially when the state
variables present different importance for the normal system evolution,
unlike the usual evaluation ensured by a norm-based characterisation
(which is rather global and, consequently, it does not allow accurate dis-
tinctions, when necessary, between the individual dynamics of the state
variables). Generally speaking, the corresponding results of the state
componentwise characterisation have the form of necessary and sufficient
conditions that analytically are expressed by differential or algebraic in-
equalities. These results are interesting not only at the theoretical level
as yielding non-conventional approaches to system analysis and design,
but also from the point of view of their applicability to large classes of
real dynamical systems encountered in engineering (electric circuits and
networks, neuronal networks, control systems), biology, ecology, pharma-
cokinetics etc. In such cases, meaningful and significant non-standard
knowledge may be gained that accurately enlighten refined aspects of
theoretical and practical interest for various applications.

In this context, the main conceptual sphere developed in the paper
refers to the componentwise asymptotic stability, whose construction re-
lies, as preliminaries, on the analysis of constrained evolution of dynam-
ical systems, and later on, is able to accommodate synthesis problems
covering observer and state feedback design, as well as sliding motion
control. Thus, the overall approach is founded on the notion of T U X –
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constrained evolution of a continuous-time dynamical system (Definition
2.1) which can be characterized in terms of flow invariance (Theorem
2.1), so as a noticeable particularization can be obtained when a spe-
cial type of constraints, consisting in time-dependent hyper-intervals, is
considered for the state and input variables (Theorem 2.2 - the general
case, Theorem 2.3 - the linear, time-invariant case).

This background allows focusing on the free dynamics and defining
the CWASh and global CWASh properties (Definitions 3.1 and 3.2, re-
spectively) for the existence of which necessary and sufficient conditions
are derived (Theorems 3.1, 3.2 – the general case, Theorems 3.3, 3.4 – the
linear, time-invariant case). A refinement of the CWASh requirements
leads to the CWEAS and global CWEAS concepts (Definitions 3.3 and
3.4, respectively), which can be characterized algebraically (Theorems
3.5, 3.6 – the general case, Theorems 3.7, 3.8 – the linear, time-invariant
case). By exploiting CWEAS, the componentwise absolute stability is
introduced for a class of nonlinear systems (Definition 3.5) and a neces-
sary and sufficient condition for its existence is given (Theorem 3.9).
For the case of linear, time-invariant systems, two results exploring
the eigenvalue location (Theorems 3.10, 3.11) are used to analyze the
CWEAS robustness under unstructured and structured perturbations
(Theorem 3.12 and Theorem 3.13, respectively). Remaining within the
framework of linear dynamics, the study of the free response based on
flow-invariance is extended for interval matrix systems (Theorems 4.1,
4.2), offering a nice and natural generalization of the results on CWASh

and CWEAS previously reported, in the case of constant coefficients
(Theorems 4.3, 4.5 and Theorem 4.6, respectively). This study also al-
lows a refined interpretation of Hurwitz stability for interval matrices
(Theorems 4.4).

The usage of flow-invariance method in exploring free dynamics is fur-
ther applied for a class of nonlinear uncertain systems, yielding charac-
terizations expressed in terms of nonlinear differential inequalities with
constant coefficients (Theorems 5.1, 5.2, 5.3); the nonlinearity of the
dynamics involves a detailed discussion on the geometry of the flow-
invariant time-dependent hyper-intervals (Theorems 5.4, 5.5, 5.6). Re-
lying on some intermediary results (Theorems 5.7, 5.8, 5.9), it is shown
that the CWASh of the equilibrium state {0} of the nonlinear uncertain
system is equivalent to the standard asymptotic stability of the equilib-
rium state {0} of a differential equation with constant coefficients (Theo-
rem 5.10); along the same lines, a sufficient condition is also given (The-
orem 5.11), presenting the advantage of a simpler manipulation. Unlike
the linear dynamics previously investigated, the existence of CWEAS re-
quires a special form for the state-space equations (Theorem 5.12), but
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for such special forms, CWEAS is equivalent to CWASh (Theorem 5.15),
as in the linear case. Moreover, a similarity with the linear case can also
be found with regard to the algebraic characterization of CWEAS (The-
orems 5.13, 5.14, 5.16, 5.17, 5.18). A necessary and sufficient condition
for CWEAS of the nonlinear uncertain system is CWEAS of the interval
matrix system which represents the linear approximation of the former
(Theorem 5.19).

CWEAS principles can be exploited to incorporate typical problems of
linear system analysis/synthesis such as detectability and stabilizability
redefined in the sense of componentwise constrained evolutions (Defini-
tions 6.1,6.2, 6.3 and Definition 6.4, respectively), instead of the classical
formulations based on global approaches in terms of vector norms. Thus
CWEAS detectability and CWEAS stabilizability are studied in con-
junction with the design of CWEAS observers (Theorems 6.1, 6.2, 6.3,
6.4, 6.5) and CWEAS state feedback control (Theorems 6.6, 6.7, 6.8,
6.9), respectively.

The flow-invariance method gives an appropriate framework to deal
with sliding motion by using the notions of negatively and positively
flow-invariant sets (Definition 7.1) and contextually defining the ideal
sliding motion domain (Definition 7.2). Relying on two preparatory
results (Theorems 7.1, 7.2), the approach first focuses on ideal sliding
motions (Theorems 7.3, 7.4) and afterwards emphasis is placed on sliding
motion control of disturbed plants with linear dynamics (Theorems 7.5,
7.6).

Far from scrutinizing the whole research potential offered by the ap-
plicability of flow invariance in control system analysis and design, this
survey paper creates an overview of most noticeable results emerged
from the main concept of componentwise asymptotic stability. Fur-
ther investigations can be directed towards various objectives pertain-
ing to linear and nonlinear system theory, such as: CWEAS preserva-
tion under linear transformations of the state-space variables, connec-
tions between CWEAS stabilizability/detectability and standard strate-
gies based on eigenvalue assignment, links between CWEAS stabilizabil-
ity/detectability and linear quadratic problems, componentwise asymp-
totic stability of different classes of nonlinear systems etc. Along the
same lines, a special remark deserves the new orientation of the flow-
invariance instruments towards the discrete-time dynamics, which was
just simply mentioned in the introductory section, without any details
in the text, as being beyond the scope of the current survey.
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List of acronyms
AS asymptotic stability (as a compound noun), or

asymptotically stable (as a compound adjective)
CAS componentwise absolute stability (as a compound noun), or

componentwise absolutely stable (as a compound adjective)
CCE componentwise constrained evolution
CWASh componentwise asymptotic stability w.r.t. h (as a compound

noun), or
componentwise asymptotically stable w.r.t. h (as a compound
adjective)

CWEAS componentwise exponential asymptotic stability (as a compound
noun), or
componentwise exponential asymptotically stable (as a compound
adjective)

DE differential equation
DI differential inequality
ES equilibrium state
FI flow-invariance (as a compound noun), or

flow-invariant (as a compound adjective)
IMS interval matrix system
LECM linear elementwise C-majorant
NUS nonlinear uncertain system
PS positive solution
TDRS time-dependent rectangular set
w.r.t. with respect to
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[64] Păstrăvanu, O., VOICU, M., Dynamics of a class of uncertain nonlinear systems
under flow-invariance constraints, Int. J. Math. and Math. Scie. (accepted for
publication).

[65] Tschernikow, S. N., Lineare Ungleichungen, Deutscher Verlag der Wiss., Berlin,
1971.

[66] Barbu, V., Precupanu, Th., Convexity and optimisation in Banach spaces, Edi-
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Abstract: The Faculty of Automatic Control and Computer Engineering, one of the leading 
training and research centre in the field of automatic control and computer 
engineering from Romania, during the university year 2002 – 2003 has celebrated 
40 years from the appearance of the first courses in the above mentioned field and 
25 years from the emergence of the Automatic Control and Computer Engineering 
degree course. On this occasion, some of the most significant scientific 
achievements have been put together in this article, as a brief history of the 
Automatic Control degree course at Technical University “Gh.Asachi” of Iaşi. 

1. Origin (the end of 50s– 1977) 
Control engineering saw rapid development in many countries in the 

period immediately following the Second World War. Engineers and 
scientists concerned with control problems have formed new professional 
groupings and university courses dedicated to this subject have arisen. At the 
same time, research groups have been set up both in the industrial and in the 
academic communities.  

In the above context, control engineering has started at the Technical 
University “Gh. Asachi” of Iaşi in the 50s. The Department of Electrical 
Drives from the Electrical Engineering Faculty was approaching issues in 
control engineering, which were introduced as chapters in the courses 
“Electrical Drives” and “Electromechanical Equipment”. The first course 
actually entitled “Automation” was an optional course and it was initiated in 
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the same period by professor Nicolae Boţan. As a result of their didactic and 
research activities, Nicolae Botan, Ioan Bejan and Eugen Balaban published 
the first book, named “Eletromechanical Drives and Automation”, in the field 
of automatic control at “Editura didactică şi pedagogică”, Bucureşti in 1962.  

Other compulsory courses have been established prior to 1962, which 
were mainly focused on the requirements of electromechanical engineering 
and electrical power engineering programs. This was the case with the 
course of “Automation and Remote Control” (within the two degree courses) 
and the course on “Relay protection” (for the electrical power engineering 
program) taught by professors Leopold Sebastian and Ioan Bejan. In 1967, 
Ioan Bejan and Gherghina Balaban published the first course in control, 
entitled “Automation and Remote Control” at the publishing house of the 
University of Medicine and Pharmacy “Gr. T. Popa” of Iaşi. 

In the 60s and the beginning of the 70s, the course of “Automation and 
Remote Control” has known a rapid development, e.g. the course 
“Automatic Control” (Leopold Sebastian) started at the electromechanical 
engineering program and the course “Automation of Electrical Power 
Systems” (Ioan Bejan) was introduced for the electrical power engineering 
program. New optional courses have also simultaneously appeared for 
electrical engineering, such as: “Logical Circuits and Sequential Control 
Systems” (Corneliu Hutanu), “Servomechanisms” (Iosif Olah), “Computer 
Controlled Processes” (Simona Caba) and “Advanced Automation” 
(Gherghina Balaban and Iosif Olah). 

Under the supervision of professors Ioan Bejan and Leopold Sebastian 
extensive research have been carried out at the Department of Electrical 
Drives ranging from control theory problems (nonlinear systems, 
identification, adaptive and optimal control, controller tuning) to the 
application of control methods to areas of thermal processes, electrical 
drives, electrical power systems, relay protection systems, servomechanisms 
or machines tools control. The above mentioned professors have initiated 
PhD positions in Industrial Automation (Leopold Sebastian – 1966) and in 
Electrical Power System Automation (Ioan Bejan – 1972). Then, two 
research groups have emerged, headed by Leopold Sebastian for the 
electrical engineering program (Eugen Balaban, Corneliu Hutanu, Iosif Olah, 
Corneliu Botan, Teohari Ganciu and Simona Caba) and Ioan Bejan for the 
electromechanical power engineering programme, respectively (Gherghina 
Balaban, Ioan Titaru, Mihail Voicu, Cristea Pal and Dumitru Asandei). 

Due to the fact that these groups were at that time the only ones offering 
courses in automatic control, one of the main tasks was from the very 
beginning to write manuals and monographs. In the 70s, several well-known 
books have been published in Romanian, e.g.: 

• L. Sebastian, “Automatic Control”, Editura didactică şi pedagogică, 
Bucureşti, 1975; 
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• I. Bejan, “Automation and remote control of electrical power 
systems”, Editura didactică şi pedagogică, Bucureşti, 1976; 

• I. Bejan, “Magnetic amplifier for control systems”, Editura Tehnică, 
Bucureşti, 1972;  

• N. V. Boţan, “Speed control of electrical drives”, Editura Tehnică, 
Bucureşti, 1974; 

• N. V. Boţan, “Electrical drives control”, Editura Tehnică, Bucureşti, 
1977. 

In the above mentioned period, PhD degrees in the field of automatic control 
have been obtained by Mihail Voicu, Corneliu Botan, Gherghina Balaban 
and Iosif Olah. 

Also in the same period, the members of the automatic control group 
were awarded the following prizes: 

• the Ministry of Education prize - Ioan Bejan, Nicolae Botan, 
Leopold Sebastian, Eugen Balaban, Gherghina Balaban and Mihail 
Voicu; 

• professor emeritus awarded by the Ministry of Education – Ioan 
Bejan, Eugen Balaban and Iosif Olah. 

2. First automatic control program (1977 – 1990) 
In 1977, a five years course entitled “Automatic Control and Computer 

Engineering” has been developed within the Faculty of Electrical 
Engineering. This came as a response to the demands from industry, which 
began to require well prepared engineers in the fields of control and 
computer engineering. 

A study program of two years began in 1977. There were two groups of 
first-year students which took entrance examination at the new degree course 
and other two of second-year students transferred from the electrical and 
electronic engineering programs. Each group of students had separate 
curricula, one for Automatic Control within the Electrical Drives 
Department and the other for Computer Engineering functioning at the 
Electronic Department. 

As it has been mentioned in the previous section, at the Electrical Drives 
Department there were already teaching staff and research laboratories in the 
field of control engineering. The control team elaborated the first Automatic 
Control curriculum that comprised courses of System theory, Digital control 
systems, Analogue control systems, System identification, Hydraulic and 
pneumatic control equipment, Control system design, Systems and 
equipment for process control and Optimal control. The scientific research of 
the automatic control staff has known a significant progress characterized by 
several research projects, the publishing of monographs and participation at 
international conferences. 
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In the 80s, the following new areas of research have appeared: flow-
invariance in control theory, computer controlled processes, machine vision, 
pattern recognition, computer aided control engineering and robotics. In 
1983 professor Corneliu Hutanu’s book “Digital circuits and sequential 
control systems” was published at “Junimea” publishing house from Iaşi and 
professor Mihail Voicu published an important monograph at “Editura 
Tehnică, Bucureşti” in 1986 entitled “Stability analysis techniques for 
control systems”. 

The deep crisis experienced by Romania as a country in the 80s particularly 
affected higher education and inevitably, also the automatic control teaching 
staff, which faced serious problems. For example only three teaching assistants 
were admitted as PhD students in that period in the field of automatic control. It 
was extremely difficult, from an administrative point of view, to publish abroad 
or to participate at international conferences. However, under these severe 
conditions, 10 papers have still been published in important foreign journals by 
Mihail Voicu, Leopold Sebastian, Octavian Pastravanu and Teohari Ganciu and 
9 papers appeared in the proceedings of international conferences. In this 
respect, the participations of professor Mihail Voicu at the 9th IFAC World 
Congress in Budapest (1984) and at the 10th IFAC World Congress in Munich 
(1987) can be considered as remarkable achievements. Also, Octavian 
Pastravanu has presented papers at the international conferences ”Symposium 
on Systems Science IX” organized by University of Wroclaw (1986), 
“European Congress of Simulation” organized by Czechoslovak Academy of 
Science in cooperation with IMACS at Prague (1987) and the 4th International 
Symposium on Systems Analysis and Simulation organized by DDR Academy 
of Science in cooperation with IMACS at Berlin (1988), and Corneliu Lazar has 
presented a paper at “The 3rd International Conference on Automatic Image 
Processing” organized by Scientific Technological Society for Measurement 
and Automatic Control and DDR Academy of Science at Leipzig (1989). 

The main difficulties in teaching and research activities were caused by 
the lack of computer facilities. Notable efforts have been done by the 
teaching assistants Octavian Pastravanu and Corneliu Lazar in the mid 80s, 
which were supported by the dean of the faculty, professor Ioan Bejan and 
by professor Mihail Voicu, in order to achieve proper computer equipment 
and software and to develop laboratories for computer aided control 
engineering. 

Beginning with 1987, the control group formed within the teaching staff 
of the Electrical drives Department organized every two years the national 
scientific symposium “Structures, Algorithms and Equipment for Process 
Control”. 

In the mid 80s, professor Teohari Ganciu concentrated his efforts on the 
foundation of an important research centre – the Iaşi branch of the 
“Automation Design Institute”.  
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3. The Faculty of Automatic Control and Computer 
Engineering  

As a direct consequence of the profound changes experienced by the 
Romanian nation in 1989, the Romanian higher educational system has 
known a lively development. The Faculty of Electrical Engineering has split 
in 1990 in three faculties. One of these, the Faculty of Automatic Control 
and Computer Engineering has been founded at the initiative and due to the 
efforts of the teaching staff from the degree course “Automatic Control and 
Computer Engineering” of the former Electrical Engineering Faculty. 
Professor Corneliu Hutanu was the first dean of the faculty from 1990 to 
1992. From the beginning, the faculty had two departments, Automatic 
Control and Industrial Informatics and Computer Engineering, each of them 
offering the following degree courses: Automatic Control and Industrial 
Informatics and Computer Engineering, respectively. 

The first head of the Automatic Control and Industrial Informatics 
department, professor Mihail Voicu, together with the department staff 
began in 1990 to develop a new curriculum in Automatic Control and 
Industrial Informatics. It must be noted that this curriculum was also 
influenced by a consultative council of the Automatic Control professors 
from Romania in order to maintain certain compatibilities between similar 
curricula introduced in other university centers of the country. Starting with 
the beginning of the 90s, this curriculum has been changed and improved on 
a yearly basis, also based on the knowledge and the experience of other 
European universities, with which several contacts have been established in 
the framework of EU programs. 

Due to the efforts of Mihail Voicu and Octavian Pastravanu, TEMPUS Joint 
European Projects (JEP) have been developed in collaboration with the Control 
Engineering Departments of other European universities, e.g. JEP 0886/1990 
"Higher Education in Control Engineering", JEP 02011/1991 "Improvement in 
Automatic Control Technologies", JEP 07101/1994 "Development in Romania 
of Short-Term Higher Education in Computing, Centered on Distributed 
Processing and Its Application", MJEP 11467/1996 “EU Compatible Training 
in Industrial Automation” – COMPANION. The last TEMPUS project of the 
90’s, UM-JEP 13133/98 “Quality Management”, has been managed by 
Alexandru Onea and it has resulted in a significant contribution to the 
implementation of the quality assurance system of our faculty. 

These projects also offered a good opportunity for establishing 
relationships between our department and other European universities, which 
materialized in the participation of all the teaching staff to workshops 
organized by the JEP members and dedicated to Control Engineering 
Education and in the acquisition of modern laboratory setup. Due to the JEP 
framework, most of the teaching staff and especially young PhD students 
had the possibility to attend training stages at the partner universities. 
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Based on TEMPUS programs, the “traditional” approach towards 
teaching has been modified substantially. The faculty has accepted and 
implemented the European Credit Transfer System (ECTS) starting with the 
academic year 1998 – 1999 and has made our teaching procedures 
compatible with similarly oriented universities in the world. This makes 
possible the exchange of students and academic staff and mutual recognition 
of qualifications. 

The European Credit Transfer System formed the basis of future 
collaborations that continued after the end of the TEMPUS program. Thus, 
with some of the partner universities, the program Socrates-Erasmus began 
to grow at the end of the 90s. In the framework of this program, each year 
students from our department worked on the diploma project at the following 
universities: University of Gent - Department of Electrical energy, Systems 
& Automation, University of Sheffield - Department of Automatic Control 
and System Engineering, University of Duisburg - Department of 
Measurement and Control Engineering, Technical University of Vienna, 
Université Joseph Fourier – Laboratoire d’Automatique de Grenoble. Within 
this program, an important number of MSc and PhD students had also 
training stages. Since 1999 till now, in the framework of the Socrates – 
Erasmus program, professor Robin De Keyser from the University of Gent 
has taught each year a module of the Predictive Control Systems course for 
the MSc program of our department. At the same time, professors Corneliu 
Lazar and Octavian Pastravanu have taught mini-courses on Predictive 
Control and Process Modelling Using Bond Graph, respectively, in the last 
two years at the University of Ghent. 

Together with the development of a new curriculum for the Automatic 
control program, at the beginning of the 90s, new teaching staff has been 
recruited from the research institutes and young graduates. In 1992 professor 
Mihail Voicu, who had a strong experience in managing research and 
teaching staff, has become the dean of the faculty. Since the same year, 
professor Ganciu has been the head of the department of Automatic Control 
and Industrial Informatics. 

Also, it must be mentioned that due to the changes that took place in 
Romania at the beginning of 90s, besides professors Bejan and Sebastian, the 
professors Voicu, Hutanu, Balaban, Botan and Olah also have received the 
right to be PhD supervisors in Automatic Control. Thus, new research areas 
have appeared and a greater number of graduates in Automatic Control have 
become PhD students, which ultimately led to an increased research activity. 
As a result of this, the number of scientific works published in journals and 
at international conferences and congresses has also increased considerably. 

At the end of the 90s, what seemed to be a “natural” development took 
place, and the research groups from the department of Automatic Control 
and Industrial Informatics merged and they formed the Automatic Control 
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and Applied Informatics (ACAI) Research Centre accredited by Ministry of 
Education and Research classified in the C category. ACAI is an 
interdisciplinary research centre managed by professor Mihail Voicu within 
the faculty of Automatic Control and Computer Engineering and its mission 
is to fulfill statements of the university and of the faculty within the field of 
Systems and Control Engineering by creating and sustaining a world class 
research group. The main directions of the scientific research are: System 
Theory, Robotics and CIM Optimal and Predictive Control, Artificial 
Intelligence in Process Control, Systems Identification and Fault Detection, 
Microprocessor Based Control Systems, CAD for Dynamic Systems. The 
activity of ACAI has been carried out in grants with the Ministry of 
Education and Research and industrial companies (grant directors: Mihail 
Voicu, Corneliu Botan, Corneliu Lazar). The ACAI research staff had a very 
productive period from 2000 to 2003, publishing 15 monographs and 
courses, 14 journal papers among which 16 in ISI journals and 121 
conference papers. 

Since 1998, the department of Automatic Control and Industrial 
Informatics offered a short cycle degree program of 3 years on Automation 
Equipment. The undergraduate program of 3 years curriculum represents in a 
way a compromise between the necessity for a graduate with a diploma from 
the Engineering College to be operational in his job and the possibility for 
him to go on with more advanced studies. 

After graduating the long cycle degree program, the students who wish to 
continue their studies can choose to apply for master program – one year of 
specialization – which is organized in the area of Automatic Control, having 
the subjects: distributed parameter control systems, parallel programming 
algorithms and techniques, predictive control, parameter estimation, 
distributed control and artificial intelligence in control. 

In September 1998, the faculty has been moved in a new building having 
7700 m2 useful area with 2 amphitheatres, 7 lecture rooms, 30 laboratories 
and 32 offices for the teaching staff. The two departments of the faculty 
develop their activity in the new building beside the library and the 
Communication Centre of Technical University “Gh. Asachi” of Iaşi. It is 
important to say that the building has been started off at the beginning of the 
90s at the initiative of professor Mihail Voicu, supported by professor Ioan 
Bejan to take the initial necessary steps at the Ministry of Education. 

Unfortunately, the 90’s economic decline of Romania created serious 
problems regarding higher education financing. As a result of this, several 
young people from the teaching staff left the department trying to fulfill their 
professional careers in more developed countries. At the same time serious 
difficulties have appeared in providing facilities for teaching and research 
work. However, the department members could adapt to the new forms of 
financing by having access to external funds, mainly from the following 
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sources: European Trading Foundation – TEMPUS JEPs, Higher Education 
Financing Council of Ministry of Education, World Bank, Romanian 
Government and industrial companies. 

Thus, during 1998 – 2003 the following five major projects have been 
financed by the World Bank and Romanian Government: System of 
Integrated Laboratories for Studying CIM (director Mihail Voicu – 193000 
USD), Training Laboratory in the Field of Computer Aided Process Control 
(director Octavian Pastravanu – 150000 USD), Laboratory for Electrical 
Drives Control (director Corneliu Botan – 150000 USD), Integrated 
Laboratory for Studying, Designing and Implementation of Digital Structure 
for Process Control (director Teohari Ganciu – 150000 USD), Upgrading of 
the Short Cycle Degree Program on Automation Equipment (director 
Alexandru Onea – 35000 USD). There were also 2 individual projects only 
for the equipment acquisition: Microprocessor Based Control Systems 
(director Corneliu Hutanu – 5000 USD) and Digital Controller for Process 
Control (director – Corneliu Lazar – 5000 USD). These funds allowed the 
development of new laboratories and the update of most of the existent 
laboratories at our department with the following major facilities for 
teaching and research work: 

• Flexible Manufacturing System containing two ABB robots (IRB 
1400 and IRB 2400), machine tool (EMCO PC Mill), conveyor 
(FlexLink), computer vision system (OptiMaster), CAD system (8 
PC stations); Robot Soccer System containing 8 MiaBot mobile 
robots and a computer vision system; Androtec mobile robot; 

• Process control setups: FieldPoint Distributed Control System 
(National Instruments) for the distributed control of industrial 
processes, PROCON process control trainers for level, flow and 
temperature (Feedback), LEYBOLD and ELWE electrical drive 
control trainers, Twin Rotor MIMO System (Feedback), Moeller 
PLCs, Laboratory kits for teaching microprocessor based systems; 

• Laboratory installation for making printed circuit boards (Lpkf 
Germany); 

• Computers: 45 computers (IBM compatible) with operating systems 
and basic software, 5 analogue COMDYNA computers, 7 data 
acquisition cards – National Instruments ATMIO16E10 with starter 
Kit and related drivers; 

• Software: CATIA V5R8 (CAD); Robot Studio (robot simulation 
software), Eclipse, RT++, AgentOCX, LPA Prolog, Flex, Agent 
Toolkit (artificial intelligence software), Sucosoft V5 (PLC 
software), Discovery computer control aided learning software, 
MATLAB- Simulink 6.0, HMI/SCADA software Lookout, Cadence 
software (OrCAD) for PCB design. 

The above funds have also been used to purchase important textbooks in 
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the field of automatic control for the faculty library. They also contributed in 
the publishing of monographs and university manuals, the development of 
new courses in Automatic Control degree program, the finalization of PhD 
thesis and the participation at international conferences. 

Based on the experience accumulated from the last TEMPUS project, 
Alexandru Onea initiated and led other two projects having the same theme, 
quality assurance in higher education: MATRA project – “Developing the 
national strategy in the field of quality assurance in higher education in 
Romania, financed by EU through the Dutch Government and the Leonardo 
da Vinci project – “Training in quality management system for information 
technology in higher education”. 

In the period from 1990 until the present time the teaching staff of the 
department published 22 monographs, 31 manuals and courses and it largely 
participated in many international conferences both in the country and 
abroad. As a remarkable achievement, it can be mentioned the contribution to 
each edition of the European Control Conference from the beginning until 
now of professors Mihail Voicu and Octavian Pastravanu as well as the 
participation of the lecturers Letitia Mirea and Lavinia Ferariu at the 15th 
IFAC World Congress in Barcelona 2002. 

After the foundation of the EU Control Association (EUCA), part of the 
research developed within our department became known for the scientific 
community of Automatic Control by a number of papers published in 
different editions of the European Control Conference (ECC). These papers 
focus on the following topics (i) AI techniques in identification and 
diagnosis (Marcu and Voicu - ECC'93, ECC'95; Marcu and Ferariu - 
ECC'99; Marcu and Matcovschi - ECC'99; Marcu and Mirea - ECC'01; 
Ferariu - ECC'03); (ii) Dynamics of systems with unknown parameters 
(Voicu and Pastravanu - ECC'95; Pastravanu and Voicu - ECC'97); (iii) 
Time-dependent invariant sets and componentwise stability (Pastravanu and 
Voicu - ECC'99, ECC'01, ECC'03; Matcovschi and Pastravanu - ECC'03). 

Due to his outstanding contributions professor Mihail Voicu was elected 
correspondent member of the Romanian Academy of Technical Sciences in 
1997 and from 1998 he becomes senior member of IEEE. Also, he has 
received the “Aurel Vlaicu” prize of the Romanian Academy for the year 
1987 (awarded 1990) for the papers: 

• M. Voicu, Observing the State with Componentwise Exponentially 
Decaying Error. Systems & Control Letters 9 (1987), pp. 33 – 42. 

• M. Voicu, On the Application of the Flow-Invariance Method in 
Control Theory and Design. 10th World Congress of International 
Federation of Automatic Control, Munich, July 26–31, 1987. 
Preprints, vol. VIII, pp. 364–369. 

Starting with 2001 the department offered a new degree course on 
Industrial Informatics and from 2002 the degree course on Automatic 
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Control and Industrial Informatics became Automatic Control and the short 
cycle degree course Automation Equipment was renamed Automation. 

The numerous contacts with the western universities permitted the 
change of the national scientific symposium of the faculty in the 
international symposium on Automatic Control and Computer Science 
organized every two years, namely in 1993 and 1995 and every three years 
afterwards. 

Since 1991, owing to the initiative of professor Mihail Voicu, the 
Bulletin of the Polytechnic Institute of Iaşi has a new fascicule (1-4) with 
Section 4 dedicated to Automatic Control and Computer Engineering, 
editors being from the beginning till now Octavian Pastravanu, Doru 
Panescu and Alexandru Onea. This journal allowed the specialists in the 
automatic control field to point out the results of their scientific research 
activity. 

At the present time, the Automatic Control degree program at the 
Technical University “Gh. Asachi” of Iaşi is carried out by the following 
teaching staff, of the Automatic Control and Industrial Informatics 
Department from the Faculty of Automatic Control and Computer 
Engineering: 

• Professors: Eugen Balaban, Ioan Bejan (honorary professor), 
Corneliu Botan, Teohari Ganciu (head of the Department), Corneliu 
Hutanu, Corneliu Lazar (scientific chancellor of the Faculty 
Council), Iosif Olah, Cristea Pal (head of the Iaşi branch of the 
Romanian Society of Automatic Control and Technical Informatics), 
Doru Panescu (deputy head of the Department), Octavian 
Pastravanu, Leopold Sebastian (honorary professor) Mihail Voicu 
(dean of the Faculty) 

• Associate Professors: Stefan Dumbrava, Lucian Mastacan, Mihaela 
Matcovschi, Alexandru Onea (editor of the Automatic Control Section 
of the Bulletin of the Polytechnic Institute of Iaşi), Andrei Pricop, 
Gabriela Varvara 

• Lecturers: Catalin Calistru, Lavinia Ferariu, Letitia Mirea, Florin 
Ostafi, Mihai Postolache 

• Teaching Assistants: Alina Barabula, Catalin Braescu, Laurentiu 
Boboc, Vasile Dorin, Catalin Dosoftei, Claudiu Lefter, Laurentiu 
Marinovici, Bogdan Mustata, Cristina Tugurlan 

• Junior Teaching Assistants: Sorin Carari, Marius Kloetzer, Mircea 
Lazar, Cristian Mahulea 
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