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Preface

During the academic year 2002-2003, the Faculty of Automatic
Control and Computer Engineering of Iasi (Romania), and its
Departments of Automatic Control and Industrial Informatics and of
Computer Engineering respectively, celebrated 25 years from the
establishment of the specialization named Automatic Control and
Computer Engineering within the framework of the former Faculty of
Electrical Engineering of lasi, and, at the same time, 40 years since the
first courses on Automatic Control and Computers respectively, were
introduced in the curricula of the former specializations of
Electromechanical Engineering and Electrical Power Engineering at the
already mentioned Faculty of Electrical Engineering. The reader
interested to know some important moments of our evolution during the
last five decades is invited to see the Addendum of this volume, where a
short history is presented. And, to highlight once more the nice
coincidences, it must be noted here that in 2003 our Technical
University “Gheorghe Asachi” of Iasi celebrated 190 years from the
emergence of the first cadastral engineering degree course in lasi
(thanks to the endeavor of Gheorghe Asachi), which is today considered
to be the beginning of the engineering higher education in Romania.

Generally speaking, an anniversary is a celebration meant to mark
special events of the past, with festivities to be performed solemnly and
publicly according to a specific ritual. And, if a deeper insight into the
human nature and the social relations and their symbolism is
considered, we must recognize in such a celebration an a posteriori
constitution of an ad hoc rite of passage, which periodically actualize
founding events marking the advance of some people’s life, of some
social groups, of some organizations and, corresponding to their
emerging viability, of concrete and adequate institutions which must
fulfill some well defined and / or recursively definable intellectual,
social and economic tasks.

People celebrate fundamental events in many different ways. Taking
into consideration that our celebration is the first one of this kind, the
Faculty of Automatic Control and Computer Engineering and its two
departments decided to mark their beginning moments by publishing
two special books respectively. As a part of this double anniversary and
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to honor its founding events, the Department of Automatic Control
Industrial Informatics decided to publish the present volume, titled
Advances in Automatic Control, meant to comprise also invited papers
authored by well-known scientists who, in various forms, developed
collaborative works with this department.

As it can be seen from the contents, the themes dealt with in the
papers of this volume cover a large variety of topics which
correspondingly reflects the very different research interests of the
authors: stabilization of distributed parameter systems, disturbance
attenuation in stochastic systems, analysis and simulation of discrete
event systems, fault detection, characterization of linear periodic
Hamiltonian systems, stability of time delay systems, flow invariance
and componentwise asymptotic stability, distributed control,
parametrization of stabilizing controller, vibration control, predictive
control, fuzzy control, intelligent decision and control, optimal control,
computer aided control, robot and CIM control, DVD player control.
Nevertheless, throughout this variety of interests we can distinguish two
unifying features: the novelty of the approaches and / or results, which
can be explicitly perceived by reading the book, and the other one,
having for us the same importance but acting rather implicitly from the
first conceptual idea about this book, which mirrors the high quality of
the human and collaborative relations previously established between
the invited authors and the members of our department.

Finally, we wish to thank all the authors for their contributions and
for their cooperation in making this book a successful part of the
celebration marking the founding moments and the evolution of the
Department of Automatic Control and Industrial Informatics. At the
same time, we express our gratitude to AUTEC GmbH and especially to
Dr. h. c. Hartmut Stirke, who financially contributed to the dissemination
of this book and, during the last five years, partially supported the
mobility of our students and researchers. Our thanks also go to Dana
Serbeniuc, who electronically prepared the camera-ready manuscript,
and, in this respect, to Mitica Craus and Laurentiu Marinovici for their
benevolent and valuable counseling. At last, but not at least, we express
our gratitude to Kluwer, especially to Jennifer Evans and Anne Murray
for their efficient and kind cooperation during the entire process the
result of which is the present volume.

It is not only a nice duty but also a great pleasure to acknowledge all
of these contributions.

The Editor



INTERNAL STABILIZATION
OF THE PHASE FIELD SYSTEM

Viorel Barbu

Department of Mathematics
"AlL Cuza” University, 6600 Iasi, Romania

e-mail: vbj1Q@uaic.ro

Abstract  The phase-field system is locally exponentially stabilizable by a finite
dimensional internal controller acting on a component of the system
only.

Keywords: internal stabilization, phase filed system

1. Introduction

Consider the controlled phase field system

ye + Lo — KAy = mu in @ = x(0,00)
pr —alp —b(p —¢*) +dy=0 inQ )
y=0, p=0 on 99 x (0, 00) .

y(x,()) = yo(x), 30(1770) = 900('%) in 0,
where 2 € R™, n =1,2,3 is an open and bounded domain with smooth

boundary 02 and a,b, ¢, k,d are positive constants. Finally, m is the
characteristic function of an open subset w C € and wu is the internal
control input.

This system models the phase transition of physical processes and in
particular the melting or solidification processes. In this latter case y
is temperature and ¢ is the phase function. The Stefan free boundary
problem is a limiting case of problem (1.1).

The local controllability of system (1.1) where internal control inputs
arise in both equations was proved in [1] via Carleman’s inequality for
linear parabolic equations (see [4]).

In [2] it was established the stabilization of null solution to (1.1) via
a Riccati equation approach. The main result obtained here, Theorem
1 below is a sharpening of the results obtained in [2] on the lines of [3].
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2. The main result
We set A = —A with D(A) = H?(Q) N H}(Q). Let {1;}22, be an
orthonormal basis of eigenfunctions for the operator a, i.e.,

Ay = Ny, i =1, ...

(Here each eigenvalue \; is repeated according to its multiplicity.)
Denote by A%, 0 < s < 1, fractional powers of @ and set H = L?(12),
W=D (A%> , V=D (A%) , with the usual norms.
For each p > 0 denote by W, the open ball in W x W

W, = {(yo,wo) eW xW;

A4y0’ +‘A4ip0‘ <pTo.
Now we are ready to formulate the main result of this paper.

Theorem 1. There are N and Ry : D(Ry) C Hx H — H x H, linear,
self-adjoint satisfying

1|2 1|2 12 1|2
Cy <‘A4y +‘A4¢‘ )S < RBN(y,¢), (y,0) > <C4 <‘A4y +‘A4so‘ >
(2.1)
9 12 12
IRN (Y, @) trscm < Cs ‘Aw + ‘Aw’ (2.2)
and such that the feedback controller
N
u=— Z(Rny(t) + Ri2p(t), v)wth; (2.3)
i=1

exponentially stabilizes (1.1) on W,. More precisely, for all (yo, o) €
W, we have

@O + lo(®)] < Cae™ (lyollw + lleollw) (2.4)

L7 ([t + [ake] ) ae < cstimliy + lali). 25)

Here Ry = H gg g;z , (-,)w is the scalar product in L?(w) and
lyllw = ‘A%‘, | - | is the norm of H. Finally, < -,- > is the scalar

product of H x H.
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The idea of the proof already used in [2], [3] is in few words the follow-
ing. One proves first that the linearization system associated with (1.1)
is exponentially stabilizable (Lemma 1) and use this fact to construct a
feedback controller Ry satisfying (2.1), (2.2) (Lemma 2). Finally, one
proves that controller (2.3) exponentially stabilizes system (1.1).

3. Stabilization of the linear systems
We shall rewrite system (1.1) as
Y + kAy — alAp — ldy + by — lbp® = mu
¢ +adp —bp+dy+bp® =0 inQ (3.1)
y(0) = yo, ¢(0) = in Q.

Equivalently,
()40 (2)= (%) (3.2)
(Do=(2)

where

kA —¢4d —alA +0b
d aA—b

F@) = ( _fog ) . (3.4)

Consider the linear control system
d(y y\ _ [mu
dt<s0> +A<<P> - ( 0 )
) Yo
0) =
(B)o-(2)

vy + kAy — alAp — ldy + Lbp = mu
o +adp—bp+dy=0 (3.6)
y(0) = yo, ¢(0) = o.

We set Xy = span{wi}fil and denote by Py the projector on Xy.
We set

(3.3)

—

3.5)

ie.,

y=yn + 2N, ¢ =N + (N,
yn = Pny, on = Pny, 2y = (I = Pn)y, (v = (I — Pn)p
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and rewrite system (3.6) as
y‘jj\f + (kX — Ed)yg\, — (al); —i—ﬁb)gog\, = (Pn(mu),v;), j=1,...,N,
@ +dyn + (a\j — b =0, j=1,...N,

3.7
S (Nj—Ld) 2l —(alrj+0)Ch=((I — Py (mu),1;), =N + 1, ( )
o ded + (N =) =0, j=N+1,...,
¢n(0) = Pnyo, ¢n(0) = Pno,
2N (0) = (I = Pn)yo,¢n(0) = (I — Py)yo.

(3.8)

Here

= =1
N . N .
v= Y A, v= >

Lemma 1. There are y; € L?(0,00), j = 1,..., N, such that for N large
enough the controller

N
u(w,t) = ) uj(t)y;(2) (3.9)
j=1
stabilizes exponentially system (3.6), i.e.,
y(®)] + le®)] + [u;(t)] < Ce™ (lyo| + |¢ol), Yt > 0. (3.10)
for some v > 0.
Here | - | denotes the norm in L?((2).

Proof. To prove Lemma 1 which is the main ingredient of the proof of
Theorem 1 we shall prove first the exact null controllability of the finite
dimensional system (3.7) for N large enough.

For u given by (3.9) system (3.7) becomes

N
i + (kX — Ld)yly — (alj + ) = > ui(t) (5, i), a.11)
i=1 :
G+ dyly + (aXj —b)gly =0, j=1,...,N.
The dual system of (3.7) is the following
¥ — (kX — d)p’, — dg’s =0, j=1,...,N,
p]N ( J )pN an J (3.12)

ng\, + (alX; + Eb)pgv — (aXj — b)q{v =0.
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We set
By = [|(¥5, ¥i)wlll =1

where (-, )y, is the scalar product in L?(w). Recall that (3.11) is null
controllable on [0, 7] if and only if

Bi(pn(H)) =0, ¥t € (0,T) (3.13)
implies that
pN(t) = 0, qN(t) =0. (3.14)
By (3.13) we have
N .
D (W i)up(t) =0, i=1,..,N. (3.15)
j=1

On the other hand, det ||(¢;, ;). || = 0 because otherwise system {; }évzl
is dependent on w and this implies by unique continuation that {1); ;\le
is linearly dependent on Q. Hence py = 0 and by (3.12) it follows that
gv = 0. Hence system (3.11) is null controllable and this implies that
there are {u]}jv: 1 (given in feedback form) such that system (3.11) is

exponentially stable with arbitrary exponent -, i.e.,
lyn (O] + [on ()] + [u; (0)] < Ce™ yp(0)] + @i (0)], V¢ > 0. (3.16)
Substituting (3.9) into (3.8) and taking in account (3.16) we get

1 d . X i . .
3 a(yzgv|2 + alCh1?) + (kA — £d)| 24 |% — (alX; + €b) 2 - Ch+

+ad2 ¢+ alar; — b)|C412 = a(l — Py)(mu, v;)Ch,

where a > 0 is arbitrary.
For « suitable chosen (for instance for av > 2af) and N large enough
we see that

P + alch ()2 < e (|, (0) + ¢4 (0)2)+
t N . ,
+ / == 3 fus(s)Pds < Ce M (|2, () + ¢ (0)2), ¥t >0,
0 -
7j=1
where 'y]lv > 0.

This completes the proof. m
Next consider the optimal control problem
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Min {; /OOO (‘Aiy(t)‘2 + ‘A%gp(t)r + |u(t)|2> dt

N (3.17)
subject to (3.7), u = Zuj(t)% = ®(yo, po)-

It is readily seen that

2 2
D (yo, o) < C <)A2yo’ + )A%wo‘ ) Vyo € D (A%) » po €D (A%) -
(3.18)
Indeed, multiplying (3.6) by A%y and ozA%go, respectively, we get

5 2 (Jahwo] +a|ateto] ) + k|4t - (b0, 4000) -
—td (y(1), A3y(e)) + b (o(t), A2y(0)) +
3 2 1
—i—aa‘AZ(p(t)‘ +04(A51/(t) t) — be(t ) ( Azy(t)>.

For « sufficiently large we get

= ([afve| +alatem| ) +o (|atyw| +|atew)| ) <
<C(lyOF + le@®) + lu(®)?), t > 0.
Integrating on (0, 00) and using Lemma 1 we get (3.18) as claimed.

Hence there is a symmetric continuous operator Ry : W x W —
W' x W such that

1
D (yo, o) = 5 < Ry (to, o), (Yo, w0) > Y(yo,p0) € W x W.  (3.19)

We set
Ri1 Ry

Ry =
Ri2 Roo

We have also

Lemma 2. Let (y*,¢*, u*) be optimal in (3.17). We have

wj(t) = —(Ruy(t) + Riap(t),j)w, V620, j=1,...,N.  (3.20)

Moreover,
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BN (y,0)lxm < C(llyll + llel), Y(y, ) €V (3.21)

and

< RN(y,9)(y, ) > > w(lyliy +1eliy) Yy, 0) € W x W.  (3.22)

Finally, Ry is the solution to the Riccati equation

< kAy — baAp — bdy + lby, R11y + Riop > +
+ < CLAQO + dy — bgD, Ri2y + Rosp > +

N

1
+5 Z;(Rny%—Rlz%%‘)i = (3.23)
J:

— 3 ([4t0f + [ate]) . ve) € D) x D),

The proof of Lemma 2 is exactly the same as that given in [2], [3] and
so it will be omitted.

4. Proof of Theorem 1
Consider the closed loop system
yr + kAy — laAp — ldy + Lbp — b3+

N

+m;(R11y + Ri2,15)wthy = 0 (4.1)

pr+aAp—bp+dy=0, t>0,
y(0) = yo, ©(0) = 0.

It is easily seen that for each (yo, o) € H x H this system has a unique
solution (y, ) € L%(0;T;V) x L%(0,T;V). Multiplying first equation
(4.1) by R11y + R12¢ the second by (Ri2y + Raop) and using (3.23) we
obtain after some calculation

d 3 2 3 2
S <R ) (1) > +|ATy0)| +|ATe0)] < Cl(Ruy+ Rize, o).

On the other hand, we have

((Ruy + Rizg, ¢°)| < C|Ruy + Rizg| [¢l3s g <
< C(llyll + llelDlelzsq) <

1 1 1
2 1 2 3 2
leis+’A4s0‘ ‘Aw} Iw\i6><

+ ‘A%y

1
<C <‘A411y :
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1 1 3 1 1 3
<C <‘Aiy : A%y : ’Aigo‘ + ‘A%go ? Agtp‘z ‘Ai(p‘ > <

<o(|atef at] + [atifJate]") <cfatef (Jataf"+ [ate]) +

2 5 |2
+‘A1g0‘ >

3 2] ,1 |2 1
+C <’A490’ \Aw) ) < Co(y,¢) (‘Aw
Hence for ®(y, ¢) < p sufficiently small,

o7 < R(y, ), (y,) > +)A4y‘ +‘A4<p’ <0.

Finally, if < R(yo,%0), (Y0, %0) > < p small enough we arrive to con-
clusion.
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A SOLUTION TO THE FIXED END-POINT
LINEAR QUADRATIC OPTIMAL PROBLEM

Corneliu Botan, Florin Ostafi and Alexandru Onea

“Gh. Asachi” Technical University of lasi
Dept. of Automatic Control and Industrial Informatics
Email: { cbotan, fostafi, aonea}@ac.tuiasi.ro

Abstract A linear quadratic optimal problem with fixed end-point is studied for
continuous and discrete case. The proposed solution is convenient for control
law implementation. Some remarks referring to the existence of the solution are

indicated.

Keywords: optimal control, linear quadratic, fixed end-point, continuous-time, discrete-time

1. Introduction
A completely controllable linear time invariant system is considered
x(t) = Ax(t)+ Bu(t), (1)

where x € R"is the state vector, ueR™is the control vector and A and B
are matrices of the appropriate dimensions.
The optimal control problem refers to the criterion

J= % j [xT (H)Qx(t) +uT (t)Pu(t)]dt, ®)

Q=Q">0,P=PT>0 (the symbol T denotes the transposition).

The problem is to find the control u(t) that transfer the system (1) from
the initial state x(t,)= x” to a given final state x(tp) = x" (Anderson and
Moore, 1991; Athans and Falb, 1966). The usual case that will be considered
is x(tf)=0. The approach for a more general case, when the target set is

Cx(t;) =0, CeR"" is similar.
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A similar problem can be formulated for the discrete-time case (Kuo,
1992), referring to the system

x(k +1) = Ax(k) + Bu(k) 3)
and to the criterion
k-1
J :% > xT(k)Qx(k) +u” (k)Pu(k). (4)
k=k

0

In (3) and (4), x(k) and u(k) denote the vectors x and u at the discrete
moment kt, keZ, and t is the sampling period (we shall consider 1=1).
Equation (3) can be obtained via discretization of the equation (1). It is preferred
the same notations for matrices although they have, of course, different values.
Since the system is time invariant, we may consider t,=0 and k¢=0.

The argument ¢ or £ will be omitted in the following relations if they are
similar for both continuous and discrete case.

From the Hamiltonian conditions one obtains

u(t)=-P'B"A(t), LeR", (5)
x(t) = Ax(t)—NA(t), N=BP'B' ©)
A(t) = —Qx(t) — ATA(t)
for the continuous case and
u(k)=-P 'B"A(k +1) (7)
x(k +1) = Ax(k) — Nk +1) ©

MEK) =Qx(k)+ATA(k+1)

for the discrete case.

X
If the 2n-order vector y = LJ is introduced, the equations (6) and (8) can

be written in the form

7(t) =Gy(H) )
and
v(k+1)=Gyy(k), (10)
respectively. In the above relations
A -N A+NATTQ -NATT
G, = , Gy = , (11)
QAT ~ATTQ AT

where AT =(A™HT.
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The solution to (9)/(10) can be expressed as
YO =TOY", (12)
where yo is the vector y at the initial instant, and
r()= {rn(-) I ()
Iy Ty()

is the transition matrix for G.
It is possible to compute y(.) from (12) only if the initial value of the co-state
vector A is established. For this purpose, we explicit the vector x from (12)

}eR“’Qn, [ € R™, ij=1.2, (13)

x() =T, (O)x* +T, OA°. (14)
Since x' =0 , one obtains
A0 =T e, (15)

where Iy =1,(t,0), I'j,r =I',(t,0) for the continuous case and
e =T1(ke), Thpp =T, (ky) for the discrete case.
This solution implies that I'j,; is a nonsingular matrix. The conditions for

non-singularity of this matrix will be discussed below.
Now, the system (9)/(10) can be solved and the optimal trajectory (14) is
in the two cases:

x(t) =[T}(£,0) = T (1,001, Ty 1x°, (16)
x(k) =[I}; (k) = T (K 1x°. (17)
From (12) and (15) it also follows
M) = [T (1,0) =Ty (6,0 11X, (18)
M(k) =[5 (k) = T (KT % (19)

The optimal control for continuous case is obtained replacing (18) in (5). For
the discrete case, it has to express A(k+1) from (8) and then use (19) and (7):

u(k)=P"'B"ATTQx(k) - PT'B" ATy, (k) [y, (k)51 Ly Ix°. (20)

The control vector u(k) can be computed with (20) or replacing x(k) in
terms of x” from (17). In the both cases only the open loop control is
obtained. In order to obtain the closed loop control, the vector x’ is replaced
in (20) from (17). But this approach implies a considerable increase of the
computing difficulties, because it has to compute in real time the inverse of a
time variant matrix. A similar situation also appears in the continuous case.
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The method presented below avoids these difficulties.

In the sequel, it will be presented only the proof for the discrete time
case. For the continuous time case only the final results will be indicated.
Some of these results for continuous case are indicated in (Botan and Onea,
1999).

2. Main results

2.1. Basic relations

The main idea of the method is to perform a change of variable, so that
one of the nxn matriceal blocks of the system matrix to be a null matrix:

Y= Up(). p(.)=[x(‘)} @)
v(.)
with
U{I O}GRMZ“, U“:{I 0] (22)
R 1 R 1

I is the # x n identity matrix and R is a n x n constant positive defined
matrix.
From (21) and (22) results

M) =Rx()+v(). (23)
The equation for the new variables in the discrete time case is
p(k+1)=Hp(k), (24)
where
H,, H
H=U'G,U=| " T |eR™™ H,eR™, 1ij=12, (25
Hy Hy :
Matrix Hy, is

where Gij,i=1,2 are the n x n matriceal blocks of G,. Using (11), one

obtains
H,, =(I+RN)A"'R —(I+RN)A"TQ-RA
or
H,, =(I+RN)AT[R -Q-AT(I+RN)'RA].

If we impose
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R=Q+AT(I+RN)'RA (26)
then
Note that the matrix [+RN is non-singular and also that all the inverse
matrices which appear in the following relations exist.
One remark that (26) is the discrete Riccati equation for the LQ problem

with infinite final time.
Using (26), from (11) and (25) it also follows

H,, =(I+NR)'A; H;, =G, =-NA""; Hy, =H; =(I+RN)A™".(28)

The transition matrix for H is Q(k) = H* e R*™?"  One obtains for Q(k)
a similar form as for H

0 Q)
and

Qll(k) = Hﬁ, sz (k)= ng > le(k) =Hy = ZHillele(z_l_l (30
i=0

The transition matrix I'(k) can be expressed in terms of the transition
matrix (k) taking into account (22), (25) and (29) and has the form:

()~ (R () }@D

(k) =UQk) U™ = {
ROy (k) =Ry, (KR =y (k)R ROy, (K) + Oy (k)

The solution of system (24) is

x(k) = 0, (1)x" +Qy, ()

(32)
v(k) = Q,, (k)v°.
The initial vector v’=v(0) results from (15) and (23) for k=0 and it is
V0 =Tl +R)X. (33)
Substituting (30), (31) into (33) it results
V0 =00y x” = _Hl_zlkr Hi(f x’. (34)

The optimal control is obtained from (7), (8) and (23) as
u(k)=-P"'B"ATT(R -Q)x(k)-P'BTA Tv(k).
Replacing (32) and (34) it results
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u(k)=—P'B"A™ (R - Q)x(k) + P"'B' A" H},H, Hx".  (35)

One can remark that the optimal control can be expressed as
u(k) =us (k) +ug(k), (36)

where
up (k) =—P"'BTATT (R - Q)x(k) 37)

is the feedback component and
u (k) =P 'B"ATHE, Hy, HYjx’ (38)

is a supplementary component that depends on the initial state x"=x(0).

Note that in (37) only the term u(k)=—P 'BTA TRx(k)is a proper
feedback component and it is identical with the control vector obtained in
the LQ problem with infinite final time.

Therefore the real time computing of the optimal control u(k) implies to
establish a usual state feedback component ugk) and a supplementary
component uy(k). The last one contains only one time variant element: the
transition matrix le(z , which evidently can be recursively computed.

For the continuous time case, the transformed system can be written as

p(t)=Hp(t), (39)
with
H=U'G U= {F N } (40)
o —F'|
where
F=A-NR. (41)

The form (40) is obtained if we impose
RNR-RA-A"R-Q=0, (42)

that is R satisfies the Riccati algebraic equation that appears in the
continuous LQ problem with infinite final time.
The transition matrix corresponding to H is

Y(t,1) Qp,(t,7)
0 o(t,7) |

where W(.) and ¢(.) are the transition matrices for F and -F', respectively and

Q(t,7) :[ (43)

Q,(t,1) = _[:‘P(t, 0)N¢(6,7)do . (44)
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Since I'(.) = UQ(.)U_1 , one obtains

r()=[ ¥()-Q, (R Q)5() }
TTIRPO-RQ,OR-GOR  $()+RQ,()]”

The solution to the system (39) is
t 0
O o) |,
v(t) VO

V=00 x” =—QPix’, P = (1,,0)

where

with
Qppr =Qy(t,0) and Qyp =y (t;,0) =¥ (t;,0).
From (46) and (47) it follows
X(O)=[¥(£,0)+ Q) (1,009 ¥ X"
V(1) = =4(t,0)Q 5 W .
The optimal control u(t) is
u(t) =up(t) +uy(t),
where the feedback component is
u(t)=—P'BTRx(t)
and the supplementary component is
u, () =—P B ¢(,0)Q5; ¥, x°

and depends on the initial state x".

15

(45)

(46)

(47)

(48)

(49)

(50)

(1)

As in the discrete case, the last component contains only one time variant
element, namely the transition matrix ¢(t,0); this matrix can be recursively

computed.

Remark 1. It is usually desired to maintain x(t) = 0 for t > t. For this

purpose it is necessary to adopt u(t) = 0 for t > t.o

Remark 2. The performed simulation tests have indicated that a significant
increase of the sampling period only for the supplementary component leads
to a small difference in the system behavior. This aspect is important
because offers the possibility of the decrease of the real time computing

volume. O
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2.2 The existence of the solution

As results from the previous relations, the problem has solution if the matrix
I'\»¢ =€,¢ 1s non-singular. Indeed, one remarks from (15) that there is a

unique initial vector 20 = A(0) for a given x" = x(0) if the matrix
I, =T, (tf,0) is non-singular and then the formulated problem has solution.
The condition for non-singularity of the matrix I'|,; is given by the following

Theorem If the pair (A,B) is completely controllable, then matrix T'|,; is

non-singular.

Proof. For the continuous time case, from (31) and (44) one obtains

t,
T (t,0) = Qp, (t7,0) = = [ " OBP'BTe" " Vdog(t;,0).  (52)
0

Since the transition matrix ¢(t;,0) is non-singular, I';,(t;,0)is non-
t; _ T . .
singular if the matrix l'I(tf,O):j0 ¢"*BP'BTef °do is non-singular. One

can prove (Botan, 1991) that Il(t;,0)>0 if (A,B) is completely controllable

and thus the theorem is proved.o
For the discrete time case, the proof is similar, but some supplementary
transformations  are  necessary  because the matriceal block

H;, =-NA™T eR" of the matrix H e R*™*" contains the factor A"

Firstly, we will establish another expression for the matriceal blocks Hj;,
1,j=1,2, given by (28). From (28) one obtains

H =A"' (R +N)R. (53)
Let us denote the matrix
X'T=R"+N=R'+BP'B". (54)
Multiplying (54) with X and then with R, it results
R=X+XBP'B'R. (55)
Multiplying (55) with B, one obtains
RB=XBP'(P+B'RB).
This relation is multiplied with (P+B"RB)™', then with B'R and then
we subtract from R:

R-RB(P+BT'RB)'BTR =R -XBP'B'R. (56)
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Let us denote
P=P+B'RB

N=BP 'B".
Using these notations and (55), relation (56) becomes
X=R-RNR.
From (54) and (58) one obtains
(R"+N)T=R-RNR
and then
H;, =R'R'+N)'A=(1-NR)A
or
H,, =A+BK=F, K=-P 'B'RA .
From (28) one obtains

-T -T
H,, =H,; =F,

17

(57)

(58)

(59)

(60)

(61)

(62)

H,=-NA"T"=—NATFTF T =—NATAT(I-RN)F " =—(N-NRN)F .

But from (59) it follows N — NRN = N, so that
H12 = _NFiT .

(63)

Having in view (61), (62) and (63), the matrix H can be written in the form

F -NFT
H= .
0 FT

Now we introduce the nonsingular matrix

I 0
=l pT

and carry out the transformation

., |F N
D=yHy = T
0 F

and analogous for the corresponding transition matrix

A A
A(k)=x9(k)x‘1=[ o Aﬂ,
2k

(64)
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k-1
k ~T\k i k—i—
A =F", Ay =(F T) s Aok :ZDilDlzDzzl h
i=0
For k=k;
kf_l . kol
Appp =Ap (k) = Z D11D12D5§D2§ =
i=0
k-1 '
- _ Z FIN(FT )1 (F—T )kf -1 — _H(F—T )kf -1 , (65)
i=0
where
k-1 '
=Y FBP'B'(F)".
i=0

We shall prove now that I1 is a positive defined matrix (IT>0) if the pair
(A,B) is completely controllable. Indeed, if (A,B) is controllable, (F,B) is
controllable, with F=A+BK.

Since P>0 and R>0, P given by (57) is also positive defined, and also P~ >0;

in this case, there is a unique positive defined matrix V suchas VV' =P'.
We can express

k-1

=Y FBV(BV) (F)'
i=0
A%
[BV FBV .. F"'BV]=[B FB .. F"'B]
A%
Since the last matrix is nonsingular and [B FB ... F""'B] is of rank n,

the matrix [BV FBV .. FH_IBV] is of the same rank, thus the pair
(F,BV) is completely controllable and the matrix IT is positive defined. Since
F ' is nonsingular, from (65) it follows that A,,¢ 1s nonsingular.

From the transformation (64) we obtain A,,, =lefFT. Since Aj,; and
F' are nonsingular, Q,, is nonsingular and T';,; = Q,,, is nonsingular and
the theorem is proved also for the discrete case. m

3. Simulation results

Some simulation tests were performed for different conditions and different
weight matrices in the criterion for both continuous and discrete case. The
results presented bellow refer to a continuous system (1) with
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0 20 0
A = , B =
{—3.5 —19} M

and to the criterion (2) with Q = diag (1, 3) and P=p=0.7.

The corresponding matrices obtained via discretization were adopted for the
discrete case. The sampling period is T=0.002 s. The terminal moments are t;=0
and t=0.3 s (and corresponding k=150). The initial state is x(t) =[50 0]" .

50

40 -

30

20 -

10

0 —

-10 v

-20

-30

-40
0 0.05 0.1 0.15 0.2 0.25 0.3

Figure 1. The behavior of the system for continuous and discrete cases

Figure 1 presents the behavior of the system for both continuous and
discrete cases; one can remark that the curves are practically the same in the
two cases. The more significant differences between continuous and discrete
case appears if the sampling period is increased. Figure 2 presents the same
situation for the discrete case, but indicates in addition the behavior for k>kg,
when the control u(k)=0 is adopted (see Remark 1).

50

40 b

30 [

20

10

0L

-10

-20

-30

-40 : : : : : : :
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Figure 2. The behavior of a system before and after the final time

Figure 3 presents a comparison between the basic discrete case and the
case when the sampling period Tt was increased by ten times only for the



20 ADVANCES IN AUTOMATIC CONTROL

supplementary component (see Remark 2); one can remark that the
differences are not significant, especially referring to the states variables.

50

40 + ,

20 <~ 1 e

20 | _-= u 4

30 F 4

-40

Figure 3. The effect of the sampling period increase for the supplementary component

It was performed a comparison with the similar linear quadratic problem but
with free end-point. The difference is that in the last case the state vector does not
arrive in zero at the final time, but the control variable is significantly smaller.

4. Conclusions

The linear quadratic optimal problem for continuous and for discrete case
is studied; the results are presented especially for the discrete case.

A new method is presented and it is obtained a very convenient form for
the feedback optimal control law.

Some considerations about the existence of the solution are presented.

The theoretical and simulation results indicate a similarity between the
continuous and discrete time cases.
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Abstract

Keywords:

This paper presents an alternative approach of intelligent control: the pattern
recognizing systems. The main idea is to endow the control system with the
ability to learn from the experience generated by the interaction with the
environment (the control object and the external world). Learning implies
generalization and abstraction, through recognition of synthetic entities, which
concentrate the essence of the past experience. The notions allowing learning,
used in this approach, are called "control situations". The historical evolution of
these notions is briefly exposed and they are analytically defined. Some results
of the authors, presented in the paper, concern: the usefulness of each control
situation in the hierarchical structure of intelligent control, the properties of the
clusters, the learning automaton and the connections with other control
techniques. For illustrating the approach, some applications of the pattern
recognition control systems are presented.

intelligent control, pattern recognition, control situations, hierarchy, adaptive
control, strategy

1. Introduction

A fundamental property of the intelligent control systems is their ability
to extract, through learning, the relevant information from the environment.
This action implies generalization and abstraction, which are frequently
performed through pattern recognition (PR).
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The use of the PR methods, in the space of the observations on the
controlled process, started at the end of the '5S0s [Widrow, 1962, 1964]. A
remarkable application of this period was the pattern recognition control
system (PRCS) for an inverted pendulum; the neural learning automaton was
built using the technology of those years (memistors). PR techniques for
control purposes were also used in [Taylor, 1963], [Waltz and Fu, 1966]. In
the paper [Nikolic and Fu, 1966], a milestone in the field, the control of a
dynamic system with unknown properties is performed by a PRCS. Learning
is driven by an uncertain teacher, who learns simultaneously with the PR
controller. The paper presents the first theoretical and qualitative results,
regarding the convergence of the learning processes.

In some papers of the '60s, the generic term of "situation" was used
instead of "pattern", having the meaning of an abstract entity, relevant for the
control and diagnosis of the systems. The term was mainly adopted by the
researchers in the field of automatic control, such as Aizerman, in the papers
that theoretically founded the method of potential functions [Aizerman et al.,
1965, 1966]. A refinement of this concept appears in the papers [Dragan and
Ceangd, 1968], [Ceangd, 1969a, 1969b], [Ceanga et al., 1971a, 1971b].

A paper that had an important influence on the evolution of the intelligent
control is [Saridis, 1979]. Saridis revealed that intelligent systems are able to
perform behavioral learning, i.e. they classify the information and take
decisions through PR. This means that the intelligent systems perform
generalization, through learning, in order to recognize some synthetic
concepts, concerning the environment they are interacting with. The detailed
description of such synthetic concepts, referred to with the generic term of
"control situations", was approached in [Ceanga et al., 1981, 1984, 1985a,
1985b, 1991]. Recent papers, like [Seem and Nesler, 1996], [Ronco and
Gawthrop, 1997a, 1997b], [Grigore, 2000], [Frangu, 2001], make use of the
PRCS, in neural implementation. In general, the present approaches in
intelligent control (including the PRCS approach) aim at the analogy with
the human mind: [Frangu, 2001], [Truta, 2002]. In the above mentioned
papers, the PR techniques are used to form abstract concepts, hierarchically
structured, according to the principle "Increasing Precision on Decreasing
Intelligence" (IPDI) [Saridis, 1988, 1989].

The purpose of this paper is to present some recent results of the authors
in the field of PRCS. The connections with previous results are also
mentioned, in order to highlight algorithms and techniques that maintain
their up-to-dateness. By structuring in a hierarchy the concepts of control
situations, it will become clearer how PRCS perform the essential functions
of the intelligent systems. According to Albus ([Albus, 1991]), these are:
perception, model of the world, value judgment and behaviour generation.
Some unsolved aspects will also be presented; in the opinion of the authors,
they are important for the evolution of the field.
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2. Control situation approaches

Let us consider a control structure, such as that presented in figure 1,
where the controlled process is a sampled dynamic system, with unknown or
partially known properties. The particular variants of the generic concept of
"Control Situation" depend on the function performed by the PRCS. They
are described in the sequel.

v ﬂ e

u Enwvironment ¥
{Controlled process)

Esraluation of the =
I fulfilltnent of the scope =

o

he— |
| —

Learming recognition system

Figure 1. Control of the process, through the learning PR system

1. Output situation. Let y;, i=1,...,p, y € Y,, be the discrete values of the

output variables, out of the set Y, of admissible values, which represent
significant effects of the input variables v (measurable disturbance) and u
(command). It is called output situation the set S; of the variables observed

from the "environment", w, that determine the discrete value y; of the output,
according to f, the causal input-output relationship of the controlled process:

S
S;i={w; woy;; y;ely}. (1)
Let
wit-=1)=[y(t-1),..,y(t—n,),ult—k-=1),.,u(t—k—np),
vt —k-1),...v(t—k—n.)]" 2)

be the vector of the observations from the environment, which is used to
predict the value y(#), where £ is the dead time. The output situation S; is:

S; = {wit=1); sz'nHy[w(t ~Dl-y; O =iw )=y Ol ¥, () ¥y} 3)

The membership of the vectors, with respect to the output situations, is
given by the data recorded in the process (the discrete value of the output, at
the moment ¢). For this reason, a supervised learning is possible, requiring no
human teacher. The recognition of the output situations may be used for the
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predictive evaluation of the effects of the commands addressed to the
controlled process.

2. Command situation. Let us assume there are p admissible values of
the command input. They form the set U, of the discrete admissible
commands: u;, i=1,...,p. Using the output, the command and the measurable

disturbances, the vector of observations is defined:
2(O)=[Y(O)srr Yt =1, +1),u(t=k =), ..ou(t—k—m ), V(t=F), ..., v(t—k—n_)]" ,(4)

where ny, ny, and ng are finite integers and £ is the dead time (expressed in
sampling periods). The learning system has to make use of the "experience"
accumulated up to the moment ¢, with the purpose of determining the
function that assigns to any vector of observations, z(¢), the discrete
command, u;(t), i=1,...p, that maximizes the indicator @. It is called

command situation the set §; of the vectors z, for which the discrete
command u; is optimum, regarding the fulfillment of the objective:

S;={z:Max®(u;,z) =D(u;,z),u; €Uy}. (5)
J

Consequently, to determine the control law means to deduce, through
learning, the discriminant functions of the command situations S;. The

essential problem is to build the teacher of the PR controller. In some cases,
the teacher may be a human expert or a decision system, based on pre-
existing control systems. However, in the general case, the teacher can be a
predictor that recognizes output situations.

Teaching the teacher and teaching the controller are performed
simultaneously, in the frame of a dual control procedure. This one will be
presented with the assumption that k=0, in order to simplify the expressions.
At the current moment, j, the following operations are performed:

a — The generation of a first approximation of the current command by
recognition of the command situation. The reference for the next moment,
Jj*1, is already known: y,(j +1). The vector

Z(j)z[yr (J+1), y(])aa y(j_na +l),u(j—1),...,u(j—nb ),V(j), ) V(j—}’lc )]T (6)

will be assigned (by recognition) to one of the classes Sf, i=1,.., p.. Let
u(j)=uy, ug €Uy, be the discrete command associated to the recognized
command situation. The recognition controller did not yet learn, so the
chosen command u, is considered to be the answer of the "student" that has
to be compared to that of the "teacher".

b — Based on the experience accumulated up to the current moment, j, the
predictor recognizes output situations. It assigns the vectors
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Wi (J):[y(])a’ y(j_na +1)’ui’u(j_1):'“au(j_nb ),V(j),...,V(j_nc )]T (7)

(i=1,..,p.) to the classes S?, k=1,.., p,, corresponding to the discrete

values y; of the prediction p(j+1). Making use of these predictions, the
answer of the teacher is determined, according to the decision rule:

Min || y(w; (7)) =y, (G + D=y (D) = 3, G+ DI = ul) =up - (8)

¢ — The responses of the PR controller ( z(j) € S, that is u(j)=u, ) and
of the teacher (u(j)=u,,) are used for enriching the instruction set of the
controller and for teaching it.

d — The command u(j)=u,, is effectively applied to the process and the
response y(j +1)is recorded. This response is used to enrich the instruction
set of the teacher, for predicting the output situations.

The PRCS can be applied to controlled processes having unknown,

nonlinear (possible variant) dynamics, whose objective is to minimize a
quadratic criterion ([Ceanga et al., 1984, 1985a]. It can have the expression:

J = E{(y(t + k)~ y, (k)* + pu* (1) / 1}, )

where p is a weighting factor for the command effort. As previously, the
block for the evaluation of the objective fulfillment (see figure 1) contains a
PR predictor. This one recognizes the output situations and teaches the
learning controller, that recognizes the command situations.

3. Adaptation situation. Let us consider an environment that changes its
properties slowly. The fulfillment of the control objective requires the use of
a control law

u=Y(z@)), (10)

where z(¢) is defined by (4). The command (10) corresponds to particular
properties of the controlled process. When the environment evolves, it is
necessary to adapt the control law, by a finite number of adjustments,
A;[¥Y(z)]. The efficiency of the control law is determined by a set of

measurable variables that form the "influence" vector, ¢g. It is called
adaptation situation ([Ceangd et al., 1991]) the set S; of vectors g,

corresponding to the particular adjustment of the control law, 4;(.), which
allows maintaining the control efficiency:

Sy ={g: Max Oy (2).q1= PL4,(2).q1}. (11)

Adaptation through recognition of such situations belongs to the family
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of multi-model techniques ([Narendra and Balakrishnan, 1997], [Dumitrache
and Margarit, 1999]). It represents an alternative to the classical adaptive
control solutions, which frequently require complex and risky recursive
computations.

4. Strategic situation. Let us consider a control system that can use,
depending on the properties of the environment, more control strategies:

w ()=T;(z(t)), j=l...r, (12)
where the function 7}-(.) defines the j-th command strategy and z(¢) is the

vector of observations (for instance, that in (4)). It is called a strategic
situation (from [Ceangd, 1969a, 1985b]) the set of vectors of observations
z(f), corresponding to the best control strategy, out of the r possible
strategies:

S ={z(n)/ max O[Ty (z(t)] = O[T (z()]} » (13)

where @(.) measures the fulfillment of the objective.

The strategic situations may be defined mainly for complex systems,
having various interactions and constraints, such as the biotechnological,
economical or production systems. Every strategy concerns a particular
tactical objective, which temporary gets the priority in order to fulfill the
global objective.

5. Diagnosis situation. The behaviour of the dynamic systems may be
evaluated by a set of indicators, called local criteria, which can make use of
discrete information extracted by PR techniques. A global evaluation
criterion may also be added, for the entire system. Let » be the vector of local
criteria. It is called diagnosis situation the set of vectors in the space of local
criteria, corresponding to a particular global evaluation of the controlled
process. Some examples of discrete evaluations, defining the diagnosis
situations, are: "admissible", "warning situation i", "emergency situation j",
"damage regime", etc., where i or j have particular meanings for the
supervised process.

Figure 2 presents the hierarchical structure of a control system, based on
control situations recognition (adapted from [Saridis, 1989]). Every
hierarchical level requires the fulfillment of a different objective, expressed
in concepts with different levels of abstraction. The abstraction level
increases along with the hierarchy level because, according to the IPDI
principle, superior levels do not require precision. The elimination of the
details (reducing the entropy) may be performed by processes similar to
those implied by the formation of general concepts, starting from a set of
less general ones. In the following two chapters, the reasons for using PRCS
and their particular learning algorithms will be presented separately, for the
execution level and for the upper levels.
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Higher orgamzed environment
{Human, other systems)

___________ :ri
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Figure 2. Hierarchical structure of a control system, recognizing control situations

3. Control situations for the upper hierarchical levels

3.1. Systems based on control situation recognition

The control techniques based on adaptation, strategic or diagnosis
(supervision) situations are already used in some papers. They appear
explicitly or implicitly (that is, without using the terms introduced in this
paper).

A. The control structures that make use of the adaptation situation
recognition have the advantage of a fast adaptation of the controller.
[Frangu, 2001] presents two applications where the structure of adaptation
through situation recognition corresponds to that in figure 3. Let

x@)=[y@),....y(t —n, +1),u(t—1),...,u(t—nb)]T, xeX, (14)

be the vector of observations, assigned by the recognition automaton to one
of the adaptation situations S}, i=1,...,p. The result of the classification

aims at selecting the best fit controller, according to the recognized situation.

In one of the mentioned applications, the controlled object is an elastic
mechanical transmission, built at Laboratoire d'Automatique de Grenoble
(figure 4). It is used as benchmark for robust and adaptive control
techniques, in [Landau et al., 1995]. Depending on the mechanical load, the
multiresonant frequency response modifies considerably its shape (figure 5).
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This behaviour limits the performances obtained by robust and adaptive
control techniques. Instead, the recognition of the adaptation situation is
proposed.

Fecognition automaton
(zelection subsystern)

computer ————

DAC

Figure 4. Structure of the position control system
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Figure 5. Frequency response of the controlled system, for three different dynamics

The vector of observations is:

x(t) = [p(2), (¢ = 1), p(t = 2), y(t = 3),u(t — 2),u(t - 3)]" (15)
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and the classification algorithm is based on the minimum distance to the
prototypes of the classes. In addition, the selection automaton requires a
supervisor, based on diagnosis situation recognition. When the supervisor
detects the stationary regime, it doesn't allow the controller switching (the
adaptation situations overlap in this regime, so the selection automaton runs out
of information, as in any identification problem, when the identified dynamic
object lacks excitation).

In [Ronco, 1997a, 1997b] a "Local Model Network" (LMN) structure is
used. It contains local linear models and corresponding local controllers, one
pair for each functioning regime of the process. The recognition of the local
model and, implicitly, that of the controller, is based on the vector ® € X,

which is part of the vector of observations (14). Within this method, the
adaptation situations correspond to a pre-established partition. The recognition is
performed by a set of RBF neurons, centered in a uniform net of points of X ¢, .

A different approach, proposed in [Jordan and Jacobs, 1994], is called "Adaptive
Mixture of Experts". Here, the partition of the space X, is performed through

learning, by a multilayer perceptron. Consequently, the domains of the classes
(adaptation situations) are not equal, but depend on the approximation ability of
each local model.

B. The idea of switching the strategies, which justifies the concept of
strategic situation, assumes that the current control objective can change,
during the control of the process. The objective can change as a result of the
evolution of the subprocesses (for instance: changes in behaviour, failure of the
local control loops or even failure of the superior level) or of the interaction with
the higher organized environment (for instance: human). This change can
require to switch the controller, at the execution level, or to switch the method
for the coordination of the subprocesses, at the middle (coordination and
adaptation) level. Intuitively, the strategies may be switched through instructions
like: "switch to a survival strategy, because a local loop is temporarily
unavailable", "switch from cooperation with other agents to competition",
"switch from stimulation of the bioreactor population to the rejection of the
parasitic population”, "switch from emergency medical care to the
convalescence recovery method". The corresponding switching decisions may
belong to the upper level (organization and scheduling) or to the middle level.
There already are some well grounded papers, which investigate the properties
of such systems, possibly in uncertain conditions. Among these, [Kuipers, 1994]
studies the validation of heterogeneous control laws and [Johansson, 1996,
1997] present an analysis method for the stability of the heterogeneous
controlled systems, regardless the type of the controller. The method makes use
of piecewise defined Lyapunov functions, one for each validity domain of local
controllers. The result obtained in this approach is also useful for the analysis of
the systems based on adaptation situation and strategic situation recognition.
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Among the problems raised by the heterogeneous command, those
concerning the switching decision lead to using a strategic situation
recognition automaton. The advantages of including such a subsystem are:

- The automaton is a learning one, meaning it has the ability to learn from
the examples, including unsupervised learning. In this variant, the
recognition decision requires no information provided by the human expert,
but uses the similarity of the examples, based on a measure of the objective's
fulfillment.

-It can model complex discrete approximation functions, whose
analytical computation may be unreachable. To materialize these functions,
both classical recognition algorithms and discrete output neural networks can
be used.

A simple example of using the strategic situations is presented in
[Frangu, 2002], starting from the known benchmark, the “backer truck”.
Obviously, there are initial positions of the truck who don’t accept solutions,
such as the positions where the backside of the truck faces the wall, at low
distance (figure 6). If starting from these positions, the backwards docking
fails, regardless the chosen controller. In order to find out whether the initial
position allows a solution or not, a recognition automaton will learn from the
experience accumulated during the previous docking attempts (including the
unsuccessful ones). The objective of the automaton is to predict if the current
controller succeeds to dock, using the information of the initial position. If
the automaton predicts the failure, the control system has to switch to a
controller having a different objective than immediate docking (in this case,
to drive forward, to the distance that allows secure docking).

Figure 6. Docking with start from initial positions (2, 1, 0) and (2, 1, n/2)

The initial position contains the truck backside coordinates: x (along the
wall), y (distance to the wall) and orientation angle with respect to the wall,
0. Figure 6 presents two docking attempts, whose initial coordinates x and y
are identical, but presenting different initial angles and different docking
results. The vector of observations is the initial position:

z=[x,,6]" . (16)

The strategic situation to be recognized is the success or failure of the
docking process, starting from that initial position. Using simulation
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experiments, the learning set was formed. The data structure analysis
showed that the boundary between classes has not a simple shape.
Consequently, the classification was made through the potential functions
method [Aizerman, 1964].

C. The diagnosis (or supervision) situations are currently used to
diagnose the systems. However, the field of using the diagnosis situations is
even larger (for instance, the detection of the stationary regime, in [Frangu,
2001]). In [Bivol et al., 1976], a complex energetic boiler plant, which
includes more interconnected control loops, is considered. The evaluation of
the quality of the dynamic regimes of the system considers more local
criteria in the individual control loops, such as: overshot, damping factor,
etc. The diagnosis situation called “normal” is defined in the space of local
criteria, based on a recorded set of states, previously diagnosed by human
operators. An automaton learns to recognize this situation and its opposite; it
will be used to real-time diagnosis of the plant.

On the other hand, each diagnosed state is associated to the known vector
of parameters of the multivariable controller. Through learning, the situation
“normal” in the space of local criteria is assigned to a domain defined in the
space of parameters. The discriminant function of this domain may be
understood as the membership function of the fuzzy set “normal”, in the
space of parameters. It is used to solve the problem of optimization with
constraints in the space of parameters (during the design stage).

3.2. Clusters' anatomy and learning algorithms

In the case of adaptation situations, the data structure is similar to that of
the output and command situations (will be analyzed next section). In the
case of strategic and diagnosis situations, the data structure can be complex,
with unconnected clusters, etc. Consequently, strong and general recognition
methods, able to work with poor initial information, are necessary. One of
these is the potential functions method, developed in the '60s by the team of
Aizerman [Aizerman, 1964], at the Control Institute of the Moscow
Academy. The adaptation and use of this method to the recognition of
control situations appeared in [Dragan and Ceangd, 1968], [Ceangd, 1969b].
The method is based on memorizing the "alien prototypes" or "poles", i.e.
the vectors differently classified by the PRCS and by the teacher. A potential
function K(x,x) is assigned to each of the memorized poles, x .

Despite its generality and efficiency qualities, the method of potential
functions cannot be used when the structure of clusters changes in time,
because the adaptation of the discriminant functions would indefinitely
increase the number of memorized poles. This drawback was noted in
[Ceangd, 1969b] and two new recognition structures were proposed. They
are also based on potential functions; they preserve the general character of
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the initial method and provide the ability of adapting to slow changes of the
data structure.

The first method, called the method of floating poles ([Ceangd, 1969b]),
contains a first stage of pre-learning, using the method of potential functions
for the configuration of the learning system structure. In this stage, M poles
are memorized. They mainly lie near the boundaries of the classes, where the
recognition automaton is usually wrong. The continuation of the learning
and the adaptation of the PRCS to the changes in boundaries are performed
by adjusting the position of the poles, according to the "floating poles
algorithm (FPA)". Essentially, this algorithm is similar to that presently used
by the Kohonen neural networks.

In the second method, presented in [Ceangd, 1969a, 1969b], [Bumbaru,
1970], the potential functions form the input layer of a recognition
automaton (during the next decade, the structure was called RBF, when it
was implemented by neural networks). As in the previous case (FPA), a first
learning stage is used, when the poles x;, j =1, M, are memorized. The poles
are assigned the potential functions K (x;, x), j=1, ..., M, which form the
input layer of the recognition automaton. During the second stage, the
learning implies adjusting the weights of each potential function.

In many papers, strategic and diagnosis situations are implicitly
recognized, using neural networks (such as multilayer perceptrons). The
drawback of the neural networks is the lack of transparency (no explanation
about the clusters is provided). The advantage of the presented methods
(disregarding the classical or neural implementation) consists in the selection
of relevant poles; their position suggests the structure of the clusters, without
disturbing the properties of generality and efficiency of the recognition
algorithm.

4. Control situations for the execution level

4.1. Arguments for using recognition systems at the
inferior level

In order to prove that controllers who recognize output and command
situations are suitable, the informational approach for intelligent systems is
useful. The concepts introduced by Saridis in [Saridis, 1989] (machine
intelligence, knowledge flow, etc.) are used in [Frangu, 2001] to demonstrate
the following property: for a system with a known level of uncertainty, there
is a limit of the resolution of the discrete command, beyond which the
entropy of the knowledge flow cannot increase. The same property applies to
the recognition of discrete values of the output. Some practical examples,
involving uncertainty, are presented in the sequel.



Pattern recognition control systems. A distinct direction in intelligent control 33

1.

The actuator is, in most cases, the lowest precision element of a
control loop. Excepting some particular cases, this affects the
precision of mechanical positioning in the industry processes. Because
of the important uncertainty, adopting a discrete set of values for the
command becomes natural. If the distance between the discrete values
is comparable to the uncertainty level, this operation does not lower
the positioning precision.

The reference of the loops is often chosen according to uncertain
technological requirements. In this case, maintaining the controlled
object within the boundaries determined by the uncertainties of the
reference is a satisfactory objective.

The two mentioned examples are also reasons for another modern control
approach: hybrid systems, with continuous/discrete interface (HSCDI,
[Antsaklis, 1994]). The comparative analysis of the two approaches in
[Frangu, 2001] (PRCS and HSCDI) led to the following conclusions:

1.

4.2.

In HSCDI the partition is applied to the state space of the controlled
object; the PR approach is based on the partition of the space of
observations (see section 2).

The HSCDI approach requires the analytical state model of the
controlled process, whereas the PR approach considers this model
partially or totally unknown.

The synthesis of HSCDI requires the partition chosen by the human
designer; the PRCS do not require predefined boundaries, because
these result by learning.

There is not much knowledge about how to choose the partition of the
continuous state space, in HSCDI. The number of discrete states is not
equal to that of the discrete commands. This raises some particular
problems, such as: how to determine the resolution of the partition,
how to determine the masked states and absorbing states, etc.
([Oltean, 1998]). In PRCS, the number of classes is equal to the
number of discrete commands, but the classes may contain more
clusters. The learning solves this problem, assigning the same
command to the clusters belonging to a class.

The HSCDI synthesis requires a complex sequence of design
operations. Instead, the PR approach determines by learning the
function that assigns the vectors of observations to the discrete
commands.

Clusters' anatomy and learning algorithms

The clusters' structure for the output and command situations have a
stripe-like shape: the clusters lie in compact and adjacent domains of the
space of observations, with similar boundaries. There is an order of the
clusters, corresponding to the order of the discrete values of the variable that
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generated the classes (the output or the command input). Some of the
observed properties of the clusters are mentioned in [Frangu, 2001] (some of
them are even demonstrated, for Hammerstein type systems). Among these:

- if the controlled system is linear, the boundaries of the clusters are
parallel hyperplanes, the clusters are adjacent and disposed in order;

- the boundaries may be hyperplanes even for a larger class of nonlinear
systems; to illustrate this property, four examples are presented in
figure 7a-d, in a two-dimensional space of observations; the structure
7b appeared in a control problem for a biotechnological process,
developed in a bioreactor [Frangu, 2001a];

- if the system does not contain hysteresis or discontinuous functions,
every cluster is connected; in the contrary case, the clusters may
become unconnected, subjects of some sort of space shearing (fig. 7¢);

- there is a unique curve in the space of observations, which
corresponds to the stationary regime and crosses all the classes; the
low frequency excitation of the controlled process determines
observation vectors lying in the neighborhood of this curve, whereas
the vectors determined by a richer dynamics of the process are
situated farther;

- if the noise disturbing the output is zero averaged, the boundaries
obtained by learning converge to cluster’s true position, even if the
noise is not white.

For the presented types of clusters, the appropriate recognition algorithms
are those based on the minimum distance with respect to the skeleton of the
clusters. If the boundaries are linear, the skeleton is the own regression line,
obtainable through batch processing, which has guaranteed convergence.
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Figure 7. Possible shapes of the clusters, for the output situations
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5. Conclusions and new research directions

Intelligent control implies generalization and abstraction operations,
which lead to synthetic concepts, necessary for operating in uncertain
conditions or for the superior levels of the hierarchical control structure.
These operations are performed through learning and aim at forming patterns
with different levels of abstraction. In this work, the patterns generically
called “control situations” are: output, command, adaptation, strategic and
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diagnosis situations. They allow obtaining solutions of the control problems
through situation recognition, in classical or neural implementation. Some of
them are illustrated in the paper.

Some new research directions in PRCS, in the opinion of the authors:

1. The investigation of the systems' stability, when the recognition of the
adaptation situation determines the switching of the control laws or of
their parameters. Considering this approach as a more general
multimodel method can be the starting point [Ronco, 1997a, 1997b].

2. The investigation of the structure in figure 1, where a PR system is
taught to recognize command situations, by a learning teacher, who
recognizes output situations (teaching the controller by an uncertain
teacher). The beginning was made by Nikolic and Fu, in 1966, when
they analyzed the convergence of the learning algorithms, for the
controller and for the uncertain teacher, but for a particular variant of
the problem.

3. Reconsidering the PRCS approach, according to [Goertzel, 1993],
where a new mathematical model of the intelligence is proposed. It
integrates specific operations, like perception, induction, deduction,
analogy, etc., within a network (the "master network") that operates
with patterns. Induction is defined as “the construction based on the
patterns recognized in the past, of a coherent model of the future”.
The perception is introduced as “the network of pattern recognition
processes through which an intelligence builds a model of the world”
and “the perceptual hierarchy is composed of a number of levels, each
one recognizing patterns in the output of the level below it”.
Deduction is also introduced by pattern recognition theory. Based on
the previous concepts, “intelligence is defined as the ability to
optimize complex functions of unpredictable environments”. The
theoretical framework of Goertzel’s model of mind can generate new
ideas and research directions in the field of intelligent control.
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Abstract The aim of this paper is to present a solution to the disturbance attenuation
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considered class of stochastic systems, necessary and sufficient solvability
conditions are derived in terms of the solutions of a specific system of matrix
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1. Introduction and problem formulation

The disturbance attenuation problem plays an important role in a wide
variety of control applications. It is a well-known fact that the sensitivity
reduction, the robust stabilization with respect to various type of uncertainty,
tracking and filtering problems, to mention only a few of such applications,
can be converted into disturbance attenuation problems. In the deterministic
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framework this problem is solved by various /1 control techniques (see
e.g. (Doyle, et al., 1989; Gahinet and Apkarian, 1994) and their references).
In the stochastic case, corresponding state-space solutions have been also
derived. Thus, for systems with multiplicative white noise such results can
be found for instance in (Boyd, et al., 1994; Hinrichsen and Pritchard, 1998)
and (Dragan and Morozan, 1997) for the time-varying case. The disturbance
attenuation problem for systems with Markov jumps has been addressed,
too. Corresponding theoretical developments in this case are given for
example in (Dragan and Morozan, 2001; Dragan, et al., 1998; Stoica and
Yaesh, 2002).

The aim of this paper is to present a solution to the disturbance
attenuation problem for stochastic systems subjected both to multiplicative
white noise and to Markovian jumps. Before stating the problem, some
notations are introduced and some preliminary results are briefly recalled.
Consider the stochastic system subjected both to multiplicative white noise
and to Markov jumps:

dx(t)zAO(n(t))x(t)dt+er;Ak (n(0))x(t)dw, (¢). (1)

*

where Ak(i)eR”X”,OSkSrare given, w(t)z(wl(t),...,w (z‘)) is a

standard Wiener process (see e.g. (Friedman, 1975)) and n(t), t>0 is a

right continuous homogeneous Markov chain with the state space the set
D={l,...,d} and the probability transition matrix P(t) =e?, where

d
Qz[ql.j], qu-:O,iED and ¢, 20 if i#j. The o-algebras
=

F, =o(w(s),s €[0,¢]) and G =o(n(s),s €[0,¢])are assumed independent for
all £>0. By K, it is denoted the smallest c-algebra containing ¥, and §,.
Throughout the paper me2 ([O,oo),R” ) stands for the space of all functions

u(t) measurable non-anticipative with respect to the family of the o-
algebras H, with values in R’ and with EU:|u(t)|2 dt}<oo, where E
denotes as usual the expectation. By FE[x|n(¢)=i] it is denoted the

conditional expectation on the event m(¢)=i. The space of all (nxn)

symmetric matrices is denoted by §,, Snd

H:(H(l),...,H(d)) with H(i)eS8,,ieD and M,,’ stands for the
space of Az(A(l),...,A(d)) where A(i)eR™",ieD.

represents the space of all
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Definition 1. The zero solution of the stochastic system (1) is called
exponentially stable in mean square (ESMS), or equivalently (AO, A, ,Q)
is stable if there exist oo >0 and =1 such that

Ux (2,19,%y) | In( to)—z}<Be (1=t |x0|2

for any 1>¢,2>0, x,eR", ieD, where x(t,to,xo) denotes the solution of

the system (1) with the initial condition x, € R" at ¢,.0
Consider the stochastic controlled system:

dx(t)=[ 4 (n(2))x(e)+ By (n(¢)u(2)) ar
+Z[ L (n(0))x(e) + B, (n(t)u (z))]dwk(z) )
y(f)=C(ﬂ(f)) (6)+ D(n(1))u(0).

where u(z) € R” is the control variable and y(¢) € R? denotes the output. If

(AO,...,A,;Q) is stable then one can consider the input-output operator J
associated to (2), defined on Ln’w2 ([O,w),Rm) with values on
L, ([0 ), RP) as (TM)(I) =, (t) , where
v (£)=C(n(0))x, (1) + D(n(r))u(),

X, (t) denoting the solution of the first equation (2) with the initial condition
X, (0) =0. The norm of this linear bounded input-output operator is denoted
by [7]].

With the above notations and definitions, one can now state the

disturbance attenuation problem. Consider the two-input, two-output
stochastic system:

dx (1) =[A0 (n(t))x(z) + Gy (n(0)v(2)+ By (n(e))u(t) ] at
+ [Ak +G ( ( ))v(t)+Bk (n(t))u(t)]dwk (t)
(

( t )x t ( )V(Z)JrDZM (n(t))u(t)
Co(n(2) )xt Dy (n(2))v(2),

where the input variable v(t)eR’”1 denotes the exogenous signals,

3)
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u(t)eR™ denotes the control variable, z(¢)e R” is the regulated output
and y(t) € R”: represents the measured output. The matriceal coefficients

A (0),G, (i),B,(i),0<k<r, C.(i),D,,(i),D.,(i),Cy(i), Dy (i),i €D, are

> zv ’ ZUu
given matrices of appropriate dimensions. The class of admissible
controllers has the state-space equations:

dx, (t)= [Ac (n(1))x.(r)+ B, (n(t))y(t)] dt
o(0)=C (1(6) 3 () + D, (n() (1)

where Xx, (t) eR"™ with n.>0 being a given integer. When coupling the

4)

controller (4) to the system (3) one obtains the resulting closed-loop system:

dx,, (t)= [AOC, ((2))x (1) + Gy (n(t))v(t)]dt
+§[Akd(n(t))xd(t)+de (n(0))(e) b ) 5)
2(1)=Cy(n(1))x, () + Dy (n(2))v(2),

where
_ Ay (i) + By (i) D, (i) C,y (i) B, (i)C. (i)
R R
4, (i) = |:Ak (1) + B, (;)Dc(i)co (i) B (i)OCC(z)}l <k<r
a0 402 0210) .
Gyt (i) = |:Gk (i) + By (;)Dc (1) Dy (1)}1 <k<r

C,(i)=[C.(i))+ D, ())D.(i)C, (i) D.,(i)C.(i)],
D, (i) =D, (i)+ D, (i)D,(i) D, (i), i € D.
Then the disturbance attenuation problem is formulated as follows: given
v>0 find necessary and sufficient conditions for the existence of a
controller (4) of prescribed order n, such that (4,,,...,4,,;Q) is stable and

the input-output operator T, associated with (5) has the norm less than vy .
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2. Stochastic Bounded Real Lemma

The following result proved in (Dragan et al., 2003) is a stochastic
version of the well-known Bounded Real Lemma of the deterministic
framework and it plays a key role for the main result presented in the next
section.

Theorem 1 (Bounded Real Lemma) The following are equivalent:
(i) The system (AO,AI,...,A,;Q) is stable and ||‘.T|| <y,

(ii) It exists X = ()A((l),..., X(d)) €s,? ,)A((z') >0 satisfying the following
LMIon 8, “
N(X.)<0,

N()A( ,Y) denoting the generalized dissipation matrix associated with the system
(2) and with the parameter vy, namely N(X)=(N,(X,y),...N,(X,7Y)), where

Nlli (X:Y) lei (X:Y)]

N(X.v)= (lei)*(X,y) Nyy' (X.)

with:

lef(X,v)=X(i)Bo(i)+;Ak*(i)X(i)Bk(i)+C*(i)D(i)

r

Ny (X.v)==v2L, + D" (i) D(i)+ Y B, (i) X (i) B, (i).

k=1

(iii) There exists Y =(Y(1),...,Y(d)) IS Snd, Y >0 such that

I W),O(Y’i) W),r(Y’i) W),rJrl(Y’i) M,HZ(YJ) |
W, (Y,i) - W (Y,i (Y,i) W,.,(Y.i) |<0, ()
VVO,HI*(Y’Z.) W (7, ) W+l,r+1(Y=i) W’+l,r+2 (Y’l)

) W
(Y,i
_W),r+2* (Yal) W,~ ) (Y’l) r+l,r+2* (Y’l) W‘+2,r+2 (Y’l)_

ieD, where
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)
)= (a0 (1) 21 Y (1) ¥ (1) 210 Y (),

W+1,r+l(Y’i):D(i)D* i)_yzlp
W,..(Y,i)=0,1<I<
W.pp0 (Voi) =diag (=Y (1),...=Y (i 1) =Y (i+1),...=Y(d)).

3. Main result

In this section the disturbance attenuation problem with an imposed level
of attenuation y > 0 is considered. The developed approach is based on an
LMI technique and it extends to the stochastic framework the existing results
in the deterministic context. The following known fact (see e.g. (Boyd et al.,
1994)) will be used to derive necessary and sufficient conditions
guaranteeing the existence of a y -attenuating controller.

Lemma 1 (Projection Lemma) Let ZeRYVV,Z=2"UeR“™™ and

VeRY with v,v,,v, positive integers. Consider the following basic
linear inequality:
Z+UOV+V'OU<0 (8)

with the unknown variable ® € RY"™2 . Then the following are equivalent:
(i) There exists ® € RV solving (8);

(ii) W ZW, <0 )
and W, ZW, <0, (10)
where W, and W, denote any bases of the null spaces Kerll and KerV,
respectively.

The next result provides necessary and sufficient conditions for the
existence of a controller of type (4) solving the disturbance attenuation
problem for the system (3).
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Theorem 2 Fora y >0, the following are equivalent:
(i) There exists a controller of order n.>0 solving the disturbance
attenuation problem with the level of attenuation y >0 for the system (5);

(ii) There exist:
X=(X),...X(d)e8 X(i)>0,icD,
Y =((),....Y(d)e8,,Y(i)>0,ieD,
S =(S(),....8(d))e8,?,8(i)>0,ieD,
N=(N(1),.N(d)), NeM,, *

such that:

Zz(’:)}o, (11)

(i) T, (i) =U ()N () - U ()N (i) T, (i) |
M, (i)  —vI, 0 0 0
SN@OuE) o s e 0 O o
N (DU, () 0 0 -s(i) 0
Ho,m* (’) 0 0 0 1§ P (l)
xX@) 1, 0
rank| 1, Y(i) N(i)|=n+n,, (13)
0 N°(i) S(i)
where
Vo (i)
{Vl(z‘)}
is a basis of Ker[CO (i) D, (i)],
s (1)
U, (i)

denotes a basis of Ker[BO* (i) -+ B (i) D, (l):l ,
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Npp (X,i)=X +ZA (D)€ (1) D, (1)

Ny, (X.i)=—=y1, +D," (i) D,, +2Gk (i)

r““”:UfUWAN”YU%YUL%XA+%YUHUAA
+kZ:1:UO* (i)Y(i)Ak* (l')Uk (i)+U0* (i)Y(i)CZ* (i)Ur+1 (1)

+UD)C Y ()0 () X0, ()4, ()Y ()04 1)

_ZU,:(i)y(l-)Uk(i)_U,+l*(i)U,+l(i),
oy (=305 ()G ()4, ()2 (i)

I, (i):Uo*(i)[In 0][ %1}7(") qi7i—lf(i) qi,i+1}7(i) \/ai(l)]
Hr+lr+l() dlag( () (z 1) (1+1) (d)),

- Y(i) N(i

Y(i)= *( ) (,) ,ieD.
N (z) S(z)

Proof. The outline of the proof is similar with the one in the deterministic

framework. The stochastic feature of the considered system does not appear

explicitly in the following developments of the proof. This feature appears

only in the specific formulae of the Bounded Real Lemma.
()= (ii) Assume that it exists a controller of form (4) stabilizing the system

(3) such that |T,[<y. Using the implication (i)= (ii) of Theorem 1
(Bounded Real Lemma) for the closed loop system it results that there exist:

X, =X,0),..X,d)es,., . X,0)>0

+n,

such that
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'7\/1:()(017 7/)<Oa

cl kcl

%

k=1

R(X,)==1, + Z G/ (i)
k=1

X, (i) Gy (i)

quj cl
(Xcl ) =Gy (i)Xcl (l) + szcl* (i)XclAkcl (’) +D,/’ (l)

C

cl

47

(14)

()

Based on Schur complement arguments it is easy to see that (14) is

equivalent with:

(LX) X ()G (0) 4 (X0 (0) - 44 ()X () € ()
GOcl*(i)Xcl(i) _Yzlml Gy (’)Xd(’) *(i)Xd(i) Dcl*(i)
Xcl(i).Alcl(i) Xcl(l).Glcl(l) _Xc.l(l O O
Xcl(i Arcl(i) X i)Grcl(i) 0 _Xcl(i) 0

Gl D, (i) 0 0 4,

where (8572, )(0) = Ao (0, () 2, ()40 ()= 20, )

Let us introduce the following notations:
A (0) {Ako(i) g},@k (0 {Gko(")}, 0<k<r,
-0 By(i)] ~ . [0B,(i
Bo(l)z{]nr 0 }, k(l)—{o O( )},lskﬁr,

<0,(15)
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With the above notations one can easily see that (15) can be rewritten in
the basic linear matrix inequality form:

Z(i)+ W ()0, (1)V(i)+ V' (i)®, (i)U(i)<0,ieD, (16)

where

Z(Z)z Xcl(l) l(l) Xcl(l?Gl(l) Xcz(l) 0 0
Xd(f)gr(") X, (i)G, (i) -X, (i) 0
C. (i) D, (i) 0 -1,

(17

) =[ B (X0 Oy B () - B0, B,(0)]

b
—
=
=
Il
1

[

(l) DO (l) 0(P2+n(,)><[pl+r(n+nc)j :|’ ie 9’

(800 A0 (0 0+ X ()20 D, ().

Therefore the existence of a stabilizing 7y -attenuation controller for (3) is

equivalent with the solvability of (16). Based on Lemma 1, (16) is feasible if
and only if there exist:
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W, (i) 2 (i)W, (i) <0 (18)

W, (i) % (i) W, (i) <0, ieD, (19)
where W, (i), W, (i) denote bases of the null spaces of U(i) and of V(i),

respectively. It is easy to see that a basis of the null space of U(i ) is:

Wy () =2 (i) W (i), (20)
where

:X:(l) = diag(Xcl (i)’ImI ’Xd (i):-"’Xcl (i)’]pI )

and W; (i ) is a basis of the null subspace of the matrix:

W) =[ B, (1) Oy B (1) B (1) B, ()]

A basis of the null subspace of ﬁ(i ) is

T,(i) 0 0 0]
0 1, 00
w,(i)-| B0 O k0] e
L) 00
U, (i) 0 00
where
(0 {Uko(i)} O<k<r’LzLﬂ
and
Uy i)
U, (i)

is a basis of the null subspace of the matrix:

(5°) B() ~ B(0) . ()]
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A suitable choice for W, (i) is the following:
7 (i)

0
W, (i)= (i) (22)
0

oS O O

1

yZ +r(n+nL.)

where {?Elﬂ is a basis of the null subspace of the matrix [CO (i) D, (z)} :
(i

Consider the partition of X, (i):
N X)) M(i)
X"”(’){M*(i) )?(i)}

with X (i) € R™". Then by direct computations one obtains:

| ‘Po,o(i) \PO,I(Z.) \PO,r(i) \Po,m(i)_
\PO,I*(i) _Xcz(i) 0 0
W, (1)2(i)W, (i) = : P oL (23)
() 0 X)) 0
| Wo,u (i) 0 0 -1, |
where
Woo (1) =75 (i) 4’ (l)X(l)+X(i)Ao(l)+i%X(/) 7 (i)

o (0)=([% (1) 0] 4 (1) + 77" (1) Gy* (1)) X, 1<k <r,

Yo (’) =Vy (’) o (l) +I (i)Dzv* (’)

Using again Schur complement arguments it follows that condition (19)
together with (23) is equivalent with:

Yoo (i)+ Zwo,k ()X, (1) Pos (I)+Po,u (1) P, (i)<0.
k=1

Detailing the coefficients in the above inequality, (11) directly follows.
In order to explicit the condition (18) one first computes:
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X ()22 (1) -

( (i) Golh) Y(0)A(i) - T(1) 47 () F())C.7(2)
G'(i)) =L, G'(G) - GG DJS()
| AOTE 6 () YEo 0 0
4 (ijlﬁ(i) G, (i) —?(i) 0
C.())Y(i) D, (i) 0 0 -1,
where
(5 7)0= 407+ 704 ()+ £ 707 ()70

Y(i)=X,"(i).

Introduce the following notation:

syl YO N L
Y(z)z{N*(i) S(i)},Y(z)eR .

Using (21), (24), (25) and (20), (18) becomes:

[ fo(i) T () <U ()N () - ~U. ()N (D))
HO,I*(i) _Yzlml 0 . 0
N U)o -s(i) o |<0
N UL 0 0 (1)

51

. (24)

(25)

(26)

27
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By Schur complement arguments it follows that (27) is equivalent with
(12) Further, taking into account that:

x(@) 1 0
rank| I Y(i) N(I)|=
L0 NT(i) S(i

—_—~

X(i)-(Y(i)-N(i)S7 (i) N (i) 0 0
rank 0 Y(i)=-N(@@)S(i))N" (i) 0 |,
0 0 S(i)

S(i)>0 and Y (i)—N(i)S~' (i) N*(i) >0, it follows that (26) gives

. . A o1 £\ A £\ )L
X(i)=(Y(i)-N(i)S ())N"(i)) .

from which (13) directly follows.
(il)=>(i) Assume that there exist X (i),

(11)-(13). By (12) it follows that I1,,, ., (i) <

Y
<0
0|} H

and therefore Y (z) is invertible. Moreover Y has the structure

]

where by * the irrelevant entries have been denoted. From the developments
performed to prove the implication (i) = (ii) it follows that (18) and (19) are
verified by

),N(i) and S(i) verifying
namely

X, (i)=Y"(i)
and hence (16) has a solution which fact guarantees the existence of a
stabilizing and v -attenuating controller. Thus the proof ends.m

When the existence conditions stated in part ii) are accomplished, the
construction of the v -attenuating controller of imposed order n. is made

according with the proof of part ii)=1), by solving (16) with respect to
0, (i), ieD.

4, Conclusions

In this paper the disturbance attenuation problem for stochastic systems
subjected both to multiplicative white noise and to Markovian jumps has
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been considered. The solution of this problem is determined in the set of
deterministic controllers of fixed order. Necessary and sufficient solvability
conditions are derived in terms of some specific matrix inequalities which
solution allows computing the y -attenuating controller.
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Abstract:  This paper was conceived in the circumstances that literature references
regarding speed governors for hydro-generators are either qualitative when
come from producers, or uppermost theoretical when come from academic
environment. The paper applies to governors produced by U.C.M. Resita that
are in operation since many years, designed jointly with Dep. of Automation
from “Politehnica” University in Timisoara. Are presented base elements that
allowed designing of governor that stands on actual international norms, and
elements regarding a previous analysis using simplified models for external
blocks.

Keywords: hydro-generator, speed governor, structure, design

1. Introduction

In principle, the speed control relies on two kinds of mechanic-electric
interactions that concern the turbine-generator group: interactions that
originate in changing of mechanical power (opening of blades and impact
process with water) and interactions that originate in exchanging the
electrical power with exterior. Hereby:

= The turbine blades opening-closing operation, performed by wicked

gates has, from a systemic point of view, the meaning of control
action. It determines the changing of power both carried to group pp,
as a result of interaction with exterior, and transmitted inside the
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group pg. The control variable is the stroke y of wicked gates.

= The changing of electrical power pg exchanged by the generator with
exterior, as a result of the external processes of the generator, can be
considered a disturbing, measurable action of load type.

In order to maintain the speed variations of turbine-generator group,
determined by the electrical stress of generators, i.e. the variation of power
pc, between normal limits, the automatic change of the position of stator
blades is performed. The operation is accomplished by a control system that
automatically strikes in the position of stator blades, with the aid of wicked
gates. A simplified block diagram of such system is depicted in fig.1.

Powear
Compensator
— P - P
REH v _ |Addustion| W Sy, = —
+Twrbine [Fenerator f |Hetwork

Road)

Figure 1. Fundamental block diagram for speed control by power compensator

The automatic intervention of electro-hydraulic controller (REH) is
performed, on one side, depending on the rotational speed, (sensed as
changing in frequency f from prescribed value f), and on other side,
depending on the changing of power pg (measured) from prescribed value
p . The intervention depending on power has two characteristics: the first is
an anticipative compensator characteristic, used for attenuation and damping
of the effects of rotational speed variations, the second is the locking of
power variations in a vicinity of prescribed value for it.

In the steady state regime, the two deviations that determine the control
of wicked gates, i.e. frequency deviation Af = f-f and the issued power
deviation Ap = pg - p, are in equilibrium. The ratio of deviations is
characterized by a proportionality coefficient by,

Ap=—b,, Af . (1)

The relation (1) reflects the compensation effect mentioned before: Ap
represents the deviation of power issued from prescribed value, due to the
deviation Af of frequency in energetic network from prescribed value. For
speed control, the possibility of adjusting by, and maintaining the
proportionality (1) are of fundamental importance. Within this context,
power speed droop is considered.

In accordance to fig.1, the automatic interventions depending on
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frequency / rotational speed deviations and power deviations can be
achieved with the aid of feedbacks brought from the group shaft,
respectively from generator bars. At the start-up, up to the moment of
connecting the generator to network, because there is no power issued, the
feedback after the blades position is used instead of power feedback (fig.2).
In this case, the problem of droop is considered relatively to

Ay =—b, Af )

between frequency deviation and the variation of blades position Ay =y - y".
The opening speed droop is considered in this case.

¥ _ Mdduction Syme.
+Turbine [Generator f

Foziton |
Compensator,

Figure 2. A structure of speed control system with compensating block after opening

The usual structures are variable; they switch from a start-up structure,
with an opening speed droop, to a permanent structure, with power speed
droop. In principle, is possible to maintain both feedbacks even after start-
up, the contribution of opening feedback being much reduced that power
feedback.

In order to increase transient performances of the controller with variable
structure, i.e. the accelerating of feedback, the signals Af and y are
additionally processed. The result is a so-called tachometric with transient
droop structure. They present, besides the permanent speed droop, an extra
dynamic feedback, proportional to the stroke of wicked gates of main
servomotor. Its effect exponentially dumps, reaching a zero value in steady
state. The output of this block (temporary droop signal) is used for dynamic
correction of the position of electro-hydraulic servo-system. In fig.3 the
corresponding extension of fig.2 is presented. The simplest implementation
block diagram for opening temporary speed droop is presented in fig.4.

In accordance to (IEC, 1970), (IEC, 1997), the opening temporary speed
droop coefficient by is the slope of static characteristic of speed depending on
opening of the controller, in a point of operation, when permanent droop is
zero. In steady state regime, the diagram in fig.5 accomplishes:

Ay=(b,+b,)" Af (3)
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and for b,=0 it becomes

Ay=b"' Af. 4)

In diagram, T, represents the temporary time constant.

Feference

siznals
Generator
f &
i =
f Hpead Aumplifier — Pilot Chate ¥

SEnsor Servomotor Bervomotor

Aoo.
sensar

Fermanent
Speed Droop

Temporary
Hpeed Droop

Figure 3. Tachometric structure with opening temporary speed droop
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Figure 4. Speed control structure with opening permanent and temporary speed droop

Uy
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EEG-V

b

Uy
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Figure 5. Block diagram of the ensemble speed governor-stabilized servomotor

Due to practical reasons for correct adaptation of group to particular
conditions in working node, is compulsory for the coefficients b, b;, and T4
to be adjustable. This represents a complex problem in analogical
implementations, but yet simple in digital implementations.

In (Nanu, 2003) is represented a broad analysis of speed controller’s
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structure, expanded more or less detailed in bibliographic sources as:
international standards and norms, company ads and offers, articles. The
approaches vary from principles, general structures to detailed, theoretical or
particular structures, but irrelevant due to their simplicity or linearization
considered.

Within this context, a presentation of some conceptual aspects of a speed
governor structure, developed in “Politehnica” University of Timisoara
together with UCM Resita is considered useful. The structure was used for
hydro-generators in 3 MVA — 7 MVA and 35 MVA — 55 MVA domains of
power. Initially it was implemented in analogical variant that is already in
use since 4 years. Consequently, it was developed in digital variant. The
purpose of this paper is to present the ensemble of the controller, together
with some details, containing original elements.

2. The main structural conceptual elements

2.1. Design hypothesis

The basic hypothesis the speed governor structure was designed on (the
structure contains the blocks that realizes the opening permanent droop,
opening temporary droop and power permanent droop), are:

= Electro-hydraulic servo-system is stabilized with a schematic like in

fig.3. The details of block “Servo-system stabilizer” do not represent
the purpose of this paper. In steady state, the stabilized servo-system
is corresponding to a schematic like in fig.5, constituted by two
proportional elements with gain Ks and K,. The input signal Uy* is the
reference from speed governor REG-V, and the feedback Uy is the
output from measurement element for y.

* The REG-V structure has to allow the independent adjustment of b,

by, by, and T4 parameters.

= The dependency between the opening of wicked gates and power at

constant speed has the aspect in fig.6. In reality, there is a family of
complex non-linear characteristics. The idealization like in fig.6
permits the understanding of phenomena.

Figure 6. Dependency between the power issued by generator and stroke
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= No constructive elements that protect (technical and partially
conceptual) the governor and control system are detailed: the limiting
elements on different channels of governor, anti-wind-up elements,
the protective element for bumps when switching from a structure to
another (e.g. from the manual to automatic regime, from opening
permanent droop to power permanent droop structure).

2.2. Integrator type-loop and droop providing

The governor structure developed is presented in fig.7. (Vancea, 1998).
Following will be explained how this structure ensures, for the loop
containing block c,, an integrator behavior that means in steady state
automatically U, = 0. Practically, the value of U, will be very small and
hence the (1), (2) and (3) conditions will be carried out.

r------=--=-- ] .
| L

Frequency Mdduction
Y O v Y| Tubine [ Dnemetic
| Elock A Cenorabar Hetwork

Uy

Frequency

set-up pG

Bleck | | N | - T - — — — — — — - - — |- — —l

cibt%% =

cieshppte

Position
setup
Blaok

Q

Power
set-up
BElock

Figure 7. Implemented governor structure

An integrator type system behaves in principle like an integrator block,
and the idea of using them in this application is due to the necessity of
fulfilling the IEEE steady-state conditions. (IEC, 1997). The integrator
character can be accomplished in different manners. One of this starts from
structure in fig.8a, where the blocks S; and S, are each stable and have the
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transfer coefficients K; and K, so that
K=K K, =1. 4)

K, and K, are constants if S; and S, are linear. If the systems are non linear,
then K; and K, depend on the point of operation. Hence, if the S; and S,
have the characteristics y;=fi(u;), respectively y,=f(u,), then, in order to
fulfill condition (4), f, will be the inverse of f; (f:=f;"). Must be observed
that the feedback is positive (a more detailed elaboration is in (Dragomir, et
al., 2001), (Dragomir, 2002)).

il s ¥ 1 s ¥ n - ¥
1 :| ? 1 1
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[ug=0) u,, =0l
a b) c]

Figure 8. Integrator type connection between two blocks

Qualitatively, the integrator character is associated to the fact that gain K
of the loop in fig.8a is 1, and, consequently, when an external signal u is
applied like in fig.8b or 8c, the loop can reach an equilibrium state, or can be
in a steady state only if the input u is zero. Otherwise, theoretically, the
signals in system can vary with infinite amplitude, but practically- in case of
physical systems- they will determine the saturation of the output of at least
one system S; or S,. Quantitatively, the problem can be treated more general,
more or less harshly, as the systems are linear or non-linear.

The loops with integrator character can be used, in principle, to control
any v signal that contributes to serial transfer of information within the loop.
The principle is depicted in fig.9a where S, and S, are the systems in fig.8b
or 8c, v =y, is the signal that must be controlled and w is the prescribed
signal. In this case, the difference w-v plays the role of u.

u=w-v (5)

If, with the feedback from y,, the scheme obtained is stable, then for K =
1 it automatically fulfils, in steady state, the condition:

VE=Yy1=Ww, (6)

and v takes exactly the prescribed value. Practically, K#1 so that the
schematic accomplishes in steady state

-1
v=y1=[1—1_K] w., ™

that means a control error in steady state
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-v K-1
g, = V2T (8)
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Figure 9. Integrator character loops for stationary control of a signal in serial chain

In fig.9b there is an extension of idea from fig.8 used for building the
governor in fig.7. S; is a stable, inertial subsystem, with the steady state
transfer characteristic

y; =f5(y1)- 9
The structure serves to control either v = y; to value
V:y3 :f_l(w) (10)
using a command

Y :fgl(}%) (11)

generated by integrator type S;-S, loop, or y; to value

—1,0-1

yr=f3(f " (W)). (12)

In the same time, the extension in fig.9b appends to structure in fig.9a the
derivative system S,', intended to accomplish the opening temporary droop.
With this structure the dynamic of integrator type loop is modified while the
dependencies (10) and (11) or (12) are maintained. A qualitative analysis of
these structures is provided by (Nanu, 2003)

In accordance to IEE standard and equation (2), the opening permanent
droop is calculated with the formula:

1
b, =—[A(fi>} {A(yl)}. @)
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The controller in fig.7 allows the controlled adjustment by operator of the b,
droop with the formula (13) where b,,, =100 b, , and a-b,, =1.6 f, /Ay, .

1
AY == Yar- (13)
a- p%

This formula depicts the dependency between the voltage variation U, at

the output of frequency measurement block, which calculates the network
frequency variation, and the stroke Ay of the wicked gates servomotor.
Within this dependency, the by, droop is adjustable and it influences in
inverse proportion the variations of y. The values of by, were {1,2,10} in the
application.

Alike formula (13) and in accordance to definition (4) of by, the diagram
in fig.7 accomplishes, for by, = 0 and Ty — oo, for the steady state
dependency b, =100 b, :

Here, b, =100 b, . In accordance to main operation regimes (loaded and

unloaded) that require different dynamic for speed governor, in the
applications
bis %e {5%, 10%, ...,50%} and Ty € {0.1, 0.2, ..., 4.9s} for loaded
operation mode,
bys we{ 10%, 20%, ..., 100%} and Ty € {0.1, 0.2, ..., 9.9s} for
unloaded operation mode.

The block that achieves the power droop was designed after the following
principle: the power issued by generator is a function of opening y, in
accordance to a functional dependency p(y), which is specific for every dam
(fig.6). Considering that the characteristic can be practically identified with a
proper precision in order to be inversed over the active domain, the inverse
dependency y=f"(p) can be used to carry out an extra power feedback, that
compensate the opening permanent droop, no matter about its value. Using
this feedback together with power droop feedback, a diagram is obtained that
ensures either the power droop as per standards, and allows the shockless
switching of governor from opening droop to power droop. The switching is
performed at the moment the loading of generator is started. The system has
the structure in fig.10. The behavior of scheme as a structure with only
power droop is obtained by proper design of K,,, (parting into two branches,
one for power droop and the other for opening droop).

Kip 1s the gain of the power measuring element and K,,;, is the gain inside
governor for power. Starting point in building K, is the use of schematic in
fig.11 instead of fig.10 due to the use of p = f(y) dependency. With K.,



64 ADVANCES IN AUTOMATIC CONTROL

different gains were marked. In order to emphasize the fact that in real
system there is no physical connection Ay—p a dotted line was used.
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Figure 11. The structure of REG-V with opening and power feedback using p=f(y)
In (Nanu, 2003) is shown that with

o K o
K =————b %-——I —. —.b % (15)
PP PP p’%
Kmp 'Kyp Kmp 'Kyp Ky
where
bpp% =100-bpp, (16)

and considering the interactions inside the speed control system, the
structure in fig.12 is obtained.

In this structure appear only the channels that carry out the power droop
according to (17) (and the opening transient droop). It is adjusted through
coefficient by,

1

Ay =——— Aty . (17)

a-bpp
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The values of by, are in the set {1%, 2%, ..., 12%}.
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Figure 12. Structure of K, block
3. The analysis of speed (frequency) control system

In order to simulate the operating of speed governor, its model was
included into the control system presented in fig.13. In this figure, the
following abbreviations were used: SSEH- stabilized servo-system, SAT-
adduction-turbine system, GS-synchronous generator. Other notations: C,, —
active torque, Cr-component of resistant torque corresponding to interaction
with electro-energetic system, Crl- component of resistant torque
corresponding to local consumers, U- the voltage at generator bars, ®- the
angular frequency of U, u,, and u,, - references for y and p, issued by
“opening assignment” and “power assignment” in fig.7.

Ue
| I
Usgy! :L, s ;
Uwp REG-V | s [F Crm Consumer
B . | E SAT / s |w (load)
[ Uy i
I I H :'ér Cri | Loeal |_ | P
|Ump | : load
C____ |
L

Figure 13. Structure used for studying of REG-V behavior

In fig.14 is presented a Simulink model used for simulation of system in
fig.13. Obviously, it is a simplified model. The signals accompanied by symbol
,, 7 are represented in norm values. The signal u,, corresponds to references
Uyy and uy,. The block REG-V and SSEH includes both the structure REG-V
presented before and stabilized electro-hydraulic servo-system.

The Simulink model of SSEH is presented in fig.15. The block SAT is
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dived into two parallel channels SAT-1 and SAT-2. It is a non-minimum
phase system and the division offered simulations facilities. The consumer
and local load are included in blocks Ext.Net., Inertia and Ext.Net. and Elas
(elastically). Signal df*v represents the frequency shocks that can appear in
system and wdf signal is the frequency reference. “Norm” block is meant to
norm the signal y, while “G.S.-Inertia” block characterizes the rotor inertia.
The electro mechanic time constant considered is 6.9 seconds.
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Figure 14. Simulink model used for simulation of structure in fig.13

The structure in fig.15 depicts the stabilization manner of electro-
hydraulic servo-system. The model, as the one in fig.14, is strong non-linear.
The significance of parameters is like in (Dragomir, et al., 1996). In
comparison to this paper, some changes concerning integrator blocks not
connected to wind-up phenomena were performed (Nanu, 1997).
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Figure 15. Simulink model of SSEH

In next figures some results obtained by simulation are presented. They corres-
pond fully qualitative and most quantitative to real behavior of control systems.
Fig.16 and fig.17 depicted the behavior of the system when by, = 11%,
respectively by, = 10% and the power reference changes from 44MW to



Conceptual structural elements regarding a speed governor 67

47MW at t=0 sec. and back to 44 MW at t=30 sec. Are recorded the issued
power (p), norm of frequency (f*), and the opening of wicked gates (y).
Some highlights: non-minimum phase character, hysteretic effect at SSEH
level (fig. 16a and 17a), appearance of steady state errors (fig. 16b and 17b)
due to considering an external power system comparable to the generator,
capability of SSEH to bear the stress without touching the saturation (fig.16c
and fig.17¢) [-0.18 m, 0.18 m].
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Figure 16. System behavior for by,= 11% Figure 17. System behavior for by, = 10%

Fig.18 and fig.19 show the behavior of system in following conditions:
initially, system operates at equilibrium, at nominal power of 44MW and
frequency 49.984 Hz. At t=0 moment, the prescribed power changes to 47
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MW and at t=30 sec a rapid change is produced in network frequency with
1Hz (fig.18) or —0.5Hz (fig.19). Up to 30 seconds, the behavior is already
known. Following-up, can be noticed, aside from non minimum phase
system behavior, the capability of group to contribute to frequency
correction (the group has no the capability to correct by itself the frequency
deviation) and also the changes of y away from saturation, that means its
ability to maintain speed to variations even greater of network frequency.
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4. Conclusions

In order to obtain a speed controller for small medium power hydro

generators, different structures of governors are used. Generally, they are
qualitatively reasoned and companies protect information.
The paper presents a structure of governor used in application by U.C.M.
Resita DCP in two hydroelectric power plants in Romania and Turkey.
Structure is based on stabilizing the electro-hydraulic servo-system and on
the principle of integrator type main loop. This principle allows the control
of every parameter imposed by norms: power speed droop, opening
permanent speed droop, opening transient speed droop.

The design results were validated in practice. For theoretical validation,
governor was simulated through a model very near to practical one. The
adduction-turbine, synchronous generator and external (load) system have an
approximate model. The simulation scenarios show an allowed behavior.
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Abstract

Keywords:

Decision support systems (DSS) are human-centered information systems meant
to help managers placed on different authority levels to make more efficient and
effective decisions for problems evincing an imperfect structure. These systems
are very suitable information tools to apply to various management and control
problems that are complex and complicated at the same time. Several issues
concerning the modern trends to build anthropocentric systems are reviewed.
Then the paper surveys several widely accepted concepts in the field of decision
support systems and some specific aspects concerning real-time applications.
Several artificial intelligence methods and their applicability to decision-making
processes are reviewed next. The possible combination of artificial intelligence
technologies with traditional numerical models within advanced decision
support systems is discussed and an example is given.

artificial intelligence, decision, human factors, manufacturing, models

1. Introduction

The role and place of the human operator in industrial automation
systems started to be seriously considered by engineers and equally by
psychologists towards the middle of the 7™ decade. Since then, this aspect
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has been constantly and growingly taken into consideration in view of
famous accidents of highly automated systems and of incomplete fulfillment
of hopes put in CIM systems [Martenson, 1996; Johanson, 1994].

The evaluation of the place of man in the system has known a realistic
evolvement, triggered not only by practical engineer experience but also by
the debates from academia circles. A long cherished dream of automatic
engineers, that of developing “completely automated systems where man
would be only a consumer” or “unmanned factories”, tends to fade away — not
only due to ethical or social motivations, but more important because the
technical realization of this dream proved to be impossible.

A possible solution seems to be the use of artificial intelligence methods
(such as knowledge based systems) in the control of industrial systems, since
these methods minimize the thinking effort in the left hemisphere of the
human brain. Artificial neural networks, functioning similar with the right
hemisphere of the human brain, became since 1990 also increasingly
attractive, especially for problems that cannot be efficiently formalized with
present human knowledge. Even so, “on field”, due to strange combinations
of external influences and circumstances, rare or new situations may appear
that were not taken into consideration at design time. Already in 1990 Martin
et al showed that “although Al and expert systems were successful in solving
problems that resisted to classical numerical methods, their role remains
confined to support functions, whereas the belief that evaluation by man of
the computerized solutions may become superfluous is a very dangerous
fallacy”. Based on this observation, Martin et al (1991) recommend
“appropriate automation”, integrating technical, human, organizational,
economical and cultural factors.

This paper aims at surveying from an anthropocentric perspective several
concepts and technologies for decision support systems with particular
emphasis on real time applications in manufacturing systems.

2. Anthropocentric systems

2.1. Anthropocentric manufacturing systems

Anthropocentric manufacturing systems (AMS) emerged from
convergent ideas with roots in the social sciences of the ‘50s. Kovacs and
Munoz (1995) present a comparison between the anthropocentric approach
(A) and the technology-centered approach (T) along several directions: a)
role of new technologies: complement of human ability, regarding the
increase of production flexibility, of product quality and of professional life
quality (A), versus decrease of worker number and role (T); b) activity
content at operative level: autonomy and creativity in accomplishing
complex tasks at individual or group level (A), versus passive execution of
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simple tasks (T); c¢) integration content and methods: integration of
enterprise components through training, development of social life, of
communication and co-operation, increased accesses to information and
participation in decision taking (A), versus integration of enterprise units by
means of computer-aided centralization of information, decision and control
(T); d) work practice: flexible, based on decentralization principles, work
multivalence, horizontal and vertical task integration and on participation
and co-operation (A), versus rigid, based on centralization, strict task
separation at horizontal and vertical level associated with competence
specialization (T).

2.2. Human-centered information systems

Johanson (1994) shows that “failure and delay encountered in the
implementation of CIM concepts” must be sought in organizational and
personnel qualification problems. It seems that not only CIM must be
considered but also HIM (human integrated manufacturing)”. In a man-
centered approach integration of man at all control levels must be considered
starting with the early stages of a project.

In Filip (1995), 3 key questions are put from the perspective of the “man
in system” and regarding the man — information tool interaction: a) does the
information system help man to better perform his tasks? b) what is the
impact of man- machine system on the performance of the controlled object?
c) how is the quality of professional life affected by the information system?

Most of the older information systems were not used at the extent of
promises and allocated budget because they were unreliable, intolerant
(necessitating a thread of absolutely correct instructions in order to fulfill
their functions), impersonal (the dialogue and offered functions were little
personalized on the individual user) and insufficient (often an IT specialist
was needed to solve situations). It is true that most of this problems have
been solved by IT progress and by intense training, but nevertheless the
problem of personalized systems according to the individual features of each
user (such as temperament, training level, experience, emotional state)
remains an open problem especially in industrial applications.

The second question requires an analysis of effectiveness (supply of
necessary information) and efficiency (supply of information within a clear
definition of user classes — roles — and real performance evaluation for
individuals — actors — who interact with the information tool along the
dynamic evolution of the controlled object). In the case of industrial
information systems, the safety of the controlled object may be more
important than productivity, effectiveness or efficiency. As Johanson (1994)
pointed out, “in a technology-oriented approach the trend to let the
information system take over some of the operator tasks may lead to
disqualification and even to boredom under normal conditions and to
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catastrophic decisions in crisis situations”.

This last observation is also a part of the answer to the last question,
which answer holds an ethical and social aspect besides the technical one.
Many years ago, Briefs (1981) stated, rather dramatically, that the
computerization of intellectual work seem to imply “a major threat to human
creativity and to the conscious development”. This remark was motivated by
"the trend to polarize people into two categories. The first one groups IT
specialists, who capitalize and develop their knowledge and creativity by
making more and more sophisticated tools. The second one represents the
broad mass of users, who can accomplish their current tasks quickly and
easy, without feeling tempted to develop an own in-depth perception of the
new and comfortable means of production".

As Filip (1995) noticed, “it is necessary to elaborate information systems
that are not only precise, easy to use and attractive, all at a reasonable cost,
but also stimulating to achieve new skills and knowledge and eventually to
adopt new work techniques that allow a full capitalization of individual
creativity and intellectual skills”. The aim to develop anthropocentric
information systems applies today as well, but the designer finds little use in
generally formulated objectives with no methods to rely on. It is possible to
formulate derived objectives representing values for various attributes of
information systems: a) broad service range (not “Procustian”) — for the
attribute “use ”; b) tramsparency of system structure in regard to its
capability to supply explanations — for the attribute “structure ”, and c)
growing adaptability and learning capabilities — for the attribute
“construction”

3. DSS - basic concepts

The DSS appeared as a term in the early '70ies, together with managerial
decision support systems. The same as with any new term, the significance
of DSS was in the beginning a rather vague and controversial notion. While
some people viewed it as a new redundant term used to describe a subset of
MISs, some other argued it was a new label abusively used by some vendors
to take advantage of a term in fashion. Since then many research and
development activities and applications have witnessed that the DSS concept
definitely meets a real need and there is a market for it (Holsapple and
Whinston, 1996; Power, 2002)

3.1. Decision- making process

Decision- making (DM) process is a specific form of information
processing that aims at setting- up an action plan under specific
circumstances. There are some examples: setting-up an investment plan,
sequencing the operations in a shop floor, managing a technical emergency
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a.s.o. Several models of a DM are reviewed in the sequel.

Nobel Prize winner H. Simon identifies three steps of the DM process,
namely: a) “intelligence”, consisting of activities such as data collection and
analysis in order to recognize a decision problem, b) “design”, including
activities such as problem statement and production and evaluation of various
potential solutions to the problem, and c) “choice”, or selection of a feasible
alternative to the implementation.

If a decision problem cannot be entirely clarified and all possible decision
alternatives cannot be fully explored and evaluated before a choice is made
then the problem is said to be “unstructured “ or “semi-structured”. If the
problem were completely structured, an automatic device could have solved
the problem without any human intervention. On the other hand, if the
problem has no structure at all, nothing but hazard can help. If the problem is
semi-structured a computer-aided decision can be envisaged.

The ‘econological’ model of the DM assumes that the decision-maker is
fully informed and aims at extremizing one or several performance
indicators in a rational manner. In this case the DM process consists in a
series of steps such as: problem statement, definition of the criterion
(criteria) for the evaluation of decision alternatives, listing and evaluation of
all available alternatives, selection of the “best” alternative and its execution.

It is likely that other DM models are also applicable such as: a) the
“bounded rationality” model, that assumes that decision-making considers
more alternatives in a sequential rather than in a synoptic_way, use heuristic
rules to identify promising alternatives and make then a choice based on a
“satisfying” criterion instead of an optimization one; b) the “implicit
favorite” model, that assumes that the decision-maker chooses an action plan
by using in his/her judgment and expects the system to confirm his choice
(Bahl, Hunt, 1984).

While the DSS based on the “econological” model are strongly
normative, those systems that consider the other two models are said to be
“passive”.

In many problems, decisions are made by a group of persons instead of
an individual. Because the group decision is either a combination of
individual decisions or a result of the selection of one individual decision,
this may not be “rational” in H. Simon's acceptance. The group decision is
not necessarily the best choice or combination of individual decisions, even
though those might be optimal, because various individuals might have
various perspectives, goals, information bases and criteria of choice.
Therefore, group decisions show a high “social” nature including possible
conflicts of interest, different visions, influences and relations (De Michelis,
1996). Consequently, a group DSS needs an important communication
facility.
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4. DSS technology

4.1. General issues

A distinction should be made between a specific (application-oriented)
DSSs (SDSS) and DSS tools. The former is used by particular decision-
makers (“final users”) to perform their specific tasks. Consequently, the
systems must possess application-specific knowledge. The latter are used by
“system builders” to construct the application systems. There are two
categories of tools: integrated tools and basic tools. The integrated tools,
called DSS “generators” (DSSG), are prefabricated systems oriented towards
various application domains and functions and can be personalized for
particular applications within the domain provided they are properly
customized for the application characteristics and for the user's specific
needs. The DSS basic construction tools can be general-purpose or
specialized information technology tools. The first category covers hardware
facilities such as PCs, workstations, or software components such as
operating systems, compilers, editors, database management systems,
spreadsheets, optimization libraries, browsers, expert system shells, a.s.o.
Specialized technologies are hardware and software tools such as sensors,
specialized simulators, report generators, etc, that have been created for
building new application DSSs or for improving the performances of the
existing systems. An application DSS can be developed from either a system
generator, to save time, or directly from the basic construction tools to
optimize its performances.

The generic framework of a DSS, first proposed by Bonczek, Holsapple,
and Whinston (1980) and refined later (Holsapple and Whinston, 1996), is
quite general and can accommodate the most recent technologies and
architectural solutions. It is based on three essential components: Language
[and Communications] Subsystem (LS), b) Knowledge Subsystem (KS) and
¢) Problem Processing Subsystem (PPS

Recently, Power (2002) expanded Alter's DSS taxonomy and proposed a
more complete and up-to-date framework to categorize various DSS in
accordance with one main dimension (the dominant component) and three
secondary dimensions (the target user, the degree of generality, and the
enabling technology)

4.2. Real time DSS for manufacturing

Most of the developments in the DSS domain have addressed business
applications not involving any real time control. In the sequel, the real time
decisions in industrial milieu will be considered. Bosman (1987) stated that
control problems could be looked upon as a "natural extension" and as a
"distinct element" of planning decision making processes (DMP) and
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Sprague (1987) stated that a DSS should support communication,
supervisory, monitoring and alarming functions beside the traditional phases
of the problem solving process.

Real time (RT) DMPs for control applications in manufacturing are
characterized by several particular aspects such as: a) they involve
continuous monitoring of the dynamic environment; b) they are short time
horizon oriented and are carried out on a repetitive basis; c¢) they normally
occur under time pressure; d) long-term effect are difficult to predict
(Charturverdi et al, 1993). It is quite unlikely that an "econological"
approach, involving optimization, be technically possible for genuine RT
DMPs. Satisfying approaches, that reduce the search space at the expense of
the decision quality, or fully automated DM systems (corresponding to the
10" degree of automation in Sheridan’s (1992) classification), if taken
separately, cannot be accepted either, but for some exceptions.

At the same time, one can notice that genuine RT DMPs can come across
in "crisis" situations only. For example, if a process unit must be shut down,
due to an unexpected event, the production schedule of the entire plant might
turn obsolete. The right decision will be top take the most appropriate
compensation measures to "manage the crisis" over the time period needed
to recomputed a new schedule or update the current one. In this case, a
satisfying decision may be appropriate. If the crisis situation has been
previously met with and successfully surpassed, an almost automated
solution based on past decisions stored in the information system (IS) can be
accepted and validated by the human operator. On the other hand, the
minimization of the probability of occurrences of crisis situations should be
considered as one of the inputs (expressed as a set of constraints or/and
objectives) in the scheduling problem. For example in a pulp and paper mill,
a unit plant (UP) stop may cause drain the downstream tank (T) and
overflow the upstream tank and so, shut/slow down the unit plants that are
fed or feed those tanks respectively. Subsequent UP starting up normally
implies dynamic regimes that determine variations of product quality. To
prevent such situations, the schedule (the sequence of UP production rates)
should be set so that stock levels in Ts compensate to as large extent as
possible for UP stops or significant slowing down (Filip, 1995).

To sum up those ideas, one can add other specific desirable features to
the particular subclass of information systems used in manufacturing control.
An effective real time DSS for manufacturing (RT DSSfM) should support
decisions on the preparation of "good" and "cautious" schedules as well as
"ad hoc”, pure RT decisions to solve crisis situations (Filip, 1995).

5. Al based decision- making

As discussed in the previous section, practical experience has shown
that, in many cases, the problems are either too complex for a rigorous
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mathematical formulation, or too costly to be solved by using but
optimization and simulation techniques. Moreover, an optimization-based
approach assumes an “econological” model of the DM process, but in real
life, other models of DM, such as “bounded rationality” or “implicit
favorite” are frequently met. To overcome these difficulties several
alternatives based on artificial intelligence are used (Dhar and Stein, 1997,
Filip, 2002). The term Artificial Intelligence (AI) currently indicates a
branch of computer science aiming at making a computer reason in a
manner similar to human reasoning.

5.1. Expert systems

The Expert System (ES) is defined by E. Feigenbaum (the man who
introduced the concept of “knowledge engineering”) as “intelligent
computer programs that use knowledge and inference procedures to solve
problems that are difficult enough to require significant human expertise
for their solution”. As in the case of the DSS, one can identify several
categories of software products in connection with ES: application ES or
“Knowledge Based Systems” (KBS), that are systems containing adequate
domain knowledge which the end user resorts to for solving a specific type
of problem; system “shells”, that are prefabricated systems, valid for one
or more problem types to support a straightforward knowledge acquisition
and storage; basic tools such as the specialized programming languages
LISP, PROLOG or object-oriented programming languages.

One can easily notice the similarity of the ES and DSS as presented in
Section 4. Also several problem types such as prediction, simulation,
planning and control are reported to be solved by using both ESs and
traditional DSSs. At the same time, one can notice that while there are
some voices from the DSS side uttering that ESs are only tools to
incorporate into DSSs, the ES fans claim that DSS is only a term denoting
applications of ESs. Even though those claims can be easily explained by
the different backgrounds of tool constructors and system builders, there is
indeed a fuzzy border between the two concepts. However a deeper
analysis (Filip and Barbat, 1999) can identify some real differences
between typical ESs and typical DSSs such as: a) the application domain is
well-focused in the case of ES and it is rather vague, variable, and,
sometimes, unpredictable in the case of the DSS; b) the information
technology used is mainly based on symbolic computation in the ESs case
and is heavily dependent on numerical models and database, in traditional
cases; c¢) the user's initiative and attitude towards the system are more
creative and free in the DSs case in contrast with ESs case, when the
solution may be simply accepted or rejected.
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5.2. Case-based reasoning

The basic idea of Case-Based Reasoning (CBR) consists in using
solutions already found for previous similar problems to solve current
decision problems. CBR assumes the existence of a stored collection of
previously solved problems together with their solutions that have been
proved feasible and acceptable. In contrast with the standard expert systems,
which are based on deduction, CBR is based on induction.

The operation of CBR systems basically includes the first or all the three
phases: a) selection from a knowledge base of one or several cases (decision
situations) similar to the current one by using an adequate similarity measure
criterion; b) adaptation of the selected cases to accommodate specific details
of the problem to solve. This operation is performed by an expert system
which is specialized in adaptation applications; "differential” rules are used
by the CBR system to perform the reasoning on differences between the
problems; ¢) storing and automatically indexing of the just processed case
for further learning and later use.

5.3. Artificial neural networks

Artificial Neural Networks (ANN), also named connectionist systems, are
apparently a last solution to resort to when all other methods fail because of
a pronounced lack of the structure of a decision problem. The operation of
ANN is based on two fundamental concepts: the parallel operation of several
independent information processing units, and the learning law enabling
processors adaptation to current information environment

Expert systems and ANNs agree on the idea of using the knowledge, but
differ mainly on how to store the knowledge. This is a rather explicit (mainly
rules or frames), understandable manner in the case of expert systems and
implicit (weights, thresholds) manner, incomprehensible by the human in
case of connectionist systems. Therefore while knowledge acquisition is more
complex in case of ES and is simpler in case of ANN, the knowledge
modification is relatively straightforward in case of ES but might require
training from the very beginning in case a new element is added to ANN. If
normal operation performance is aimed at, ANNs are faster, more robust and
less sensitive to noise but lack “explanation facilities™.

6. Knowledge based DSS

6.1. Combined technologies

It has been noticed that some DSS are “oriented” towards the left
hemisphere of the human brain and some others are oriented towards the
right hemisphere. While in the first case, the quantitative and computational
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aspects are important in the second, pattern recognition and the reasoning
based on analogy prevail. In this context, there is a significant trend towards
combining the numerical models and the models that emulate the human
reasoning to build advanced DSS.

Over the last three decades, traditional numerical models have, along
with databases, been the essential ingredients of DSS. From an information
technology perspective, their main advantages (Dutta, 1996) are:
compactness, computational efficiency (if the model is correctly formulated)
and the market availability of software products. On the other hand, they
present several disadvantages. Because they are the result of intellectual
processes of abstraction and idealization, they can be applied to problems
that possess a certain structure, which is hardly the case in many real-life
problems. In addition, the use of numerical models requires that the user
possesses certain skills to formulate and experiment the model. As it was
shown in the previous section, the Al-based methods supporting decision-
making are already promising alternatives and possible complements to
numerical models. New terms such as “tandem systems”, or “expert DSS-
XDSS” were proposed to name the systems that combine numerical models
with Al based techniques. A possible task assignment is given in Table 1
(inspired from Dutta, 1996). Even though the DSS generic framework
(mentioned in Section 4.2) allows for a conceptual integration of Al based
methods, for the time being, the results reported mainly refer specific
applications and not general ones, due to technical difficulties arising from
the different ways of storing data or of communicating parameters problems,
and from system control issues (Dutta, 1996).

Table 1. A possible task assignment in DSS
H NM ES ANN CBR

Intelligence
Perception of DM situation I/E P
Problem recognition I/P 1
Design
e Model selection M/1 I I
e Model building M I P
e Model validation M
e Model solving E P
e Model experimentation ™M M/1
Choice
Solution adoption and release E P

Legend for Table 1. NM - numerical model, ES - rule based expert system, ANN - artificial
neural network, CBR - case based reasoning, H - human decision-maker, P - possible, M -
moderate, I - intensive, E - essential

6.2. Example

DISPATCHER is a series of DSSs, developed over a twenty-year time
period, to solve various decision-making problems in the milieu of continuous
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‘pure material’ process industries. The system initially addressed the short-
term production-scheduling problem. Then it evolved in both function set
supported and new technologies used in order to satisfy users’ various
requirements (see Figure 1). New supported functions such as tank sizing,
maintenance planning and even acceptance and planning of raw materials
or/and utility purchasing allow a certain degree of integration of functions
within the [extended] enterprise (Filip, Barbat, 1999).

HUMAN FACTOR
S e Decision Styles
¢ Integration ® Higher Resposabilities
i ® WTSC
NEW ITS e Low Cost Solgtlog
e New Applicationsi

e Expert Systems
e Object Orientation
e DSS concepts

® New Functions functij

A

Adaptive service

DMKO
GUI
Multilayer Extende.:d
M : Enterprise
odelling Model
Scheme odels
What if ... ?
Optimisation Sparse Models
| | | | "
1980 1982 1987 1990 1994 1997

Figure 1. The evolution of the DSS DISPATCHER line [Filip, Barbat,1999)]

Numerous practical implementations of the standard version of
DISPATCHER helped draw interesting conclusions. First, the system has
been considered by most users as being flexible enough to support a wide
range of applications and, in some cases, its utilization migrated from the
originally intended one. It has been used in crisis situations (mainly due to
significant deviation from the schedule, to equipment failures or other
emergencies) as well as in normal operation or in training applications.
However, though the system is somehow transparent, and the users have
sound domain ("what"- type) knowledge (DK), they have behaved in a
"wise" or even "lazy" (Rasmunsen, 1983) manner, mainly trying to keep
their mental load under an average willing to spend capacity (WTSC). This
can be explained by the initial lack of oo/ ("how"-type) knowledge (TK) as
well as by insufficient work motivation.
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To fight the lack of TK and to stimulate users’ creativity and quest for
new skills, a declarative model of an "ambitious" and knowledgeable
operator (DMKO) was proposed (Filip, 1993). DMKO is one component of
a multilayer, modeling scheme that also includes: the external model
(formulated in user’s terms, b) the conceptual model (addressing the system
builder’s needs), and c) internal (performance model (meant for the use of
the “toolsmith” programmer. It supports a) model building for various
decision contexts, b) problem feasibility testing to propose corrective
measures (for example limit relaxation or transformation of fixed/known
perturbations into free variables etc.), ¢) automatically building the internal
model from the external description, choosing the appropriate solving
algorithm, d) experimenting the problem model, for example by producing a
series of alternatives through modifying various parameters in answer to
qualitative assessments (made by the user) of the quality of simulated
solutions, followed by due explanations. To handle the complexity and
diversity of the technologies used, object orientation has been adopted.

Efforts have been made to introduce new intelligence into the system,
especially for evaluating user’s behavior so that DMKO (originally meant
for supporting a certain "role") could dynamically adapt to specific needs of
particular "actors", in an attempt at rendering the system less impersonal.

Of course, there are other reported results combining traditional numeric
methods with KBS to build "hybrid" or "tandem" DSSfM. Apparently such
systems are primarily meant for making numerical computation easier,
including heuristics so that the space search for optimization/simulation
algorithms is adapted / reduced. It should be noted that the approach
presented here is mainly human factor- centered and aims at increasing
system acceptance rather than improving its computational performance.

7. Conclusions

Several important issues on the design of anthropocentric modern
information systems were reviewed. DSS, as a particular kind of human-
centered information system, was described with particular emphasis on
real-time applications in the industrial milieu. The possible integration of
the Al-based methods within DSS with the view to evolve DSS from simple
job aids to sophisticated computerized decision assistants was discussed

Several further developments have been foresighted such as:

e Incorporation and combination of newly developed numeric models
and symbolic/sub-symbolic (connectionist) techniques in advanced,
user-friendly DSS will continue; also the use of “fuzzy logic” methods
are expected to be intensively used in an effort to reach the
“unification” of man, numerical models, expert systems and artificial
neural networks;
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e Largely distributed group decision support systems that intensively
use new, high-performance computer networks will be created so that
an ever larger number of people from various sectors and geographical
locations are able to communicate and make “co-decisions” in real-
time in the context of new enterprise paradigms;

e Mobile communications and web technology will be ever more
considered in DSS, thereby people will make co-decisions in “virtual
teams”, no matter where they are temporarily located;

e Other advanced information technologies such as virtual reality
techniques (for simulating the work in highly hostile environments) or
“speech computers” are likely to be utilized.
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Abstract  The paper deals with the treatment of modeling uncertainties in model-based
fault detection and isolation (FDI) systems using different kinds of non-
analytical models which allow accurate FDI under even imprecise observations
and at reduced complexity.
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1. Introduction

All real systems in nature — physical, biological and engineering systems
— can malfunction and fail due to faults in their components. The chances for
failures are increasing with the systems’ complexity. The complexity of
engineering systems is permanently growing due to the growing size of the
systems and the degree of automation, and accordingly increasing are the
chances for faults and aggravating their consequences for man and
environment.

Therefore, increased attention has to be paid to reliability, safety and fault
tolerance in the design and operation of engineering systems. But obviously,
compared to the high standard of perfection that nature has achieved with its
self-healing and self-repairing mechanisms in complex biological organisms,
the fault management in engineering systems is far behind the standards of
their technological capabilities and is still in its infancy, and much work is
left to be done.
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In automatic control systems, defects may happen in sensors, actuators,
components of the controlled object, or within the hardware or software of
the control framework. A fault in a component may develop into a failure of
the whole system. This effect can easily be amplified by the closed loop, but
the closed loop may also hide an incipient fault from being observed until a
situation is reached in which failing of the whole system is unavoidable.
Even making the closed loop robust or reliable (by using robust or reliable
control algorithms) can not solve the problem in full. It may help to make the
closed loop continue its mission with the desired or a tolerable degraded
performance, despite the presence of faults, but when the faulty device
continues to malfunction, it may cause damage to man and environment due
to the persistent impact of the faults (i.e., leakage in gas tanks or in oil pipes
etc.). So, both robust control and reliable control exploiting the available
hardware or software redundancy of the system may be efficient ways to
maintain the functionality of the control system, but it can not guarantee
safety or environmental compatibility.

A realistic fault management has to guarantee dependability which
includes both reliability and safety. Dependability is a fundamental
requirement in industrial automation, and a cost-effective way to provide
dependability is fault-tolerant control (FTC). The key issue of FTC is to
prevent local faults from developing into system failures that can end the
mission of the system and cause safety hazards for man and environment.
Because of its increasing importance in industrial automation, FTC has
become an emerging topic of control theory.

Fault management in engineering systems has many facets. Safety-
critical systems, where no failure can be tolerated, need redundant hardware
to accomplish fault recovery. Fail-operational systems are insensitive to any
single component fault. Fail-safe systems perform a controlled shut-down to
a safe state with graceful degradation when a critical fault is detected. Robust
and reliable control ensures stability or pre-assigned performance of the
control system in the presence of continuous or discrete faults, respectively.
Fault-tolerant control (FTC) provides online supervision of the system and
appropriate remedial actions to prevent faults from developing into a failure
of the whole system. In advanced FTC systems, this is attained with the aid
of fault detection and isolation (FDI) in order to detect the faulty
components, followed by appropriate system reconfiguration.

Not only that FDI has become a key issue in FTC, it is also the core of
Sfault-tolerant measurement (FTM). The goal of FTM is to ensure reliability
of the measurements in a sensor platform by replacing erroneous sensor
readings by reconstructed signals due to the existing analytical redundancy.
FDI has also become a basic tool for offline tasks such as condition-based
maintenance and repair carried out according to the information from early
fault monitoring.
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The backbone of modern FDI systems is the model-based approach,
where the model contains what is known under the term analytical
redundancy. Making use of dynamic models of the system under
consideration allows us to detect small faults and perform high-quality fault
diagnosis by determining time, size and cause of a fault during all phases of
dynamic system operations. The classical approach to model-based FDI
makes use of functional models in terms of an analytical (“parametric”)
representation.

A fundamental difficulty with analytical models is that there are always
modeling uncertainties due to unmodeled disturbances, simplifications,
idealizations and parameter mismatches which are basically unavoidable in the
mathematical modeling of a real system. They may be subsumed under the
term unknown inputs and are not mission-critical. But they can obscure small
faults, and if they are misinterpreted as faults they cause false alarms which
can make an FDI system totally useless. Hence, the most essential requirement
for an analytical model-based FDI algorithm is to provide robustness w. r. t.
the different kinds of uncertainties. This problem is well recognized in the
control community, and analytical approaches to robust FDI schemes that
enable the detection and isolation of faults in the presence of modeling
uncertainties have attracted increasing research attention in the past two
decades, and there is both a great number of different solutions of this problem
with a good theoretical foundation [11, 12, 14, 32, 33, 38]. More relevant
literature on analytical approaches to robust FDI can be found in the books of
Patton, Frank and Clark [30, 31], Gertler [16] and Chen and Patton [7].

Surprisingly, much less attention has been paid to the use of qualitative
models in FDI systems, also known as knowledge-based redundancy
methods, in which case the parameter uncertainty problem does inherently
not appear. The appeal of the qualitative approaches lies in the fact that
qualitative models permit accurate FDI decision making even under
imperfect system modeling and imprecise measurements. Moreover,
qualitative model-based approaches may end up in less complex FDI
systems than comparably powerful analytical model-based approaches. At
present, increased research is going on in this field of FDI using non-
analytical modeling including computational intelligence, and there is a good
deal of publications with most encouraging results, see, for example, [1, 10,
11, 13, 15, 21, 23, 24, 25, 26, 33, 37, 39, 46].

In this paper, we focus our attention on how to cope with modeling
uncertainties and imprecise measurements by using non-analytical, i.e.,
qualitative, structural, data-based and computationally intelligent models.
Our intention is to stress the fact that modeling abstraction enables us to
make accurate decisions for FDI with less complexity even in the face of
large modeling uncertainty, measurement imprecision and lack of system
knowledge.
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2. The model-based approach to FDI

2.1. Diagnostic strategy

The basic idea of the model-based approach to FDI is to compare the
behavior of the actual system with that of its functional model. The
diagnostic strategy can follow either of the two policies:

1) If the measurements of outputs are inconsistent with those of a fault-
free model with the same input, this indicates that a fault has
occurred.

2) If the measurements are consistent with the model behavior
corresponding to a certain fault scenario, f, then the fault scenario, f;
is declared.

The diagnostic strategy depends on the kind of model used. In the first
case the nominal, fault-free behavior of the system is modeled, and the
inconsistency of the actual system behavior with that of the model indicates
a fault. Alternatively one can model a faulty behavior for a particular pre-
assigned fault scenario; if such a fault model is used the consistency of the
actual system with the model indicates that the assumed fault scenario has
occurred. In this paper we will only discuss the more common approach of
using a fault-free (“nominal”) reference model.

In general, the FDI task is accomplished by the following two-step
procedure (Fig.1):

1) Residual/symptom generation. This means to generate residuals/
symptoms that reflect the faults of interest from the measurements or
observations of the actual system. If the individual faults in a set of
faults are to be isolated, one has to generate properly structured
residuals or directed residual vectors.

2) Residual/symptom evaluation. This is a logical decision making
process to determine the time of occurrence of faults (fault defection)
and to localize them (fault isolation). If, in addition, faults are to be
identified, this requires the determination of the type, size and cause
of a fault (fault analysis).

Measurements Time and Type and

Information Symptoms Locationof  Cause of

Knowledge Residuals Faults Faults

l SYMPTOM l r Jj I l
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Figure 1. The two-step process of residual generation and evaluation
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2.2. Types of models for residual generation

It has been mentioned earlier that any kind of model that reflects the faults
can be used for residual generation. The most appropriate model is the one
which allows a accurate fault decision at a minimum false alarm rate and low
complexity. There is a variety of different kinds of non-analytical models that
can be used for this task. The types of models can roughly be classified into
four categories, namely analytical (quantitative), qualitative, knowledge-
based (statistical, fuzzy, computationally intelligent), data-based (fuzzy,
neural), structural. The classification of the corresponding residual
generation methods is shown in Figure 2.

< SYMPTOM GENERATION >

SIGNAL-BASED MODELiBASED
| | | |
ANALY- KNOWLEDGE- DATA-  STRUC-
TICAL BASED BASED  TURAL
PARITY OBSER- PARA- QUALI- FUZZY NEURAL

SPACE VER METER  TATIVE
ESTIM.  (FUZZY)

Figure 2. Classification of different model-based approaches to residual generation

Analytical models with usual uncertainties are problematic for FDI unless
one can do without those parts of the model which carry substantial
uncertainty. To get rid of the uncertain part is the main problem of all robust
FDI strategies. It means that finally one has to concentrate on the certain part
of the model which reflects the faults of interest, and neglect the uncertain
part.

3. FDI with non-analytical models

3.1. The power of abstraction

The best way to overcome model uncertainties is to avoid them from the
very beginning. That is to say, to use such kinds of models that are not
precisely (analytically) defined in terms of parameters. The use of non-
analytical models, such as qualitative or structural models, and dealing with
symptoms rather than signals means an increase of the degree of abstraction,
which plays a fundamental role, however, in reaching accurate results for
FDI. Logically, achieving accurateness in FDI implies that the check of the
reference model must be accurate, i.e., it must be in agreement with the
observations of the fault-free system even if these observations are
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imprecise. This is possible with an according degree of abstraction of the
model. In addition, abstraction may reduce the complexity of the model and
consequently of the resulting FDI system.

Figure 3 shows the typical relationship between model complexity,
measurement imprecision and modeling uncertainty of an accurate model
for FDI depending on different kinds of modeling. It can be seen that, to
reach accuracy, the required complexity is maximum for precise, i.e.
quantitative analytical models, and it decreases considerably with the degree of
abstraction obtained by the use of non-analytical models. This means that
accurate decisions are possible even in case of imprecise observations if
abstract (non-analytic) modeling is applied, or, in other words:

A reduction of complexity of robust FDI algorithms can be obtained by
increasing the degree of abstraction of the model

Complexity
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Figure 3. Complexity of an accurate model for FDI versus uncertainty and imprecision

3.2. FDI based on qualitative models

3.2.1. Qualitative approaches to FDI

Qualitative models reduce the resolution of the representations by
introducing tolerances in order to emphasize relevant distinctions and ignore
unimportant or unknown details. Under imprecise observations this
description represents the systems accurately if a set of values rather than
single values become the primitives of representation.

In the last decade, the study of applying qualitative models to system
monitoring and FDI received much attention, see, e.g., [10, 21, 22, 23, 34],
and the concept of qualitative (knowledge based) observer was introduced
[13]. Typical qualitative descriptions of variables are signs [9], intervals
[20], [23] or fuzzy sets [35]. As a fuzzy set can be divided into a series of
intervals, the use of the « -cut identity principle proposed by Nguyen [29]
allows to reduce fuzzy mappings into interval computations. Therefore,
intervals are the fundamental representations in qualitative modeling. The
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rough representation of variables leads to the imprecision of the qualitative
model which relates the variables to each other.

According to the available information about a system, there are different
possibilities for a qualitatively representation of the information of the
dynamic process. Basically, a qualitative simulation method should be
responsible for retaining the accuracy of the represented system behavior (so
called soundness property following the definition of Kuipers [20]), so that
the FDI approaches based on them can avoid false alarms. The most
important types of representation known are:

e Qualitative differential equations (QDE) [20, 35]
e Envelope behavior (e.g.), [5, 18]
e Stochastic qualitative behavior [23, 46].

Other relevant methods to qualitative models for fault diagnosis are, e.g.,
signed directed graphs [22], logical based diagnosis [24] and structural
analysis [36]. Dynamic behaviors are not emphasized in these methods, their
main concern is the causality or correlativity among various parts of the
systems, which are useful for performing fault isolation and fault analysis.

3.2.2. FDI using qualitative observers based on QDE

Conceptually, a qualitative differential equation can be considered as the
extension of an ordinary differential equation

x=g(x, u, 0), (1)

where x, u and @ denote the vectors of state variables, known inputs and
parameters with the dimension of n, r and s, respectively. However, in a
QDE, the variables take intervals as their values and the variant of the non-
linear function g(.) is allowed to include various imprecise representations:
e.g., interval parameters, non-analytical functions empirically represented by
IF-THEN rules and even, in the algorithm QSIM of Kuipers [18], unknown
monotonic functions. If the non-linear function g(.) is rational, its
corresponding QDE can be readily derived from it by using the natural
interval extension of the real function [28]. Qualitative simulation
procedures that are composed of the two main steps “generation” and
“test/exclusion” are basically different from the numerical ones. The
behavior of continuous variables is discretely represented by a branching
tree of qualitative states.

The resulting qualitative observer (QOB) based on QDE is an extension
of a qualitative simulator, and it functions in further reducing the number of
irrelevant behaviors (including spurious solutions) to the system under
consideration [39] as illustrated in Fig. 4. The principle of observation
filtering is that the simulated qualitative behavior of a variable must cover its
counterpart of the measurements obtained from the system itself; otherwise
the simulated behavioral path is inconsistent and can be eliminated. Since
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these procedures do not lead to the violation of the accuracy of the
qualitative behavior under fault free condition, the output of QOB is the
refined prediction behavior in this case.

input output

— - qualitative
Qualitative Ob;frvfmon output / residual
Simulator = iltering

Qualitative observer

Figure 4. Qualitative observer

However, when a fault occurs and causes a significant deviation of the
system output such that no consistent predicted counterpart of the output
could be generated, the output of the QOB becomes an empty set, which
indicates the fault occurrence. Following this principle, fault detection and
sensor fault isolation can be implemented [39]. It is important to note that, in
exchange with the advantage of requiring weaker process knowledge in this
method, one has to put up with an increase in computational complexity and
less sensitivity to small faults.

3.2.3. Fault detection based on envelope behaviors

A key issue of improving the small fault detectability when applying
qualitative methods is that the qualitative system behavior should be predicted
as precisely as possible. Different from the qualitative model and the
simulation method presented above, the model considered in this and the next
sections is of less ambiguity. In other words, imprecision in equation (1) is
caused only by interval parameters and interval initial states, the structure of
g(.) is considered to be fully known. While qualitative behaviors here are
interval values of system variables against time, qualitative simulation aiming
at producing all possible dynamic behaviors means the generation of their
envelope. Once the envelope is generated, the fault detection task is a direct
comparison between the envelope and the measurements. In fault-free case,
the measurements are contained in the envelope; otherwise, it indicates a fault.

Recently, many efforts have been made to increase the efficiency of
classical qualitative simulation, i.e., to avoid unnecessary conservativeness.
More quantitative information is brought into the model representation [3],
and simulation methods tend to be more constructive. Kay and Kuipers [18]
and Verscovi et al. [38] propose approaches based on standard numerical
methods to obtain the bounding behavior. In [5, 19] Bonarini et al. and
Keller et al. treat the interval parameters and the state variables as a super-
cube, whose evolution at any time is specified by its external surface.
Armengo et al. [1] present the computation of envelopes making use of
modal interval analysis.
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3.2.4. Residual generation via stochastic qualitative behaviors

Another qualitative representation of system behaviors is the stochastic
distribution under partitioned state and output spaces. Beginning with the
similar model assumptions as in section 3.3.1, the parameter vector is in &
and the initial state is uniformly distributed within a prescribed area, say cell
0. X(¢f) and Y; (¢) denote the probabilities that the trajectories of the
respective state and output variables, which start from all initial states in cell
0, fall into the i-th cell at any time ¢z. The behavior can be approximately
represented by a Markov chain [46]. It turns out that the new state and output
variables X and Y can be described by the following discrete hidden Markov
model (HMM):

X(k+1) = A(u,0)X (k) +V (k) )
Y(k+1)=C(O)X (k+1), 3)

where V represents the influence of spurious solutions.

A fault detection scheme based on the HMM is shown in Fig. 5 [46]. A
qualitative observer (QOB) aiming at attenuating the effect of V' and
watching over the possible abnormal behavior of measurements is applied.
The residual 7 and its credibility v can be calculated, the latter reflects the
degree of spurious solutions.

wbel)  yE+D F(ke) r(k+)
Residual
|Pruccss|:>“Quant.| - gratiin —3

Y v(k+1)
HMM:#QOBJ

Pk +1k) Fk+1k+1)

Figure 5. Observer-based residual generation using HMM

3.3. Residual generation employing computational
intelligence

In the case of fault diagnosis in complex systems, one is faced with the
problem that no or insufficiently accurate mathematical models are
available. The use of data-model-based (neural) diagnosis expert systems or
in combination with a human expert, is then a much more appropriate way to
proceed. The approaches presented in the following section employ
computational intelligence techniques such as neural networks, fuzzy logic,
genetic algorithms and combinations of them in order to cope with the
problem of uncertainty, lacking analytical knowledge and non-linearity [15].
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3.3.1. Neural observer-based residual generation

Neural networks can be used as non-linear multiple-input single-output
(MISO) models of ARMA type to set up different kinds of observer schemes
[15, 27]. The neural networks replace the analytical models of observer-
based FDI. If instead of a single multiple-input multiple-output structure a
separate neural network is taken for each output, a set of smaller neural
networks can be used for each class of system behavior.

The type of neural network employed for this task is of a mixed structure
called dynamic multi-layer perceptron (DMLP-MIX) integrating three
generalized structures of a DMLP [25]. These three are: the DMLP with
synaptic generalized filters, which have each synapse represented by an
ARMA filter with different orders for denominator and numerator, the DMLP
with internal generalized filters [2] integrating an ARMA filter within the
neurons before the activation function, and the DMLP with a connectionist
hidden layer, which has a partially recurrent structure interconnecting only
the hidden units. The mixed structure is implemented selecting either a basic
architecture or a combination of them. The training of the DMLP-MIX neural
network is performed by applying dynamic back propagation, the problem of
structural optimization is solved with the help of a genetic algorithm [26].
Two types of observer schemes for actuator, component and instrument fault
detection have been proposed by Marcu et al. [27]: the neural single observer
scheme (NSOS) and the neural dedicated observer scheme (NDOS).

3.3.2. Fuzzy observer-based residual generation

There are many ways of using fuzzy logic to cope with uncertainty in
observer-based residual generation [15]. The resulting type of fuzzy observer
depends upon the type of the fuzzy model used. Fuzzy modeling can roughly
be classified into four categories: fuzzy rule-based, fuzzy qualitative, fuzzy
relational and fuzzy functional (Tagaki-Sugeno type).

3.3.3. Residual generation with hierarchical fuzzy neural networks

Here the fault diagnosis system is designed by a knowledge-based
approach and organized as a hierarchical structure of fuzzy neural networks
(FNN) [6]. FNNs combine the advantage of fuzzy reasoning, i.e. being
capable of handling uncertain and imprecise information, with the advantage
of neural networks, i.e. being capable of learning from examples. The neural
nets consist of a fuzzification layer, a hidden layer and an output layer. Fault
detection is performed through the knowledge-based system, where the
detection rules are generated from knowledge obtained from the structural
decomposition of the overall system into subsystems and operational
experience. After detecting a fault the diagnostic module is triggered, which
consists of a hierarchical structure (usually three layers) of FNNs. The
number of FNNs is determined by the number of faults considered. The
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lower level only contains one FNN, which processes all measured variables.
The FNNs on the medium level are fed by all measurements but also by the
outputs of the previous level. The upper level consists of an OR operation on
the outputs of the medium level. This hierarchical structure can cope with
multiple simultaneous faults under highly uncertain conditions.

3.3.4. Fuzzy residual evaluation

Fuzzy logic is especially useful for decision making under considerable
uncertainty. The three main categories of current residual evaluation methods
are: classification (clustering) or pattern recognition, inference or reasoning,
and threshold adaptation. Although all approaches employ fuzzy logic, the
first one is actually data-based while the other two are knowledge-based.

3.3.5. Fuzzy clustering

The approach of fuzzy clustering actually consists of a combination of
statistical tests to evaluate the time of occurrence of the fault and the fuzzy
clustering to provide isolation of the fault [8]. The statistical tests are based
on the analysis of the mean and the variance of the residuals, e.g., the
CUSUM test [17]. The subsequent fault isolation by means of fuzzy
clustering consists of the two following steps: In an online phase the
characteristics of the different classes are determined. A learning set which
contains residuals for all known faults is necessary for this online phase. In
the online phase the membership degree of the current residuals to each of
the known classes is calculated. A commonly used algorithm is the fuzzy C-
means algorithm [4].

3.3.6. Fuzzy reasoning

The basic idea behind the application of fuzzy reasoning for residual
evaluation is that each residual is declared as normal, high or low with
respect to the nominal residual value [8, 37]. These linguistic attributes are
defined in terms of fuzzy sets, and the rules among the fuzzy sets are derived
from the dynamics of the system. For fault detection, the only relevant
information is whether or not the residual has deviated from the fault free
value, and hence it is only necessary to differentiate between normal and
abnormal behavior. However, if isolation of faults is desired, it may be
necessary to consider both the direction and magnitude of the deviation.

3.3.7. Fuzzy threshold adaptation

Fuzzy reasoning has been applied with great success to threshold
adaptation [13, 33]. In the case of poorly defined systems it is difficult or
even impossible to determine adaptive thresholds. In such situations the
fuzzy logic approach is much more efficient. The relation for the adaptive
threshold can be defined as a function of input u and output y by
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T(u,y)=T, + AT(u,y) (4)

Here T, = To(uo, o) denotes a constant threshold for nominal operation at
the operational point (u, o) where only the effects of the stationary
disturbances including measurement noise are taken into account. The
increment AT(u,y) represents the effects of u(f) and y(f) caused by the

modeling errors. These effects are described in terms of IF-THEN rules and
the variables by fuzzy sets (e.g. SMALL, MIDDLE, LARGE, etc.) that are
characterized by proper membership functions.

As a typical example of an industrial application we consider the residual
evaluation via fuzzy adaptive threshold of a six-axis industrial robot (Manutec
R3) [13, 33]. Let the goal be to detect a collision of the robot by checking the
moments of the drives. A model of the robot is available, but without
knowledge of the friction of the bearings, which is highly uncertain. It is
known, however, that the residual of the moment is heavily distorted by the
friction which strongly depends on the arm acceleration. This knowledge can
be formulated by rules. For example for the third axis the following rules apply:

IF {speed small}, THEN {threshold middle}

IF {acceleration high}, THEN {threshold large}

IF {acceleration very high}, THEN {threshold very large}

IF {acceleration of any other axis very high}, THEN {threshold middle}.

The linguistic variables small, middle, high, very high, large, very large
are defined by proper membership functions [33], they are assigned
intuitively based on the experience of the operators or the manufacturers of
the robot.

Figure 6 shows the time shape of the threshold together with the shape of
the residual of axis 3 for a particular maneuver of the robot. Note that at ¢ =
4,5 sec the heavy robot which can handle 15 kg objects in its gripper, hits an
obstacle which causes a momentum of about 5 Nm. As can be seen, this
small fault can be detected at high robustness to the uncertainty caused by
the neglected unknown friction.

“ N ‘ADAPTIVE THRESHOLD |
#’f, e \_RESIDUAL
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COLLISION TIME/SEC

Figure 6. Obstacle detection of a robot with fuzzy adaptive threshold
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3.4. FDI based on structural models

The use of structural system models together with structural analysis is
another way of abstraction of the modeling of the system behavior in order
to increase the robustness of the FDI algorithm to model uncertainties. Here
we only consider the structure of the constraints, i.e., the existence of links
between variables and parameters rather than the constraints themselves
[36]. The links are usually represented by a bi-partite graph, which is
independent of the nature of the constraints and variables (quantitative,
qualitative, equations, rules, etc.) and of the values of the parameters.
Structural properties are true almost everywhere in the system parameter
space.

This represents indeed a very low-level easy-to-obtain model of the
system behavior, which is logically extremely insensitive to changes in the
system parameters but, of course, also to parametric faults. The important
tasks of structural analysis are solved with the aid of the analysis of the
system structural graph and its canonical decomposition. An important factor
in the canonical decomposition is the property of causality which
complements the bi-partite graph with an orientation. FDI is performed with
the aid of analytical redundancy relations based on a structural analysis and
the generation of structured residuals.

Note that the use of structural models together with the strong decoupling
approach solves automatically the robustness problem in structurally
observable systems.

4. Conclusion

The paper reviews the methods of handling modeling uncertainties,
incomplete system knowledge and measurement imprecision in model-based
fault detection and isolation by using non-analytical models. It is pointed out
that abstract non-analytical models may be superior over analytical models
with respect to uncertainty, imprecision and complexity. The paper outlines
the state of the art and relevant on-going research in the field approaching the
modeling uncertainty and measurement imprecision problem in FDI by
various types of non-analytical models.
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Abstract  This paper is devoted to the design of a control system applied to an in-
dustrial DVD-video drive. For high-speed players the disturbance rejec-
tion is more difficult problem than for CD players because of higher per-
formance requirements. A combined pole placement /sensitivity function
shaping methodology is used for control design purposes to reduce the
effect of repetitive disturbances. Controller order reduction is performed
to allow its practical implementation. Experimental results, obtained
on a real system in STMicroelectronics laboratories, illustrate the per-
formance of the proposed algorithms for both the focus and tracking

control loop.

Keywords: DVD player, focus loop, tracking loop, pole placement, controller order

reduction

1. Introduction

Optical disk drives are widely used today to hold music, store data
or to record digital movies. Even though improvements are observed in
obtaining shorter data time access, higher storage capacity and infor-
mation density on the disk, one of the major obstacles for reliability of
readout data is given by the internal and external disturbances aflecting
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the disk. The most important disturbances are optical disk imperfec-
tions, mechanical vibration and shocks, and position sensing noise which
show up at the optical detector used to measure the error signals for con-
trollers.

Mainstream of DVD/CD players have no passive mechanics control of
the vertical distance between the read/write element and the recording
media in contrast to the hard disks. Because of this, a vertical axis
(focus) control must be applied in DVD/CD systems and therefore the
size of optical pick-up unit (OPU) is large. Nevertheless, the important
advantage of DVD/CD players is fact that the optical disk is a removable
medium with random access to the recorded data. The main control
loops here are three:

s a focus loop to ensure the distance between the objective lens

and the media;

= a coarse (low frequency) tracking loop to roughly position

the optical pick-up unit, pulling so-called sledge, in the vicinity of
the desired tracks;

= a fine (high frequency) tracking loop to lock the focused laser

beam onto the track position.

A laser beam is used to read the recorded digital data from the optical
disk. In order to retrieve the data correctly, the laser beam must be
focused on the data layer surface of the disk, and must follow the track,
both with high precision. This is difficult in the presence of disturbances.
Therefore, the most critical control loops are especially the focus and the
fine tracking loop (in next called shortly the tracking or radial loop).

Concerning DVD players, to our knowledge, only recently few papers
have been dedicated to a narrow-band disturbance suppression in a high-
speed DVD players system. In [3], the notch and funnel filters are used
for the estimation of the rotating speed of a DVD player, in order to
implement a control scheme which selectively cancels narrow-band dis-
turbances. The work [2] proposes a control architecture for track follow-
ing using the notch filtering and multirate control. Paper [14] presents a
control system using sliding mode control to handle shock and vibration
disturbances. Repetitive control is in [10] are devoted to disturbance ob-
server design. A combined pole placement /sensitivity function shaping
methodology have not been used to control design till now although this
method offers the possibilities on the periodic disturbance rejection.

This paper treats mainly the control design of the focus/tracking loop.
The controller is based on experimental results obtained on a real system
in STMicroelectronics laboratories.

Shortly, the aims of this paper are the following:

s to provide a methodology for control design the robust fixed low-

order controllers used in the focus/tracking control loop;
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® {0 present the results obtained from testing these controllers on a

real system.
The present paper is organized as follows: in section 2, an overview

of the general principles for DVD/CD players is presented. Section 3
describes the disturbances sources incoming to the system.
Specification requirements on the radial/focus control loops are given
in section 4. A control methodology is described in section 5. Section 6
shows control design and performance analysis is explained in section 7.

2. Physical system description
2.1. Optical pick-up organization

In fig. 1 a schematic view of the DVD mechanism, using so-called
DVD-5 (single layer single side optical disk), is shown. The system is
composed of an optical pick-up unit that retrieves data from the disk.
The optical disk is turned by a DC turntable motor with the spindle
rotation frequency fios.
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Figure 1. Optical pick-up unit organization of the DVD mechanism using single
layer single side optical disk

A laser diode (1) located in the pick-up unit emits a laser beam which
is guided through the optics elements (2, 3, 4, 5, 7) to the disk informa-
tion layer (10). An objective lens (7) is the last optical element for laser
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beam focusing on the disk information layer (10). The objective lens (7)
can be moved in vertical direction, to give focusing action, and in radial
direction, to perform track following. It is suspended by leaf springs and
its position is controlled by the electromagnets (6) in the vertical and
the radial directions. To focus the incident beams on the disk, a focus
coil (8) is placed in the electromagnetic field of a permanent magnet (6).

The mean beam (9) of incident rays is reflected from the information
layer (10) at a focusing area (15). The return beams (11) pass through
the objective lens (7) and the optics elements (5, 4). The return rays
are splitted by a polarizing beam splitter (3) in perpendicular direction
to the rays emitted by the laser diode (1). Therefore the return beams
(11) pass through a cylindrical lens (12), shaping the laser spot that is
falling on a photodetector (13). The photodetector (13) that is composed
of four photodiodes (14) (A, B, C, D) is a detection area (16) for the
return beams (11). The photodiodes (14) measure the light intensity of
the laser spot.

Since only light touches the disk information layer (10), four photo-
diodes (14) generate the voltages which are used to generate the focus,
tracking and redout signals.

2.2. Optical pick-up unit control loops

In fig. 2 a block diagram of the focus loop is shown. A peculiar feature
of this servo loop is that the absolute position of the optical pick-up can
not be measured. The only measure available for control purposes is the
focus error ep, in the neighborhood of the information layer. Moreover,
notice that input/output measures of the plant up, ep can be collected
only in closed-loop working condition.

z,,;, - Actual disk Plant -G(s) Az, - Disturbance
layer position
. +
Az JPhotodetector| € =-¥ ){Controller U: [Power driver] i | Actuator | +.¥ _Spot
%\Z' A Ki(s) l e GrealS) ‘

f',; - Vertical focused
spot position

|
T Fopt

Figure 2. Configuration of the focus control loop (basic schema)

The more complex equivalent block diagram for the optical pick-up
unit control of the DVD player is illustrated in fig. 3 as a multi-input
multi-output (MIMO) system. For a clear explanation, figs. 4 and 5
show the single-input single output (SISO) focus and tracking control
loops, respectively.

To move the objective lens (7) (see fig. 1) in vertical /radial direction,
the focus / radial coils, which are used to generate the electromagnetic
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Figure 3. The equivalent block diagram for control of the DVD player of fig. 1

field, are supplied by the input currents ig, igr. These currents iy, ig are
therefore the inpuis to the mechanical actuators described by continuous-
time transfer functions Gr(s), Gr(s). The mean beam (9) of incident
rays, generated by the laser diode (1), is reflected by the disk information
layer (10). Therefore the light intensity of return beams (11), which is
the input to the sensor, contains the information about the actual disk
vertical /radial displacement Az, Az, respectively.

The vertical /radial disk displacement Az, Az is defined in the orthog-
onal coordinate system z, y, z, (see fig. 3), where its origin is placed in
the middle of the objective lens (7) in fig. 1. Az = zg; — fc/>bj is the
vertical disk displacement between the disk information layer position
Zobj and the position of the objective lens focus fébj = —fobj- fobj is the
objective lens focal length and fo,; < 0 in case of converging spherical
lens that is used in DVD/CD players. Az = Zirack — Tfoc is the horizon-
tal disk displacement between actual scanned track position zi;,q and
actual focused laser spot position zg, in radial direction z as is shown
in fig. 3.

The equivalent path between the input currents ig, ‘g and output
voltages from the photodetector (13) Va, Vi, Vi, Vp in fig. 1 is realized
by two blocks (nominally actuators and sensor) in fig. 3.

Fig. 1, fig. 4 and fig. 5 show the whole closed loops, where the outputs
from the plants yp, yr, used for the controllers, are obtained from the
measured voltages Va, Vg, Vo, Vp. Firstly, the voltages Va, Vg, Vo,
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Vb are converted by the analog to digital convertors. Secondly, some
calculations are done to generate the focus/tracking error signals ep, eg

from the measured voltages Va, Vg, Vo, Vp.

Az, - Disturbance

w; - External excitation Zo Acgzz:ﬁ(li;k layer
& =¥ Ue Plant -G.(q") |
4 .
Controller| | D/A | % | [Power driver| - [Actuator % *%i Optical
K{g") |’|convertor ¥ | A GrlS) | 4]+ —Tsystem

f’. - Vertical focused
spot position
| - Light intensity distribution
(information Az)
Qutput voltages:

Focus error vV, V., V., Vﬁ
signal generation cone{a [r)tors<A > o Photodetector‘—
A [ L

Fopt

Figure 4. The equivalent block diagram of the focus control loop of fig. 3
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Figure 5. The equivalent block diagram of the tracking control loop of fig. 3

Since the outputs from the plants yp, yr are directly error signals
er, er and since the aim of control design is to minimize the verti-
cal/radial displacements Az, Az despite the presence of internal and
external disturbances, the reference position errors signals rp, rg are
always considered zero.

Kr(q™Y), Kr(g™') denote the digital controller’s transfer functions
which digital outputs are converted to analog signals by the analog to
digital converters. Finally, the power drivers, which gains are Kp(g™!),
Kr(g™!), amplify the controllers outputs voltages up, ug in order to
supply the focus/radial coils by sufficient currents ig, ig.
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3. Disturbances sources

The disturbance sources affecting the DVD systems are different and
consist mostly of optical imperfections, see fig. 6, which show up at the
photodetector (13), see fig. 1. This means that any imperfection, in-
fluencing the incident laser beam on the photodetector (13), and any
photodetector imperfections {(e.g. the displacement, non-uniform sensi-
tivity, noise) cause the disturbance of the focus and radial error signals
¢, €R-

Laser noise (fig. 6a) gives a background high frequency noise which
may alias into the servo frequencies if an anti-aliasing filter is not used.
Optical misalignment and optical skew (fig. 6b&c) cause asymmetry and
cross coupling between the focus and tracking error signal. The detectors
are subject dead-zones between segments (fig. 6d). Lens and groove
imperfections show up as spurious signals on the detectors (fig. 6e). Disk
warping (fig. 6g), so-called a vertical deviation, puts a large repetitive
error into the focus loop. Disk misalignment on the spindle (fig. 6f)
causes a large repetitive error at the spindle frequency [yt into the
tracking loop. Disk thickness variations and disk tilt also affect both the
focus ep and tracking egr error signals (fig. 6h).

Laser Optical Optical Detector
Shot Misalignment Skew Dead Zone
Noise A e B

(a)

Spherical
Aberration

Disk (g) Disk Warping
Misalignment

(h) E Tilt J Tlll(ckness Variation

Figure 6.  Sources of optical disk noises

The numerical aperture of the lens is defined as NA = sin(dmax/2),
where ¢y is the full angle of the cone of the light rays that can pass
through the objective lens (7), (see fig. 1): NA = 0.45 is for CD players
while NA = 0.6 is for DVD systems.

The higher numerical aperture NA, presented in DVD players, induces
the following phenomena:

1 Increase the focused spot size, a diameter of the Airy disk, [4], is
given by daiy ~ 1.22\/NA. X is wavelength of the laser beam in
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air. A = 780nm is for CD players while A = 650 nm is for DVD
systems.

2 Decreases the focus depth, defined as Azpax = A/ INA?.
3 Increases the coma nonlinearly where the coma is the primal ab-

beration of objective lens causing the non-uniform intensity distri-
bution of the focused laser spot, [4].

4 Causes problems with tilt and disk thickness variations, pushing
higher density systems towards thinner protective layers and less
removability.

3.1. External disturbances

The external disturbances affecting drives are typically environmental
shocks and vibrations, whether from a moving vehicle, a factory floor
environment, a computer under a desk being kicked, or simply the mo-
tion of a laptop computer. For streaming media such as DVD/CD, they
are usually overcome by data buffering in the portable players or cars.
Therefore, the use of accelerometers in DVD/CD players has been lim-
ited. Nevertheless, disturbance cancellation is used in random access
applications, as hard disks.

3.2. Internal disturbances

All DVD and last CD drivers rely on mechanical concepts similar to
those depicted in fig. 7. The focus and radial actuators are dedicated
to keep the laser spot in focus and on track. They can perform fine
displacements along the focus and respectively radial direction relative
to the disk while being positioned by a sledge at a raw radial loca-
tion. The sledge forms a rigid body together with the turntable motor
and turntable itself, being further consolidated on what is called the
baseplate. In this structure, the baseplate and the housing itsell are
considered as one body. Therefore, the internal disturbances are largely
stimulated by the spindle rotation of the disk and the actuators reaction
forces on the drive baseplate and housing.

A large percentage of the internal disturbances are synchronous with
the spindle frequency [yt and its harmonics including oscillations in
the disk media. The power spectrum of the radial error signal egr, at
given rotational frequency fro¢ = 15 Hz, has been acquired on the real
DVD system in STMicroelectronics laboratories. It is shown in fig. 22.
One can see that main disturbances are given by the first and the third
harmonic components of disk rotational frequency frot.

The optical cross coupling between the focus and tracking loops, see
fig. 6¢, have been minimized for the DVD players. The CD mechanism,
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Turntable
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Focuged laser beams —

Focus actuator 4 Turntable motor

Figure 7. Schematic representation of the mechanical construction of the DVD/CD
players

shown in fig. 8, usually consists of a radial arm in order to follow the
spiral track of the disk (a course tracking loop). This induces the op-
tical cross coupling between the focus and tracking loops, caused by a
changing of skew angle. Instead of the radial arm, all DVD drives use
a linear actuator to roughly position the optical head assembly in the
vicinity of the desired tracks, see fig. 9. This improvement prevents the
changing of skew angle. Therefore, the optical cross coupling between
the focus and tracking loops is suppressed.

Turntable

Laser diode

Turntable motor.
Photodiodes Optical pick-up

unit

Figure 8.  Schematic view of the CD mechanism

Coarse Tracking

Focus Actuator Fine Tracking Actuator
Focus o =
Fine o) 9
Tracking 2 =
Actuator 8 N
100 Hz 10 kHz 100 Hz 10 kHz
Frequency —m» Frequency —y»

Figure 9.  Optical disks and actuators of the DVD player
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More detail information on the presented disturbances sources of both
the DVD/CD and hard disks systems are in [1] and its references.

4. Specification of control loops
4.1. Focus control loop

The laser spot position must follow the disk track (in the focus/radial
directions) despite the presence of disturbances, originating inside and
outside the DVD drive as explained in section 1.

To specify the servo system for focus, a function Hg, (1), is used.
It specifies the nominal values of the open-loop transfer function for so-
called reference servo between the focus error signal ep and output signal
yp of the plant, (see fig. 4). Specification of the open loop Hj is given in
the frequency range 23,1 Hz to 10kHz.

. 1 we\2 143w
Hs(l(x)):§ X (ﬁ) X 1+i7 (1)

where w = 21 f, we = 27 f. and i = /—1. f is frequency in general. f.
is the 0dB crossover frequency of the open loop transfer function Hy.

The specification contained in [7], mainly for the over-speed factor
N =1, prescribes two maximal deviations Azjow, Azhigh from the nom-
inal position of the disk and the maximal acceleration a of the scanning
point at given frequencies, as briefly presented in table 1.

Table 1. Focus servo specification for the DVD, N = 1, with normalized servo.

Parameter Range Value
(Hz)
Aziow Max. deviation from nominal frot <23.1 +0.3mm
position
a Max. vertical acceleration Srot > 23.1 8m/s?
Aznigh Max. deviation from nominal frot >2000 | £0.23 pm
position
fe Crossover frequency of the 2kHz
loop
BV Desired closed loop bandwidth & fe
Tini Min. radius frot = 23.1 24 mm
Zfin Max. radius frot = 9.6 58 mm
Va Scanning velocity 3.49m/s
AZmax Focus depth 0.903 pm

fe is specified by (2), where the coefficient « is equal to 1.5, (1), in
order to increase the maximal axial acceleration a.

The desired closed loop bandwidth fBW is not specified in [7] but it
is approximately equal to the cross-over frequency of the open loop f..
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An additional information, concerning the closed loop performances,
can be given from the rise time ¢, of the closed loop step response, defined
as the time it takes for the output yp to first reach 90 % of its final value.
t, usually verifies the following equation

2.3 2.3

ty ~ = =0.1 .
orf.  dm2 w108 Oi8dwms (3)

Another important parameter for focusing is so-called focus depth Az ax
that establish maximal disk displacement between actual disk informa-
tion layer (10) in fig. 1 and the position of the focused laser spot of the
objective lens (7) in fig. 1. Azpax is defined by

A
INAZ )

The numerical value Az, = 0.903 ym is given by DVD parameters:
laser wavelength A = 650 nm and numerical aperture of the objective
lens NA = 0.6. The focus servo should therefore control the objective
lens within +Azy. to avoid loosing the data read-out signal at every
time during playing.

The actual (spindle) rotational frequency fior of the disk is given by

foon = 0, (5)

2mx

Zmax =

where v, is the scanning velocity and x is the distance between the disk
rotational axis and the falling laser beam, x € (i, zan), (see figs. 11
and 12).

Finally, fig. 10 shows the upper and lower limits of the disturbance
rejection requirements on the output harmonic disturbances in frequency
domain, taken from specification [7], for the focus control loop, N = 1.
Here, the curve L illustrates the requirements for manufacturing of the
disk only. The curve Ls is an upper and curve L3 is a lower limit on
the output sensitivity function Sy, (defined in section 2) for controller
design. Ly and L3 are defined by percentage variation from the open-loop
transfer function Hg at the given frequency ranges, see [7].

For an open loop transfer function of the real system Hiea), |1+ Hyeall
is limited by the shaded surface in fig. 10.

This specification is equivalent to give a template for the output sen-
sitivity function Sy,. More detailed explanation on how to use these re-
quirements in control procedure directly will be described in section 13.
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Figure 10.  Specification of the focus control loop, N =1
4.2. Radial control loop
Radial servo specifications are given in a similar way in [7]. For an
over-speed factor N = 1, they prescribe two maximal values Azjow,

Azpign for the maximal eccentricity of the track radius and maximal
axial acceleration a of the disk at given frequencies, as briefly presented
in table 2.

Table 2. Radial servo specification for the DVD, N = 1, with normalized servo.

Parameter Range (Hz) Value
ATiow | Max. eccentricity of the track Srov <23.1 +50 pm
radius
a Max. axial acceleration frot > 23.1 1.1 m/s2
Aznign | Max. eccentricity of the track frot >2400 | £0.022 um
radius
fe Crossover frequency of the 2.4kHz
open loop
fEV Desired closed loop bandwidth =~ fe
AZmax Max. radial displacement 0.074 pm

5. Control design methodology
5.1. The aims of the controllers design
5.1.1. Focus loop

The goal of the focus controller design is to minimize the amplitude
of the focus displacement Az, measured by the focus error signal ey,
during playback.

The periodical disturbances are mainly given by the rotational fre-
quency frot, that is not constant during playback, (see expression (5)),
because a constant linear velocity (CLV) is used to read the data recorded
on the disk. These disturbances are mainly caused by the disk eccen-
tricity Azgisk, disk warping, disk thickness variation. Fig. 11, that is a
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zoom on the optical block in fig. 4, shows the geometry of the vertical

deviation sources.

Center of gravity

> X, — Maximum radius of data zone
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Data layer
Disk . =
— —h—
AZ / Az, AZ.
m Reference plane m
i AX,,, — Disk eccentricity
%
Xlaser

9

'\. . Incident laser beam
Rotation axis

Figure 11.  Sources of vertical deviation on the DVD disk, mainly caused by disk
warping and disk tracking eccentricity

In real DVD/CD players, the disk is not balanced ideally because there
is a non-zero distance, so-called disk eccentricity Azgi # 0, between
the center of gravity of the disk and the rotation axis of the spindle, see
fig. 11.

It is clear that the vertical deviation of the turning disk Azgigk is not
constant along the whole scanned track on the disk, (Azgisx depends on
the laser beam position Ty from the rotation axis of the spindle).

Therefore at the starting radius of the data zone xi;, (where fio =
23.1Hz), the vertical deviation Az, is smaller than the vertical devi-
ation Azg, at the maximum radius of the data zone zg, (where fio =
9.6Hz).

Hence, the different requirements on the disturbance rejection can be
given in frequency domain. The sensitivity function shaping method is
a useful tool to design controllers satisfying these system requirements.

5.1.2. Radial loop

The goal of the radial controller design is to minimize the amplitude
of the radial displacement Az, measured by the radial error signal ey,
during playback.

The periodical disturbances are also mainly given by the rotational
frequency fro:. The disturbances are mainly caused by the disk eccen-
tricity Azgisk and disk tilt.

The geometry of the radial deviation sources is illustrated in fig. 12.
It is clear that the radial eccentricity Axgix does not depends on the
laser beam position from the spindle rotation axis zj,ger-

Therefore, during disk rotation, the disk eccentricity Axge is still
constant from the starting radius of the data zone zjy;, (where fior =
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Figure 12. The main source of radial deviation on the DVD disk—track eccentricity

23.1Hz), to the maximum radius of the data zone xg, (where fior =
9.6 Hz).

Nevertheless, the controller design should take also into account infor-
mation that on the DVD/CD disk the data area increases proportionally
to the square of the disk radius zg,. Therefore the disturbance rejection
should be larger near the maximal disk radius xg, then near the minimal
disk radius zgy.

The sensitivity function method to control design is also useful in the
radial control loop because the requirements on the disturbance rejection
are given in frequency domain too.

5.2. Combined pole placement /sensitivity function
shaping

The standard digital control configuration obtained with polynomial

RST controller, [9], is presented in fig. 13. Part T of RST structure has

been omitted because the control design in the focus/tracking loop of
DVD/CD players only contains the disturbance rejection.

(disturbance})

w(t)

Controller Plant
B A - B A0

A
| b
. \f‘ ) (measurement noise)

Figure 13.  The closed loop system with RS controller

Pole placement method have been used to design the controller’s parts
RS.

Fig. 13 is a simpler version (general structure) of the detailed block
diagrams of the focus/tracking control loops illustrated in figs. 4 and 5,
respectively. vy, yp, yr are the plant outputs. u, up, ugr are the plant in-
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puts. 7, Zobjs Track are the reference signals. K(g7!), Kp(¢™t), Kr(q™!)
are the controllers.

The signal w(t) in fig. 13 presents both the input disturbance of the
plant (i.e. the D/A convertor noise in our case) and the excitation
signal which is used for the identification purposes, like shown in fig. 4.
However, here w(t) is a sampled signal and in fig. 4 wy is an continuous
time signal. So, here it can be considered as an equivalent signal of the
physical signal wy from fig. 4.

The disturbance signal p in fig. 13 presents all disturbances incom-
ing into the plant, i.e. the power driver noise, actuator non-linearity,
cross coupling, disk eccentricity, disk warping, disk thickness, digk tilt,
spherical abberation, groove distortion, vibrations, shocks, photodetec-
tor displacement and dead zone.

The measured noise b in fig. 13 presents the sensing noise, A/D con-
vertors noise and non-linearity in function of focus/tracking error signal
generation.

The linear-time-invariant model of the plant is described by the trans-
fer function

G(qil) — q_dB(q_l) _ q_d (bl 6]_1 + -+ an q—TLB) (6)
Alg™) Ttarqg 4 tan,gna’

where g~ is the backward time shift operator, d is the pure time delay,

Ty = the sampling period and sampling frequency fs = 1/T5.

Experience shows that simple linear model of DVD/CD system leads
to sufficient high-performance controllers, [2] given by specifications pre-
sented in section 9 and in [7]. A more complex controllers, based on the
high order model, have higher performance but they are practically use-
less. It is given from the constrainers during controllers implementation
where the low-order controllers are still preferred.

The RS controller has the following transfer function

Rg™") _ R(¢™") Hr(g™")
S(g™t)  S'(¢ 1) Hs(g™h)
R B e
B e N

K=

: (7)

where Hr(q™') and Hs(¢™!) denote the fixed parts of the controller (ei-
ther imposed by the design or introduced in order to shape the sensitivity
functions). R (¢g7!) and S (¢!) are solutions of the Bezout equation

AS'Hg + BR Hy = P, (8)

where P represents the characteristic polynomial (closed loop poles).
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The four sensitivity functions S;;(K, G) are defined as follows. The

t) AS'H
output sensitivity function is Syp(qfl) = % = I3 S, the input sen-
b
u(t) AR Hp

sitivity function is Syp(q ') = , the output sensitivity

p(t) P
function with respect to an input disturbance Sy (¢™") = y(t)/w(t) =
— ¢~%BS Hg/P and the complementary sensitivity function is Sy, (g ')
= y(t)/r(t) = ¢ *BR Hp/P = —Sy,(g~"). Sensitivity functions play an
important role in the robustness analysis of the closed loop system with
respect to modelling errors. One can see that the equation Sy, — Sy, =1
is valid between the sensitivity functions.

In our case, not only robustness (the modulus margin AM, delay
margin A7 and phase margin Ag, [9]) but also the performances specifi-
cations, [7], have to be check. Fortunately, the robustness requirements
are related to sensitivity functions. Therefore the sensitivity function
shaping is a useful tool to the controller design in case of DVD/CD
players.

5.3. Controller order reduction

Controller order reduction is a very important issue in many control
application, either because the size of the controller is limited by hard-
ware and computation time or because simpler controllers are easier to
implement. What is most important is that controller reduction should
aim to preserve the required closed loop properties as far as possible.
One of useful methodology, which is used here, is the balanced reduc-
tion [13] method in state space domain that using a Gramian of the
balanced state-space realization.

Unfortunately, the given structure of controller in DSP is not gen-
eral and therefore only some designed the 4rd/3rd order controllers are
implementable.

5.4. Generalized stability margin

The resulting reduced order controller should stabilize the nominal
model and should give sensitivity functions which are close to the nom-
inal ones in the critical frequency regions, to ensure performance and
robustness. One way to verify the stability margin of the whole sys-
tem is the generalized stability margin b(K,G), [12], defined from all
sensitivity functions



Control of DVD players 117

-1

HT(K, G)H if (K, I) is stable,
WK,G) = > (9)
0 otherwise,
whnere
rwe=| 3]

in which Sy, Syw, Sup and Sy, have been defined is section 12. The
generalized stability margin gets higher the large value of b(K,G) is
achieved.

6. Control design

An application of introduced methodology will be presented in more
detail for the tracking loop. Nevertheless, the final results are given for
both the focus and tracking control loop.

6.1.

A simplified, linear transfer function of the tracking control loop
Gr(s) is derived from the physical equations of radial system as follows.
In table 3 its parameters are presented.

Plant model in tracking loop

Table 3. Parameters of the plant in radial control loop

Symbol | Parameter Nominal value
Rr Coil resistance 6.50

Lr Coil inductance 18 uH

KRe Back efm constant 0.061 Vs/m
Mg, Actuator moving mass 0.33 x 10 3 kg
Dr Damping constant 0.014 Ns/m
Krs Elastic constant 35.2N/m

Kry Force constant 0.061N/A
ARdril First power driver gain 3.13V/V
ARdriz Second power driver gain 4V/V

ARopt Optical gain & remanent gains | 1.447 x 10° V/m

Ky

Gr(s) =

Mrlr ARdrilARdriQARopt

3 Er | Dr ) 2 DrRr , Kgs
§ +(LR +MR)S +(MRLR+ My

KriKRe

10

The discrete transfer function of the radial system Gr(g~!) is giver(l b}>f

conversion from the continuous-time to the discrete-time using a zero-

order hold and the sampling period Ty, (a clock period of the Digital
Signal Processor (DSP)), by the following expression:
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b bag 4 bgg
14+ a1g7! +aq 2 + azqg™

Grg™") (11)

Here d = 0, see (6). The other numerical values for B(¢g~!) and
A(q™1) polynomial coefficients are not presented for reason of confiden-
tiality. The radial closed loop system is shown in fig. 14. In this figure,

disturbances have been added, namely the radial eccentricity Axgisk(t)
of the disk.

(disturbance)
AXdisk(t‘)

Plant _GR(q-1) Xtrack(t)
Controller R 1
+

Wi(t)

Figure 14. Radial tracking closed loop of the DVD

6.2. Nominal and uncertainty model

To verify the robustness of the proposed control systems, different
models of radial actuator, based on the parameters specification and
their variation, have been created. The nominal model of the plant is
obtained considering the values of physical parameters of a DVD pick-
up, which is used in the industrial application. Then, the model set is
created by taking into account the variation of each physical parameter
in an interval of values, as indicated in the pick-up data-sheet, [8]. The
nominal values of the actuator physical parameters, together with their
maximum percentage variation, are shown in table 4. fr, and Kgrpc are
the values of the actuator resonance frequency and DC sensitivity, that
are used to compute the values of Kre, Dr, Krs and Kgr in the model
transfer function (10).

Table 4. Values of the radial actuator physical parameters together with their max-
imum percentage variation

Symbol | Nominal value | Variation
Rr 6.5 +15%
Lr 18 uH +33%
Sfrn 52 Hz +5%

Mg 0.33g +10%
Kgpc | 0271077 +20 %
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6.3. Standard controller

The second order lead-lag controller K,c:(q~ "), given by (12), is used
in many actual DVD/CD applications as a standard controller structure.
(1—cig)(1—caqg™)
(1—dig ) (1—daq™t)

This standard second order lead-lag controller (K..i(q™') : nr =
2,ng = 2) is actually replaced by a third order (Krg3(q™!): ng = 3,ng =
3) or a fourth order (Krss(¢~!): nr = 4,ns = 4) controller in order to
meet higher performance on the disturbance rejection.

The aim of this work is to provide a methodology to design the third
(or fourth) order controllers that improve the actual performance on the
disturbance rejection and fulfil the realization constrains in actual DVD
platform, see section 13.

Kact(q_l) =90 (12>

6.4. New controller design

The third order RS controller Krsz(¢™!), (ngr = 3,ns = 3), and the
fourth order RS controller Krsi(¢~!), (ng = 4,ng = 4), are designed
for the over-speed factor N = 1.5.

The spindle rotational frequency is fiox = 34.7Hz at the data zone
starting radius x;,; while f,ot = 14.4Hz at the data zone maximum
radius zf,. The controller design has taken also into account that on
the DVD/CD disk the data area increases proportionally to the square
of the disk radius xj,ser in fig. 12.

When the over-speed factor N is bigger than 1, the break rotational
frequency in performance specification f.,, = 23.1 Hz, must be linearly
shifted by the same factor N. Therefore the minimum sensitivity
Siow = 2010 <M) — _67.13dB (13)
|Axlow|

is required at frequency fror = 23.1- 1.5 = 34.7 Hz.

To suppress periodical disturbances, mainly caused by disk eccentric-
ity Azgisk at rotational frequency frot, a slight modification on the |Syyp|
template has been done:

1 frot = 34.7Hz:
|Syp| = Siow — 27 dB= —94.13 dB;
2 frot — 14.4Hz:
1S,p| = 2010g ('Mhigh' : L) — 27dB= —101.80dB:;

IAxlow‘ Tfin

3 frot € (14.4Hz,34.7Hz):
|Syp| = linear interpolation between |Sy,| at two given frequencies:
Jrot = 14.4Hz and f,o; = 34.7 Hz;
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4 frot > 34.7THz: | Sy, is given by specification in [7] where the upper
and lower limits on the |1/(1 + H,)| are defined.

The low limit at the rotational frequency fiot = 34.7Hz have been
toughened up rather 27dB. The low limit at the rotational frequency
Jfrot = 14.4Hz have been linearly increased with respect on the ratio of
the data zone radiuses (Zini/Tgn), to take into account data distribution
on the disk, and shifted rather 27 dB too.

The specification requirements (defined by the DVD disk and by nor-
malized servo) with our modification are illustrated as the output sen-
sitivity function modulus |Syp| templates in fig. 15.

pecification in templaie ol ~ uiput sensitivity function
20 T T T

Upper limit B R TRITO

Lower limit -

-100

Magnitude (dB})

\

— Spec.: Only DVD disk
Spec.: With normalized servo
= Template modification
T

-1205 5 ‘2
10 10 10

Frequency (Hz)}

3 4

10 10

Figure 15.  Desired template for the modulus of the output sensitivity function |Syp|
for radial tracking (radial loop) of the DVD, N = 1.5

The controller design of the fourth order controller Krgs has been
realized using the following specifications:
s P (closed loop poles):
- a pair of complex poles near the model’s slowest vibration fre-
quency fp = 52Hz — 170 Hz but well damped &p = 0.068 —

0.936;
- two multiple real poles vp = 0.9 for keeping in the |Syp|, [Supl

templates:
- one compiex pole fr = 13800Hz, &¢ = 0.927 to restrain the

controller action in higher frequencies where the gain of the

system is low;
s Hg: a pair of complex poles fg = 19Hz, £g = 0.4 to ensure dis-
turbance rejection in the frequency range firo; € (14.4Hz, 34.7Hz).
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s Hy: a real zero yg = 0.1 to lower the magnitude of the input
sensitivity function |Syp| at high frequencies where the gain of the
system is low.

s The resulting controller has the orders ng = 5 and ng = 5. There-
fore the balanced reduction method [13] has been used to obtain
a controller structure ng = 4 and ng = 4.

m  Check the sensitivity functions |Syp|, |Supl, |Syr| again. End the
design procedure if the requirements on the sensitivity functions
were satisfied.

The same procedure has been used to the third order RS controller
KRrss design except balanced reduction. Nevertheless, the restrictions on
the resulting controller gives smaller performance in the frequency range
frot € (14.4Hz,34.7Hz). The controllers are designed using the recently
developed software tool “ppmaster” [11]; developed in MATLAB®enviro-
nment.

7. Performance analysis
7.1. Focus loop: Simulation experiments

The results are presented for the final RS controllers of the 3rd/4th
order (Krss, Krss) in table 6 and 5. More detailed results are given
in [5].

Table 5. Comparison of the controller order reduction and generalized stability mar-
gin, N = 1.5, focus loop.

K@Y | ne | ns | & | 78 | b(K,G) | b(K,G) ‘
DS E] =) )
Ko | 3 | 3 | 3 | 3 |0.15563
Krss | 3 | 3 | 4 | 4 |o0.16476 | 0.16476
Krsa | 4 | 4 | 5 | 5 | 023351 | 0.23204

Table 6. Comparison of the various reduced controllers, N = 1.5, focus loop.

K(q_l) nR ns |Syplmax | [Sypliaa | [Syplaar | [Suplmax 2
PR B (AR (AR (AR (AT ()
(St A S \as) \an) as) Was) L#8)
Kact 3 3 3.02 —73.5 —74.9 16.1 72.9
Krss 3 3 3.28 —80.2 —82.5 15.5 72.9
Krsa 4 4 3.45 —88.0 —80.3 12.3 81.0
Spec. 3.85 —66.0 —66.0 122.5

7.2. Focus loop: Real-time measurements

The disturbance elements of the focus error signal ep, in frequency
domain at two different rotational frequencies f,ot, are illustrated in
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figs. 16 and 17, where the power spectrum of the focus error signal ep
has been acquired on the real DVD system with the 3rd-order controller
Krgs. These results point out that the obtained improvements are still
influenced by disk rotational frequency fio.

Power Specirum of focus error signal

10° T
—— Actual coniroller
RS3 controller
f =15Hz,Az_ =0.5mm
rot fin
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o 2 Yy
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Figure 16. Closed-loop with K,ci, Krss. The measured power spectrum density of
the focus error signal er for tested disk with very small disk eccentricity Azqisk, but
with high disk vertical deviation at the disk outer edge Azg, = 0.5 mm, fios = 15 Hz

Power spectrum of focus error signal
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—— Actual coniroller
RS3 controller
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rms
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[w]

Magnitude [V°

Frequency [Hz]

Figure 17. The same as in fig. 16 but for f,ot = 33 Hz
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7.3. Tracking loop: Simulation experiments

Results are shown for the actual controller K, and the designed
fourth order RS controller Kgrg4. A final comparison is also done with
the third order RS controller Krgs. In fact, actual controller K, is the
second order controller because some constants are set to zero in the
implemented structure.

The disturbance rejection is illustrated by the output sensitivity func-
tion modulus |Syp| in fig. 18. Notice that the perturbations suppression
at frot = 19 Hz have been achieved by the Hg polynomial choice.

lsvnl - Output sensitivity function
20 T T T

Magnitude {dB}

= Actual controller
«=" R84 controller
Specification
T

_i20 . . .
10° 10 10 10° 10"
Frequency (Hz)

Figure 18.  Output sensitivity function, radial loop

Fig. 19 presents the input sensitivity function |Syp|. The lower peak
in |Syp| and lower values of |Syp| in high frequencies for the controller
Krgs than ones for actual controller K, are seen in table 8. However,
in case of the fourth order controller Kgsy, higher values of |Sy,| for
low frequencies is a problem. It is a trade-off between the disturbance
rejection and the robustness requirements.

A good control order reduction methodology and a good generalized
stability margin of the third /fourth order designed controllers Krs3/KRrs4
are shown in table 7, where the parameters of reduced controllers are ng,

e—

ng, b(K, G) and the ones of non-reduced controllers are ng, ng, b(K, G).
Figs. 20, 21 illustrate the envelopes of the output sensitivity func-
tions modulus that have been calculated for the plant model set and the
actual /third order designed controller. One can see that the stability
templates and the desired performances are fulfilled in both cases.
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S T~ Input sensilivity function
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Figure 19.  Input sensitivity function, radial loop

Table 7. Comparison of the controller order reduction and generalized stability mar-
gin, N = 1.5, radial loop.

o — 1\ .. . = = ING 7SV a2 ING 7SR
Fay \ll } TtR, s TtR, s U\1X7U} U\1X7U}
DS E) -) (=)
Kact 2 2 2 2 0.2127
Krss 3 3 3 3 0.2156
Krsa 4 4 5 5 0.2253 0.2151

Table 8. Comparison of the various reduced controllers, N = 1.5, radial loop.

K(q_l) nRrR ns [Syplmax | [Syplia.a | |Syplsar | |Sup|max 22
(=) [ (=) | (dB) (dB) (dB) (dB) | (ps)
Kact 2 2 2.95 —82.3 —80.6 12.1 64.8
Krss 3 3 2.88 —94.1 —90.8 12.0 64.8
Krsa 4 4 2.67 —101.3 —94.5 11.8 64.8
Spec. 3.86 —69.2 —69.2 102

7.4. Tracking loop: Real-time measurements

The disturbance elements of the radial error signal er, in frequency
domain at two different rotational frequencies fi.:, are illustrated in
figs. 22 and 23, where the power spectrum of the radial error signal er
has been acquired on the real DVD system with the 3rd-order controller
KRrg3. These results point out that the obtained improvements are in-
fluenced by disk rotational frequency f,ot. Some other results, obtained
with the third order controller KRgs, are also presented in [6].
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Figure 20. Envelopes of the output sensitivity functions, actual controller, radial
loop
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Figure 21.  Envelopes of the output sensitivity functions, RS3 controller, radial loop
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Power specirum density of tracking error signal
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Figure 22. Closed-loop with Kact, Krss. The measured power spectrum density of
the radial error signal er for tested disk with very small disk vertical deviation at the
disk outer edge xqyn, disk eccentricity Azqgisk = 0 pm, fior = 15 Hz
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Figure 23. The same as in fig. 22 but for fiot = 33 Hz
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8. Conclusion

This paper has dealt with combined pole placement/sensitivity func-
tion shaping control design connected with controller order reduction
for focus/tracking control loop of DVD player, under industrial perfor-
mance specifications. Modifications on the output sensitivity template
have been explained and directly fulfill in controllers design to obtain
improvement in term of periodic disturbances.

Robustness analysis point out that the achieved the third /fourth order
controllers remain stable for large uncertainty of the actuator physical
parameters, and that performance specifications are met. Final compar-
ison of the actual and designed controllers illustrate that new controllers
provide better system performances and robustness than the actual con-
trollers. Nevertheless, the presented disturbance rejection is impossible
to obtain with more controller order reduction.
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Abstract  Large scale systems often consist of several relatively autonomous subsystems
sharing common resources, material or energy flows, and informational
networks. Distributed control of such systems requires the use of some
decomposition, modeling and analysis techniques in order to stabilize the global
system and to fulfill further design requirements. In the paper some techniques
based on structural investigations trying to infer the properties of the
interconnected system (eigenvalues and fixed modes) from the properties of its
constituent subsystems are discussed.

Keywords: structural analysis, system decomposition, interconnected systems,
decentralized control

1. Centralized VS distributed control systems

Consider the centralized control problem of a given plant P
P:U—>Y, y=f(u), ueU, yeY, (1)

where u, y are their input and output, respectively. Finding a (single) control
unit is required, whose main tasks are i) to ensure asymptotic stability of the
closed loop system for a given class of command signals and disturbances,
and ii) to meet dynamical I/O behavior of the system as specified. This
approach turns out to be not suitable for many of the modern plants at
present. Today’s plants are highly integrated systems based on the
cooperation between several machines and industrial robots. All these
constituents are more or less interconnected by information networks,
material and energy flows, or share common resources.
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Such large scale systems are characterized by at least one of the following
properties: i) large size and high dimension of the plant model; ii) presence of
uncertainties regarding the model and the plant structure; iii) restrictions
concerning the information access due to the geographical distribution of
several component subsystems; iv) an interconnection structure that links
together the constituent subsystems, either directly (at the subsystems level)
or indirectly, by means of a common subsystem or by common resources (at
the system level). Each of these properties causes a centralized control unit of
the large scale system to be hard to find at reasonable costs.

A distributed control approach of such a large scale system is more
appropriate due to the intrinsic isomorphism that can be established between
the structure of the controlled system and the structure of the distributed
control unit. This way the global control problem splits into several smaller
but still interrelated control problems that are easier to solve by smaller
control units providing communication capabilities.

This is the so called “off-line” phase of decentralized control. It can be
the subject of some decomposition techniques applied to the global system,
as well as to the global control problem. Also, redefining of the control
problem has often to be made at this level, to take into account new
properties such as flexibility, reliability, or robustness of the control unit.
Such aims may become more important than a limited, short term optimum
behavior, and they have not been addressed primarily by the classical
multivariable control theory.

A certain methodology is needed in order to deal with large scale systems:
i) specification of the system objectives; ii) system decomposition in N
interconnected subsystems; iii) analysis of the isolated subsystems to reveal
their qualitative and quantitative properties; iv) inferring the overall system
properties from those of the isolated subsystems taking into account the
interconnection structure.

1.1. Decomposition of large scale systems

Let S be a large scale system defined by
S={U, X, 7Y, f, g 8

S g (2)
UxX—X, X—7,
where U, X, and Y are the input, state, and output sets, respectively.
The system S is to be decomposed in N sub-systems S;, i=1, NV,
S={U, X, X, [, & )
3)

U xX,—5X, X,—45Y,

with U, cU, X, cX, Y, Y.



On the structural system analysis in distributed control 131

There are two ways to have the system S split in subsystems: i)
horizontally, and ii) vertically, respectively. Horizontal decomposition can
be made based on structural criteria as well as based on mathematical
conversions followed by partitioning and parametric decomposition (Lunze,
1992). When direct coupling links between subsystems are used, the result of
the horizontal decomposition phase is an interconnected system as shown in
Figure 1. Its interconnected structure can be expressed as

s=H(z)=Lz, (4)

where L is the interconnection matrix, L=[/;], /;€{0,1}, Vi, j=1,_N.

e w] wl o
S S, Sy

S Z] Y] Z3 o SN ZN
1]
Zy | S1
22| Couplings | S2

éN s=Lz S'N

Figure 1. System decomposition into several directly coupled subsystems

Further vertical decomposition refers mainly to the control unit. It leads
to a hierarchical structure, usually consisting of up to three layers (Ionescu,
1982): i) operational layer; ii) planning layer, and iii) strategic layer. The
operational layer is the one resulting from the horizontal decomposition
process.

1.2. Linear models for decentralized systems

As stated before, a global model such as the well known centralized
linear state model:

)
y=Cx+Du, x(0)=x,,

{)'c =Ax+ Bu
with xeR", ueR"”, yeR’, 4, B, C, and D constant matrices of suitable sizes,
is useless for the large-scale system control even if such a model could be
found. Instead of it, smaller size order models of the subsystems together
with the interconnection structure model should be used when the analysis
and design of the decentralized control unit is in view.

The 1/O Oriented Model. It allows only for a decentralized 1I/O
characterization of the large scale system while state information continues
to remain centralized. It can be derived from (5) where input and output
variables are partitioned into N smaller size components
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”:[”1 Uy ... ”N]T;y:[yl Y2 o yN]T (6)

dimu;=m;, dimy,=r, i=1LN,
as well as the input matrix B and the output matrices C and D

N
X =Ax + ZBSi “u;,  x(0) = x,,

i=1

(7

N
v =Cq-x+ Y D;-u;, i=1LN.
Jj=1

The Interaction Oriented Model. Each subsystem is considered a
standalone system, having its own state, input, and output variables. It is
described by a centralized smaller order linear model

X, = Ax; + Bu;, + E;s,

Vi = Cx; + Du; + Fs; (8)
z; =C,x; + Du, + F.s,, i=1,N, x,(0) =x,,

where dim x; = n;, dim u; = m;, dim y; = r;, dim s; = m;, dim z; = r,;.
Consider the subsystem couplings being fully described by the algebraic
equation

s=1Lz, )

N
where s=[s; 5, .. sy]", z=[z z, .. zy]" with dim s = m; = Ymg,
=1

N
dimz=r.=>r,.
i=1

Due to the absence of direct couplings from the local inputs u; to the local
outputs y; as well as between the interaction inputs s; and outputs z;., the
decentralized I/O model of the overall system can be written

N
X, = Ayx; + ZAM; +Bu;,  x(0)=x;,
(10)

J#EI

v, =Cx;, i=LN,

where

A= [Ai]']NXNa where Aii = Ai + E,' Lii Czi, A’J = E,' L’] CZ]" l#]

B =diag B;, C =diag C;, D=0. (11)
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2. Analysis of decentralized systems

The following three theorems are well known from the multivariable
feedback control of centralized systems described by the state space linear
model

¥=M+M
(12)

y==Cx, x(0)=x,.

The solution of the differential equation (12) may be expressed as

ﬂnchhm&hb+£ka-ma.ﬁﬂm-mmmx (13)
i=1

i=0

where /; are the n different eigenvalues of the system (12), and v;, w; are the
corresponding right and left eigenvectors, respectively.

Theorem 1 The input mode mpg; = wie}“ft and the eigenvalue A; is said to be
controllable if one of the following equivalent conditions is satisfied

w[A=A1 ¢ B]#0,Vi=1,n (14)
rank [A-A1 | B]=n,Vi=1,n.

Theorem 2 The output mode mg; = viei"[ and the eigenvalue A; is said to be
observable if one of the following equivalent conditions is satisfied

----------- v, #0, rank |- [=n,Vi=Ln. (15)
C C

Theorem 3 The set of centralized fixed eigenvalues is identical to the set of
the uncontrollable and unobservable eigenvalues of the system (12).

The centralized fixed modes cannot be changed even by any dynamic
output feedback. Negative values of the real part of such fixed eigenvalues
make difficult to fulfill some design requirements, while positive values is
the worst case: the system is unstable and cannot be stabilized. In the
following, the I/O oriented model (7) of the system (12) is considered
together with the decentralized static control law

u=-K,y, (16)
where K, is the decentralized feedback matrix

K,= diag(K,1,Kya, ..., Ky) . (17)
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2.1. Decentralized fixed modes and eigenvalues

Decentralized fixed modes are defined in a similar manner as the
centralized ones, corresponding to those eigenvalues of the closed loop
system that remain unchanged for any decentralized feedback applied to the
system (Corfmat et al. 1973). First, according to (17) K,eR™* ", so the
centralized fixed modes are all decentralized fixed modes too. However,
further decentralized fixed modes may occur due to the decentralized control
structure, even if the closed loop system is completely controllable and
observable.

Theorem 4 (Anderson et al., 1981) The eigenvalue A[A] is a decentralized
fixed one if and only if a disjoint partition of the index set J ={1, 2,..., N}
exists, consisting of the sets D = {ij, is,..., iy} and H = {ix+1, ixe2,..., i/,
DH =T DUH=T, so that the following condition is satisfied

. A—- M B, 8
ran CWJFO <n, (18)

q

where

B, = I:BSi, Bg, ... BSik:| » By = [BSiM Bg,.,, - BSiN:| )

c,=[ct ci .cp]. o, =[cn chcn]

It is obvious that the eigenvalue A[A] is not a decentralized fixed one if
there exists at least one channel (u;, y;), i€ J so that 4[A] is both controllable
and observable through it. Decentralized fixed eigenvalues are either
uncontrollable or unobservable or both of them at the same time through any
of the decentralized I/O control channels.

Theorem 4 provides a necessary and sufficient condition for an
eigenvalue to be a decentralized fixed eigenvalue. It assures that if the
eigenvalue A[A4] is uncontrollable through the I/O channels i, Vie 2, then it
cannot be made controllable by any decentralized feedback control at the I/O
control channels i, Vie J{ by which it is observable. Conversely, it assures
that if the eigenvalue A[A4] is unobservable through the I/O channels i, Vie
M, then it cannot be made observable by any feedback control at the I/O
control channels i, Vi € 2 by which it is controllable.

The condition (18) is independent by the decentralized control matrix X,. It
reveals a property the system has to be provided with for a decentralized fixed
mode to exist. However, exploiting the condition provided by the Theorem 4
to find the decentralized fixed modes leads to complex mathematical
operations with the centralized model of the large-scale system. In the
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following, equivalent conditions will be given that establish a connection
between the decentralized fixed modes and the properties of the subsystems
described by the interaction oriented model (10) in a simplified form

X, = Ax, + Bu, + Es;
v =Cx;, z;, =C,x;,, 1= 1,_N,xl.(0) =X » (19)

s=Lz.

If all the subsystems ieJ are completely controllable and observable
through their local I/O channel (u;, y;), then the eigenvalues of the isolated
subsystems can all be changed by an appropriate decentralized I/O feedback.
However, even if all subsystems and the overall system are completely
controllable and observable, the overall system may still have decentralized
fixed modes, as exemplified in (Lunze, 1992).

Thus, sufficient conditions for a subsystem eigenvalue to be a
decentralized fixed eigenvalue of the overall system can be tailored to the
interaction-oriented model. To begin with, it is clear that a subsystem
eigenvalue A[A4;] is a decentralized fixed eigenvalue of the overall system
(19) if it is either uncontrollable through both the inputs #; and s; or
unobservable through both the outputs y; and z;.

DN
" . “| Subsystem
> iy
Control || Subsystem ?
1 N
uniti e < Interconnections .
Vi Si Subsystem
ZN
Second “control unit”

Figure 2. The i-th subsystem and its I/O channels: (u;, y;), (si, z;)

For the subsystem i assimilated to a plant with two control units, as
shown in Fig.2 the following theorem is given.

Theorem 5 A subsystem eigenvalue AfA;] is a decentralized fixed
eigenvalue of the overall system (19) if at least one of the following

conditions holds
rank |-t e <y (20)

These conditions can be derived directly from Theorem 4 applied to the
subsystem i while its control structure is considered as in Fig.2. In other
words, A[A4;] is a decentralized fixed eigenvalue of the overall system (19) if
it is not and cannot be made either simultaneously controllable through s;
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and observable through y;, nor simultaneously controllable through u; and
observable through z;.

Finally, Theorem 4 can also be applied to the subsystem i with embedded
interconnections, having N I/O channels, while the matrices A, Bp si Cy are
aggregated from the subsystem matrices 4,, B;, C;, E;, C.;, and L;, using the
relations (11), as described in (Lunze, 1992).

A subsystem eigenvalue that turns out to be a decentralized fixed value
does not depend on the interconnections between subsystems. These values
remain unmodified even if some subsystems are decoupled from the overall
system or other subsystems are later connected.

2.2. Decentralized structural fixed modes and eigenvalues

Large scale systems control often cannot make use of a precise linear
model. However, some properties of the system can be determined in spite
of the uncertainties regarding the parameters and the structure of the plant.
Such structural properties are valid for a relatively large area of numerical
values instead of being strongly dependent on some singular parameter
values (Sezer, 1981).

The structure of a system S (4, B, C) may be described through the mean
of a structure matrix or graph. All the matrices of the system (1) 4, B, and C
may be converted as structure matrices S,= [4], S,= [B], and S= [C],
respectively, by using the following notation

0, a; =0,
[ai/] - {* a; 0. @1)

>

The class S consists of all systems having the same structure matrices S,
Sy, and S,

S(Saa Sb: Sc) = {(A: B: C) / [A] = Saa [B] = Sba [C] = Sc} . (22)

The graph representation of class S can be derived from the structure
matrix Q attached to the system

X U Y
s, S, 0] X

‘0=|0 0 0| U . (23)
S 0 0| 7Y

c

There are n=dimx state vertices x;, m=dim u input vertices u;, and r=dimy
output vertices y; within the structure graph G (Q). An edge from one vertex
v; to another vertex v; exists if and only if the corresponding entry ¢g; = * in
matrix Q in (23).
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Definition 1 For a structure matrix S,, a set of independent entries is defined
as a set of indeterminate ‘*’ entries, no two of which lie on the same row or
column.o

Definition 2 The structural rank (s-rank) of S, is defined as being the
maximum number of elements contained in a set of independent entries.

A typical relation between numerical and structural investigations can be
defined. The structural rank of a structure matrix S, is equal to the maximum
rank of all admissible matrices having the same structure

s-rank S, = max rank A4.O (24)
Ae

a

Equation (24) specifies that almost all matrices 4 €S, have a numerical
rank equal to the structural rank. In other words, rank 4 < s-rank S, holds
only for some exceptional matrices 4, whose entries lie on a hyper surface,
and, thus, they are relatively infrequent.

Definition 3 A class S of systems is said to be structurally controllable (s-
controllable) or structurally observable (s-observable) if there exists at least
one admissible realisation (4, B, C)eS which is completely controllable or
completely observable, respectively. As a consequence, the s-controllability
and s-observability of a class S are necessary conditions for the numerical
controllability and observability, respectively, for almost all systems from
class S.o0

Definition 4 A class of systems S is said to be input connectable if for every
state vertex v in the graph G (Q) there is a path from at least one of the input
vertices to v. It is said to be output-connectable if for every state vertex v a
path to at least one output vertex exists.O

Input-connectivity and  output-connectivity = guarantees that

. A-Al
s—rank[A—/U ; B]zn and s-rank TET =n, for A # 0 and almost all

admissible systems. Taking these into account, the structural counterpart of
Theorems 1, 2 is

Theorem 6 A class S of systems is s-controllable if and only if it is input-
connectable, and s-rank [S, S,] = n. The class S is s-observable if and only if
it is output-connectable, and s-rank [S," S.']" = n.

Definition 5 A class S of systems has structurally fixed modes if all the
admissible systems of that class have fixed modes.o

As a result, a given system (4, B, C) has fixed modes if its container
class S([A4],[B],[C]) has structural fixed modes. On the other hand, a class S
has no structural fixed modes if at least one system completely controllable
and observable (4, B, C) € S exists, i.e. if the class § is s-controllable and



138 ADVANCES IN AUTOMATIC CONTROL

s-observable. Subsequently, the presence of structural fixed modes can be
checked using the s-controllability and s-observability conditions
established by Theorem 6.

Theorem 7 A class S of systems has structurally fixed modes if and only if
at least one of the conditions of Theorem 6 is not satisfied. Structural fixed
modes of type I occur due to the missing input or output connectivity,
otherwise structural fixed modes, if exists, are said to be of type I1.

Although the conditions of Theorem 6 refer to the open loop system, a
good graphical representation for them can be made based on the closed loop
system which takes into account the static output feedback u = —Ky. The
structure matrix Q, of the closed loop system is

S S, 0 Lk
0,=|0 0 E|, E=|}" 1. (25)
S 00 * Lk

Compared to G (Q), the closed loop graph G (Qy) has supplemental edges
from all the output nodes to all the input ones, expressing the information
flow across the feedback links. As any system mode can be changed only if
it is placed within a closed loop in the graph G (Q,), structural fixed modes
exist only if there are vertices in G (Qp) that cannot be embedded in such
closed loops. As any input can be linked to any output using a proper static
feedback, state vertices are part of no closed loop only if they are
disconnected from all the inputs or all the outputs.

The second condition may be examined starting from the following
considerations. The condition s-rank [S, S,] = n may be equally expressed as
the requirement that every state vertex must have at least an edge from
different state or input vertices (or any line of [S, S;] must have at least one
indeterminate entry placed on different columns). Similar meanings can be
given to the condition s-rank [SaT ST ]T = n: every state vertex must have at
least an edge to different state or output vertices (or any column of [S, Sp]
must have at least one indeterminate entry placed on different lines). These
two conditions are simultaneously satisfied if there are disjoint closed loops
or cycles in G (Qy) with all the state vertices embedded within at least one of
them. All these closed loops yields to a cycle family, whose dimension is
given by the number of state vertices included.

The necessary and sufficient condition given by Theorem 7 can be
expressed in the equivalent form of

Theorem 8 A class S of nth-order systems has structurally fixed modes if
and only if at least one of the conditions is satisfied for graph G (Qy):
1. Sis neither input-connectable nor output-connectable.
1I.  There does not exist a cycle family of width n.
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Structural fixed modes as they were defined for the centralized model (5)
have been generalized for interconnected systems described by the
decentralized 1/0O model (10). Thus, the graph for the decentralized closed
loop system may be derived from the following structure matrix

[l) [ D008 ) 0 0]
O
1 o O 2 [
| 110
0, = 0 i 0 EIRNE (26)
________________ | L
[[a]] 0 |
ol 0 0
0 ||llev] |

Applying Theorem 8§ for the decentralized feedback system matrix Q, one
can claim that for the class S; of N interconnected subsystems there are
structurally fixed modes if at least one of the following conditions is
satisfied for graph G (Q,):

I. There exists a subsystem vertex, which is not connectable to any

channel (u;,);).
II. There does not exist a cycle family of width N.

Another way to establish if an interconnected system has structural fixed
modes can be derived by investigating each subsystem together with its
couplings to and from the other subsystems. Thus, while the subsystem i is
considered as shown in Fig.2, the attached graph G (Qu)

[4] ([8] [E]:0 0

0 0 0 * 0

4= 0 0 0 0% @)
] 0o 000
e 0 0 0o

may be used in order to check if an eigenvalue of the subsystem is a
structurally fixed eigenvalue for the overall system.

Given the class S, of systems whose ith subsystem structure is described
by Qg the class S, has structurally fixed modes if there exists an index i so
that at least one of the following conditions are satisfied for the graph G (Qu):

I. There exists a state vertex, which is not connectable to any channel

(ui, y2)-
II. There does not exist a cycle family of width n;.
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3. Conclusions

Structural investigations concerning the existence of decentralized fixed
modes are important due to their impact on the stabilizability of the plant. A
decentralized stabilizability theorem may be given which is similar to
Theorem 3. The eingenvalues of the plant and their associated modes can be
all modified using a decentralized static feedback u= -K,y if and only if there
are no decentralized fixed modes.

Making all the decentralized eigenvalues to be controllable and
observable trough the same channel leads to a centralized design procedure
of the decentralized control problem. Other solutions presented in the
literature (Lunze, 1992) are decentralized dynamical compensation, and the
replacement of a centralized state feedback by a decentralized output
feedback without changing the eigenvalues established at the previous stage.

Having the control units interconnected via an industrial control network
is a different approach to solve the overall control problem in a distributed
way. This approach may overcome many of the constraints imposed by the
decentralized structure of the controller (Wang et al., 1978). Structural
analysis of the large scale system still offers useful information as long as it
is focused on the centralized fixed modes of the system.
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Abstract The control problem of the spatial tentacle manipulator is presented. The
difficulties determined by the complexity of the nonlinear integral - differential
equations are avoided by using a very basic energy relationship of this system.
Energy-based control laws are introduced by using only the relations that
determine the energy stored in the system. A PD controller and a fuzzy
controller are discussed. Numerical simulations for spatial and planar tentacle
models are presented in order to prove the efficiency of the method.
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1. Introduction

An ideal tentacle manipulator is a non-conventional robotic arm with an
infinite mobility. It has the capability to take sophisticated shapes and to
achieve any position and orientation in a 3D space. These systems are also
known as Hyper-Redundant Manipulators or Hyper-Degree-Of-Freedom
(HDOF) Manipulators and, over the past several years, there has been a
rapidly expanding interest in the study and construction of them.

The control of these systems is very complicated and a great number of
researchers tried to offer solutions for this difficult problem. Hemami (1984)
analyzed the control by cables or tendons meant to transmit forces to the
elements of the arm in order to closely approximate the arm as a truly
continuous backbone. Also, Mochiyama et al. have investigated the problem
of controlling the shape of an HDOF rigid-link robot with two-degree-of-
freedom joints using spatial curves (Mochiyama and Kobayashi, 1999;
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Mochiyama et al., 1998). Important results were obtained by Chirikjian and
Burdick (1990, 1992, 1995) who laid the foundations for the kinematical
theory of hyper-redundant robots. Their results are based on a “backbone
curve” that captures the robot’s macroscopic geometric features. The inverse
kinematical problem is reduced to determining the time varying backbone
curve behavior. New methods for determining “optimal” hyper-redundant
manipulator configurations based on a continuous formulation of kinematics
are developed. Gravagne (2000) analyzed the kinematical model of “hyper-
redundant” robots, known as “continuum” robots. Robinson and Davies
(1999) present the “state of art” of continuum robots, outline their areas of
application and introduce some control issues.

In other papers (Suzumori et al, 1991; Cieslak and Moreki, 1994;
Shigoma, 1996) several technological solutions for actuators used in hyper-
redundant structures are presented and conventional control systems are
introduced.

All these papers treat the control problem from the kinematical point of
view and few researchers focus their efforts on the dynamic problem of these
systems. The dynamic models of these manipulators are very complicated.
Chirikjian (1993b) proposed a dynamic model for hyper-redundant structures
as an infinite degree-of-freedom continuum model and some computed torque
control systems are introduced. Ivanescu (1984) presented a dynamic model
for an ideal planar tentacle system and discussed optimal control solutions.
Ivanescu and Stoian (1995) proposed a sequential distributed control for a
tentacle manipulator actuated by electrorheological fluids.

The difficulty of the dynamic control is determined by integral-partial-
differential models with high nonlinearities that characterize the dynamic of
these systems. In Appendix 1 of this paper the dynamic model of an ideal
spatial tentacle manipulator is presented and the difficulties to obtain a
control law are very clear.

In this paper we treat the control problem by using a very basic energy
relationship of these models and avoid the difficulties determined by the
complexity of the dynamic model. The energy-based controller (Ge, et al.,
1996; Wang, et al.,, 2001) determines the control law by using only the
relations that determine the energy stored in the system. By this method, a
class of controllers that can assure the motion of the manipulator to a desired
position with good performances is proposed. The method is verified for an
ideal spatial tentacle manipulator and the control laws are numerically
simulated. The paper is organized as follows: section 2 reviews the basic
principles of a tentacle manipulator; section 3 presents the general relationship
of the energy for these systems; section 4 introduces the control law; section 5
verifies by computer simulations the control laws for a 2D and 3D tentacle
manipulator. In Appendix 1 the dynamic model of a 3D manipulator is
inferred and in Appendix 2 and 3 the control laws are demonstrated.
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2. Background

We will consider an ideal tentacle arm, with a uniformly distributed mass
and torque, with ideal flexibility that can take any arbitrary shape (Figure 1).
Technologically, we will analyze a backbone structure with peripheral cells
that can determine the shape of the arm by an appropriate control. We will
neglect friction and structural damping.

The essence of the tentacle model is a 3-dimensional backbone curve C
that is parametrically described by a vector r(s) € R’ and an associated
frame ®(s) eR*>* whose columns create the frame bases (Figure 2a). The
independent parameter s is related to the arc-length from the origin of the
curve. We denote by / the total length of the arm on curve C.

The position of a point s on curve C is defined by the position vector,

t=1(s), (1

where s € [0, /]. For a dynamic motion, the time variable will be introduced,
r=1(s,t).

@ (b)

Figure 1. Tentacle model Figure 2. a) Backbone structure; b) Backbone parameters

We used a parameterization of the curve C based upon two “continuous
angles” 0(s) and q(s) (Chirikjian and Burdick, 1990, 1992, 1995), (Figure
2b). At each point f(s,t), the robot’s orientation is given by a right-handed

orthonormal basis vector {6 €, ,¢e } and its origin coincides with point

X°2Yyorvz

t(s,t). The set of backbone frames can be parameterized as

0*(0)=(E.(s1) & (st) 7lst) )

with ¢, =cos0, s, =sin0, etc.
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For a small variation ds along curve C,

t(s,t)+ dr(s, t) = (s + ds, ) (4)

the new frame is given by
O (t)= (EX (s+ds,t) & (s+ds,t) &, (s+ ds,t)) (5)

The position vector on curve C is given by
i(s,t)=[x(s.1) yls.t) 2(s. 0] (6)
where

x(s,t) = I:)sinG(S',t)cosq(s’,t)ds' @)
y(s,t) = Iscose(s',t)cosq(s',t)ds’ (8)
z(s,t) = J.Osinq(s',t)ds' )

with s'e[O, sl We can adopt the following interpretation (Chirikjian and
Burdick, 1990, 1992, 1995; Gravagne and Walker, 2000): at any point s the
relations (6)-(9) determine the current position and the matrix @®° contains
the robot’s orientation, and the robot’s shape is defined by the behavior of
functions 6(5) and q(s). The robot “grows” from the origin by integrating to

get f(s, t).

3. Energy - work relationship

The method developed in this paper is based on the energy-work
relationship of the tentacle manipulator. To simplify, we will consider the
(OYZ) planar model of an ideal tentacle arm without friction and structural
damping. For this model, the main parameter is the angle between the
tangent to the curve and axis Y, at time t (Figure 3),

q=q(s.0).
Z / \
! YL (I-(s-As))
g P(l-s)
Aa A )
o) s-As S Y

Figure 3. Energy-work relationship
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We consider as initial position the horizontal position when total energy,
kinetic and potential, is zero.

We will assume that the mechanical work required to move the (/ —s) —
length arm from the horizontal position (initial position) to the motion
position is #(I — s). If an element As is moved by a torque M to a new
position defined by the angle q, at a time t, the mechanical work will be

Pl(s-As)) = L(I-s)+ j 1)q(s,t)de, (10)
where
q(s,t) = a—q(s t)
b at b
but
M(s, t)=F(s, t)As (11)
and (10) becomes
PAI~(s-As)) = L(I-s)+ j 5,7)4(s,7)dtAs . (12)

We can define the derivative of the mechanical work as

%(s): i Q((Z-S)JrAs)-Q(l-s)

13
ds As—0 As (13)
or
(14)
By integration, the mechanical work will be
1t
$(S)=IIF(S 1)q(s’,7)duds’ . (15)
s 0
where s’ €[s, 1] .
For all the arm, / — length, it results
¥ = j.J. s,7)q(s',7)duds’,  s'€[0,/] (16)

We can extend this result for the 3-dimensional model which means the
motion controlled by two angles 6 and q,

P = ”(Fe 5,71)0(s,7) + F, (5,71)q4(s,7) ) drds, (17)

where F, (S,t), E, (s,t) represent the distributed forces on the length of the
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arm that determine motion and orientation in the 3-dimensional space.
Thus, from the energy-work relationship, we have the following equation

[Wic () + Wo ()] = [ Wi (0) + W, (0) ] = ﬁ(F9 (5,0)0(s7) + F, (5,7)4(s,)ddis (18)

where Wg(t) and W (0), Wp(t) and Wp(0) are the total kinetic energy and
total potential energy of the system at time t and 0, respectively.
From (18), we have

Wi (0 + Wy () = [ (R (590(50) + E (s 9)a(0)s. (19)

4. Control laws

The classical methods are often impossible to apply to this manipulator
with hyper-redundant configurations. The great number of parameters,
theoretically an infinite number of parameters, the complexity of the
dynamical model make the application of the classical algorithms to obtain
the control law very difficult. For example, in Appendix 1 we determined the
dynamical model of a 3D spatial tentacle manipulator,

I;I;Gq (qaéaqaéa%e)ds'ds" = Fq
I; .[; G (d,é,q,é,q,e)ds'ds” =F,,

where Gy, Gy are nonlinear functions of the motion parameters (the exact
forms and notations are presented in Appendix 1) and F,, Fy are distributed
forces along the arm in the g-plane and 0-plane, respectively.

The dynamical model of this system is determined as a nonlinear integral
differential equation and the difficulty of finding a control law is well-
known. Ivanescu (1984) determined an optimal control for minimum energy
criterion, Chirikjian and Burdick (1990, 1992, 1995) use the approximation
methods and Hemami (1984), Gravagne and Walker (2000), Mochiyama and
Kobayashi (1999), Mochiyama et al. (1998), Robinson and Davies (1999),
Suzumori et al. (1991), Cieslak and Moreki (1994) analyze the kinematical
position control. In all these papers the simplified procedures are treated or
the difficult components are neglected in order to generate a particular law
for position or motion control.

In contrast to these traditional methods, we will develop the dynamic
control law from the basic energy-work relationship and that can generate
the closed-loop stability of the system (Ge et al., 1996; Wang et al., 2001).
This method avoids the complex problems derived by a nonlinear derivative
integral model and offers an easy solution to implement an adequate
controller.

(20)
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The position control of the tentacle manipulator means the motion control
to a desired steady position of the arm defined by a curve,

Cq 3(9(1 (S)sqci(s))a Se [O,l].

We define the motion errors as
eo(t,s)=0(t,s)—0,(s), sefo0,7],
e (t,s)=q(t,s)-q,(s) sefo,7].

Theorem 1 (PD uniform distributed control) The closed-loop tentacle
manipulator arm system is stable if the control law is given by

Fy(s.t) = kg (s)eq s, t) - k3 (s)eq (s.1) 1)

F, (s,t)= —k;(s)eq (s,t)— kfl(s)éq (s,t), sef0,], (22)

where ki, (s), k3 (S), k}] (s), ké (S) are positive coefficients of the control law.

Proof.. See Appendix 2.m

Theorem 2 (spatial weighted distributed control) The closed-loop tentacle
manipulator arm system is stable if the control law is

Fy(5, )= =k} (oo (5, ) k3 (5o 5, )= K3 () (5.0) [ o (7) e (5,7) e (23)
Fy(5,1) ==k} (s)ey (5, ) K2 ()6 (5,0)= K3 (5)F, (5:0) [ £, (5.8, (s.7)dr - (24)

where  kh(s), k2(s), k3 (s), k. (s), ki (s), kg(s), are positive  coefficients

q
distributed along the arm and fy(s,t) and fq(s,t) represent the spatial

weighted functions.
Proof. See Appendix 3.m
The control system proposed by Theorems 1 and 2 is presented in Figure 4.

qa(s) Controller F(s,t)
0u(5)~  |Eas. 21,22 | Fy(sy
+ A Egs. 23, 24

Figure 4. Control system
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Equations (21), (22) and (23), (24) define a generalized PD controller
with good performances of the position control for an ideal tentacle model
without friction and internal damping and for a control criterion defined by a
steady desired position.

5. Discussion

a. The stability proofs are independent of the system dynamics and thus
the problems associated with model-based controllers (Ivanescu, 1984;
Ivanescu and Stoian 1995; Ge et al., 1996) are avoided. Also, the controllers
(21), (22) and (23), (24), respectively, are independent of the system
parameters and thus possess stability robustness to system parameter
uncertainties.

b. The infinite dimensionality of the system determines difficulties in the

selection of the control parameters k},,ké,k;,ké. Of course, the closed-
loop system stability requires only as kg >0, ké >0, k; >0, ki >0 buta

practical experiment or simulation imposes a procedure in order to reach an
adequate performance. Certainly, this parameter selection had to be
associated with dynamic model of the system. Difficulty of the problem
determines methods, rather heuristic, to evaluate the control coefficients.

c. We will suggest an approximate method for evaluating the control
parameters. We assume that:

A1l. The arm motion is a “small” motion that verifies the condition:

|q(s', t)— q(s", t)| <9, §',s"e [O,s], te [O,tf], (25)

where 0 is a positive constant, sufficiently small.

A2. A sequential spatial control is assumed, the elements of the arm
achieve the desired position step by step: the first element achieves the
desired position, then the second, and so on.

The control system (21), (22), by the conditions Al, A2, can be
approximated in the error space by the equation

2 1
é. Jrk—izéi Jrk—izei +Ehe =0, i=12,..,N, (26)
pA pA A

where h;, =hi(qdi) represents the nonlinear term determined in the error

space by the gravitational component and k!, ki corresponds to k}l ,ké or

kgi,kéi, in the qg-plane or ©O-plane, respectively. (The procedure is
presented in the section 6).

Equation (26) can be rewritten in the classic terms of the damping ratio
¢; and the natural frequency o, ,
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& +20,0, & + ] ¢ +hie; =0, (27)
where
1
K \2
o, =( ! ) (28)
i pAZ
k2
Ci=—"7 (29)
2pa’k! o
= _ g
h. ==h. . 30
= (30)

For this model, we suggest a method based by the sliding mode control in
which the trajectory is forced along the switching line, directly to the origin,
by the control of damping ratio €, (Figure 5).

A
€

DSMC

\ 4

O"™N\DSMC / ‘.

-m
Figure 5. Direct Sliding Mode Control

This special control is named DSMC (Direct Sliding Mode Control) and
was introduced for linear systems. Ivanescu and Stoian (1995) presented an
extension for nonlinear systems.

The DSMC control can be obtained if the damping ratio {; verifies the

conditions (see the following Section):

*

2 >1+ i (1)

2

n;

hi >-o; . (32)

The increasing of (., determines an over damped motion but we
appreciate that this control ensures a good robustness of the global system.

d. This parameter selection is based by the approximate system but it can
be used in order to establish the main domains of the control coefficients.
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Simulation examples presented in the following Section will confirm this
procedure.
e. The functions fy(s,t), f, (s,t) can be introduced in order to achieve good

performances when the desired trajectory has a "non-smooth form", with
corners and group forms. We can use as fy, f; the functions of the distance
between the real position and the corner points (or terminal points) of the
desired trajectory.

6. Simulations

In this section, some numerical simulations are carried out as 3D and 2D
tentacle manipulators.
Test 1. We consider a spatial tentacle manipulator that operates in OXYZ
space. The mechanical parameters are: linear density p=2.2 kg/m and the
length of the arm /= 0.6 m.

The initial position of the arm is assumed to be horizontal (OY -axis),

0(s,0)=0; q(s,0)=0; selo, 0.6], (33)
and the desired position is represented by a curve C1 in OXYZ frame that is

defined in terms of motion parameters as

s; qd(S)=]§§S- (34)

The control law is chosen as (21), (22) where the proportional and
derivative coefficients are selected as

k, (s)= k; (s)=12.5
ky (s)=k; (s)=158.

Cl: Od(s)=%

(35)

(The selection of coefficients will be explained in the following Test).

To solve the integral-differential system (A.1.9), (A.1.10) with the control
law (21), (22), (27) we used a discretization of the s-space, with an
increment A= 0.1 m,

s =i1A,1=12,...,6,
and a MATLAB system is used for simulation.

The error for the global system is defined as

e)={a65)-,6)7 +06.0- 0,7 b 36)

é(t)zj[[%(s,tﬁ%(s,t)jds. 37)
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The result of simulation is presented in Figure 6. We selected only most
significant five intermediary positions of the motion and the phase portrait
has the form presented in Figure 7. We see the stability of motion and error
convergence to zero.

Phase Portrait

r
a
3
i
a4
2
1
o4

Figure 6. 3D motion simulation Figure 7. 3D phase portrait

Test 2. A better understanding of the control can be obtained for 2D tentacle
arm. We analyze now the case of a planar tentacle model in OXZ plane.
The dynamic model is obtained from the equation (A1.9), (A1.10) for 6 =0,

pj‘[[qrcos(qr _ qr/) + qrz sin(q" _ qr) _ qrqnsin(qn _ q')]ds'ds” "
00
. (38)
+ng-c0sq’ds' =F,.
0

The control law is reduced to the form
F,5.0)= - (4(5.) - 0,6) - K24.0). )
A spatial discretization s=iA, i=1, 2, ..., 6, is introduced.

The system (38), (39) can be rewritten in the error space by using the
constraint A1 (Section 5) as

pA2 %e Fl2e ke +pg§lhi(qd)ei 0, (40)
where
e;(t)=el(iA,t)=q(iA,t)— q,4(ia) (41)
oH
h; (Qd )= [a_J (42)
q /9=

8=iy
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and H= H(q) is determined by the gravitational component

H(q)z cosq. (43)

A sequential spatial control strategy (constraint A2 — Section 5) determines
a decomposition of the global motion. For the first element, m =1,

pA%é, +k; & +k, e, +pghe, =0, (44)
the control law determines
lime,(t)=0. (45)
t—o0

Then, for the second element, m = 2,

pA’E, + ki &, +k, e, +pghye, =0, (46)
we obtain
lime,(t)=0. (47)
t—o0

We repeat the procedure for each element, m=3, 4, ... .
In this case, we can use for each element the dynamic model

¢ +2C0,¢ + oafliei —%sinqGli ce;=0,1=1,2,...,6. (48)
The DSMC control (Figure 5) imposes the condition

“L=-m. (49)

The condition for convergence of the motion to zero, on the switching
line (49), can readily be found as

g-sing,
2 > - —— & 50
Ci v (50)
%sinqdi <c0r211. (51)

For the simulation test we choose the initial position of the arm as the
vertical line (OZ-axis)

D2: q(s,O)zg, s[0,0.6], (52)

and the desired position is a semicircle, that is approximated by
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C2:qy(s,)==—s, %, i=12,...6. (53)
3 6
We choose an uniform natural frequency o, = 24, =1, 2, ..., 6, and for

verifying the conditions (50), (51), (53) we select

g, =15, i=1,2,...,6. (54)
From (28), (29) we obtain the control coefficients
ki =125, k;=158 i=12,...,6. (55)

The results of the simulations are presented in Figure 8 and the phase
portrait is plotted in Figure 9.

Phase Portrait

[t

rrrrr

Figure 8. 2D phase portrait Figure 9. 2D motion simulation

7. Conclusions

The paper treats the control problem of a tentacle manipulator. In order to
avoid the difficulties generated by the complexity of the nonlinear integral-
differential equations that define the dynamic model of this system, the
control problem is avoided by using a very basic energy relationship of this
dynamic model.

The energy relationships of a tentacle manipulator are inferred. An energy-
based control law is introduced by using only the relations that determine the
energy stored in the system.

Two controllers are proposed that generate the PD control laws and a
procedure of control coefficient selection is discussed.

In Appendix 1 is obtained the dynamic model of a spatial tentacle arm
that allows for the checking of the control laws.

Numerical simulations for spatial and planar tentacle models illustrate the
efficiency of the method.
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Appendix 1

ADVANCES IN AUTOMATIC CONTROL

We will consider a spatial tentacle model, an ideal system, neglecting
friction and structural damping. We assume a uniformly distributed mass
with a linear density p [kg/m]. We will consider a non-extensible arm with a

constant length / (Figure 2a, 2b).
We will use the notations:

q=dq(s.t) sefo/] tefot,],

0=0(s,t), sef0,/] tefo,t,],

q=q(s',t, s'e[O,s], te[O,tf],

=260 ol tefor,].
ot

q,zﬁq(s',t), s’e[O,s], te[O,tf],

The position of a point P is
s [ ’ !
X = Io cosq'sinf'ds
s ’ ’ ’
y= Io cosq'cosf’ds
z= I; sinqg'ds’
and the velocity components are

S .
Ve = Io (-q'sinq'sine' + 9'cosq'cos9’) ds’
vy = j; (-q’sinq’cose’ - é’cosq’sin@') ds’

S. ’ ’
v, = J.o gcosq'ds’.

For an element dm, kinetic and potential energy will be

(A.1.1)

(A.1.2)
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dw, =%dm -v? (A.1.3)
dW, =dm-g-z, (A.1.4)

where
dm = pds. (A.1.5)

From (A.1.2)-(A.1.5) we obtain,

2
W, =%pj (I(—qsinq'sine'-l—9’cosq’cosﬁ')ds’] +
0 0
(A.1.6)

2 2
+ (J.(—q'sinq'cose’ - é'cosq’sine’)ds'] + [J‘q'cosq’ds} ds
0

0
ls
W, = pg”sin q'ds'ds. (A.1.7)
00

The dynamic model is obtained by using Lagrange equations of motion

oW
d awk _ W +—L=F, (A.1.8)
oq oq  0q

dt

oW . . - o
where S denotes a functional partial (variational) Gateaux derivative
q

(Wang, 1965) that is defined as the variation of the functional W with
respect to the function q at a point s€[0, /]. From (A.1.6), (A.1.7) it results,

p“(éj'(sin q'sing"cos(q' —q")+cosq'cosq")— 8’ cosq'sinq"sin(0” —0") +
00
+q'"*(cosq'sinq"cos(6’ —0")—sinq'cosq")+ 6% cosq'sinq" cos(6’ — 0") —

-qq" sin(q" - q’))ds’ds" + ng cosq'ds’ = Fq (A.1.9)
0

p

O ——

I(éj' sing’cosq"sin(0”"—0')+ 0'cosq’cosq”cos(0” —0')—
0

—q'%cos q’cosq"sin(@” - 6’)+ 6’ cosq’ cosq” sin(@” - 6’) -
—6'qsing’cosq" cos(e” - 6’))ds’ds” =F,. (A.1.10)
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Appendix 2

We consider the following Lyapunov function (Ivanescu, 1984)
I
V(t)= W, % (kb (s k! (s)e2(s. ))ds. (A2.1)
0

V(t) is positive definite because the terms that represent the energy Wx and
W5 are always

Wi(t) =0, Wp(t) 2 0.

From (17) we obtain (for a steady desired position),

(s,t)ég (5,t) + E, (s,t)e, (s,t) +k (s)eq (5,t) & (s.t) + kL (s)e, (. t)€, (s,1).
(A2.2)
If we use the control law defined by the relations (21) and (22), we will have

V(0= kb 5Xeo s K 5Ny o) i (A23)

o'-—.\

V(t)<0. (QE.D)

Appendix 3
We extend the Lyapunov function (A.2.1) as

l

V(1) = Wi (1) + W, (1) + 2f(kl() 3(5:0) kg (s.)eg (s.0) +

+kg(s)@ée(s,r)- fe(s,t)erz + kfl(s)[;[éq(s, 1)-f, (s, t)dthds (A3.1)
In this case,
V0= (s ol 0+, 5k, 5.0+
6ol ol 04 K k6,0, .0+
R0 ) e
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t
+k:(s)éq(s, t)fq (s, t)jéq(s, r)fq (s, )dt |ds (A3.2)
0
and by using the control laws (23) and (24) we obtain

V(0= kb0, 0F + k! (Kas. O s (A33)

0

V(t)<0. (QED)
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Abstract ~ “Humanitarian demining”, is growing up dramatically in the last decade. Here a
new idea — application of a very well known tool from production automation
“advanced robots” - will be presented. These robots of the new generation offer
possibilities to solve this task in a very efficient way. Finally “Humanitarian
Demining Multi Agent Systems — HDMAS” an autonomous, intelligent robot
swarm for cleaning minefields in the future is discussed.

Keywords: landmines, demining, robots, MAS, robot swarms

1. Introduction

According to current estimates, more than 100.000.000 anti-personnel
and other landmines have been laid in different parts of the world. A
similar number exists in stockpiles and it is estimated that about two
million new ones are being laid each year. According to recent estimates,
mines and other unexploded ordnance are killing between 500 and 800
people, and maiming 2.000 others per month (Red Cross, 1995), mainly
innocent civilians who had little or no part in the conflicts for which the
mines were laid. Anti-personnel mines are usually designed not to kill,
but to inflict horrible injuries instead (McGrath, 1994). However, many
victims eventually die of their injuries, and suffer a long and agonizing
death, often with little medical attention.

Some countries have banned the use of landmines and others are
supportive of a complete ban. However, their low cost ($1- $30) and the
large numbers in existing stockpiles make them an attractive weapon for
insurgency groups which operate in may countries with internal conflicts
— the most common cause of wars today. They are used for self-defense
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by villages and groups of people traveling in many districts where civil
law and order provide little effective protection. Many countries retain
massive landmine barriers on their borders or near military installations.
Some of the most severe landmine problems exist in Egypt, Angola,
Afghanistan, Rwanda, Bosnia, Cambodia, Laos, Kuwait, Iraq, Chechnya,
Kashmir, Somalia, Sudan, Ethiopia, Mozambique and the Falkland
Islands.

2. Landmines

Landmines are usually very simple devices which are readily
manufactured anywhere. There are two basic types of mines: anti-vehicle
or anti-tank (AT) mines and anti-personnel (AP) mines.

AT mines are comparatively large (0.8 — 4 kg explosive), usually laid
in unsealed roads or potholes, and detonate which a vehicle drives over
one. They are typically activated by force (>100 kg), magnetic influence
or remote control.

AP mines are much smaller (80-250g explosive, 7-15c¢m diameter) and
are usually activated by force (3-20kg) or tripwires. There are currently
over 700 known types with different designs and actuation mechanisms.
We have two main categories of AP mines. A blast mine is usually small
and detonates which a person steps on it: the shoe and foot is destroyed
and fragments of bone blast upwards destroying the leg. When a
fragmentation mine explodes, metal fragments are propelled out at high
velocity causing death or serious injuries to a radius of 30 or even 100
meters, and penetrating up to several millimeters of steel if close enough.
Simple fragmentation mines are installed on knee high wooden posts and
activated by tripwires (stake mines). Another common type of
fragmentation mine (a bounding mine) is buried in the ground. When
activated, it jumps up before exploding. Mines of one type have often
been laid in combination with another type to make clearance more
difficult: stake mines with tripwires may have buried blast mines placed
around them.

3. Demining; state of the art

First you have to find the mines and then you must destroy. Used

methods for identifying mines today are:

- Manually: by humans — deminers — equipped with e.g. metal
detectors.

- Dogs: using dogs that sniff the explosive contents of the mines, has
significant limitations and cannot be regarded to as general-purpose
solution.

- High-tech methods for mine detection: radar, infrared, magnetic tools,
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touching sensors (piezo resistive sensor) .... Also GPS is used for
finding the place again where a mine lies, and for the navigation of the
robots.

Today used methods for destroying and removal are: brutal force
methods include ploughs, rakes, heavy rolls, flails mounted on tanks.

The problems with these methods are that.

- Ploughs only can by used to clear roads for military use. Mines are
only pushed to the side of the road. Some ploughs also attempt to
sieve the mines from the displaced soil.

- Flails are mechanical devices, which repeatedly beat the ground,
typically with lengths of chain. These chains are attached to a rotating
drum and their impact on the ground causes the mines to explode, but
this can cause severe damage to cultivable land.

- Rollers generally consist of a number of heavy circular discs, which
are rolled along the ground in order to cause the explosion of any
mines.

Before demining can start, surveys are needed to produce detailed maps
of minefields to be cleared. The survey team may use specially trained dogs
to narrow down the limits of a mined area, and normally verifies a one or
two meter wide “safe lane” around each minefield to define the minefield
which may be surrounded with unknown land or other minefields. Typical
minefields are 100-200m across and 0.1-10ha in area.

Hand-prodding is today the most reliable method of mine clearing, but it
is a very slow, and extremely dangerous. People performing this type of
clearing can normally only perform this task for twenty minutes before
requiring a rest. This method clears one square meter of land in
approximately 4 minutes.

The tools of a deminer are:

1. A whisker wire which is gently swung or lifted to check for

tripwires.

2. A metal detector which is swung from side to side to check for metal
objects.

3. A prodder (typically a bayonet, screw driver or knife) which is used to
probe the ground at an angle of about 30 degrees to the horizontal and
to excavate earth from around a suspect object. Usually a prodder is
used to investigate a suspect metal object. However, which dealing
with minimum metal mines or large numbers of metal fragments, the
entire area has to be prodded by hand.

The UN estimates the cost of removing a single mine at 300 to 1000 $.
The primary factor is the local cost of labor. So in low labor-cost countries
such as (Cambodia, Afghanistan, or Africa) US$ 100 per month is a high
rate pay for manual work, even with the obvious risks. In contrast, the labor
cost for de-mining in the former Yugoslavia may be twenty times higher.



162 ADVANCES IN AUTOMATIC CONTROL

Thinking about the number of mines is rather pointless which estimates
range from a few million word-wide (including national borders) to 150 million.
It is much more sensible to think in terms of the areas of land which are:

a) known to be affected by mines, and are important to local or displaced

population:
homes, food producing land, roads, infrastructure (roads, canals,
power lines, water supplies etc.);

b) believed to be affected by mines;

c) known or believed to be affected by mines, but land is of no

immediate importance.

The standard which is required for humanitarian demining is a guaranteed
99.6% clearance. Therefore the remaining risk to be injured or killed by a
mine is 0.4%.

Mechanical mine clearance means either actuating the mine, or removing
it for later destruction.

For actuating ploughs are pushed by a tank or an armored bulldozer.
There is a bulldozer with a rotating cylinder in front, digging up to 50cm into
the ground. The vehicle has been tested in Mozambique. Although it did not
reach the 99.6% UN requirements, it removed 25.000 mines in a six-month
campaign. Another demining vehicle uses the same principle, with closer
teeth. It is based on a Leopard 1 main battle tank chassis to which a rotating
roller is added. The tank can be remote controlled from 500m away. In
normal terrain this vehicle should clear up to 20.000 square meters per hour
with total safety for the mine-clearing team.

The disadvantage is that mines includes a lot of chemicals which when
they detonate are put into the ground which is later used for food producing.

4. Robots for demining

4.1. State of the art

Several projects have proposed the use of autonomous robots to search for
antipersonnel mines. The sensor problem is nearly solved now and it will take
only little time until a combination of sensors will be available and sufficiently
tested in order to give full confidence that all the mines have been discovered.
There may be false alarms, but no mine must be left. Once the location of a
mine is known, several manual techniques are easily applied to neutralize it. A
robot can also be developed to do this easy job, which is simply to go to a
precise spot, avoiding obstacles and other mine locations. Then it should
deposit a shaped charge or some chemical to destroy the mine.

The necessary features of a demining robot are:

- Ability to distinguish mines from false alarms like soil clumps, rocks,

bottles and tree roots.
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- Operation in a variety of soil types, moisture contents and compaction
states.

- Ability to detect both types or in fact variety of different mine types
and sizes.

- Operation in vegetated ground cover.

- Costs may be lower then 10.000 US$ including the sensors.

Today there are some appropriate, reasonable cheap sensors available or
in development based on optical technologies, acoustic and seismic
detection, radio frequency resonance absorption spectroscopy, trace
explosion detection. Worldwide approximately 100 companies or research
institutes offers intelligent, mobile platforms but the price is too high
according to the small lot sizes in production. It’s only a question of time
until this problem is solved.

Random navigation for covering the field and searching for mines has
been proposed. Even with improved algorithms applied to a group of robots,
it is difficult to accept ignoring a small proportion of uncovered areas.
Systematic navigation is theoretically easy with a global positioning system
(GPS), but the resolution must be better than the size of the detector, in order
to be sure to cover all the area.

A robot has been designed as a light-weight autonomous robot to search
for antipersonnel mines. The pressure force on the ground, Skg, is not
intended to trigger the mines. The sensor head oscillates under the
alternating movement of the wheels, in order to scan a width of about 1.2 m.
the project is suspended until an adequate sensor, weighing less than 4kg,
can be installed inside the head.

Research groups experienced with walking robots try to suggest the use
of their devices for this application. Snake robots are more attractive, since
they should be able to crawl close to the ground inside dense vegetation.
Their design is, however, quite challenging.

The advantages of robots for demining are

- Minefields are dangerous to humans; a robotic solution allows human
operators to be physically removed from the hazardous area.

- Robots can be designed not to detonate mines.

- The use of multiple, inexpensive robotized search elements minimizes
damage due to unexpected exploding mines, and allows the rest of the
mission to be carried on by the remaining elements.

- Teams of robots can be connected so that one team is for searching
and one for destroying or displacement.

This means that many robots are searching and a few or only one robot is

destroying or displacing the mines.

But there are also disadvantages of using robots:

- it is very difficult for robots to operate in different frequently rough
terrain;
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- they are still expensive;
- you need special qualified operators.

4.2. Multi Agent Systems - MAS

A MAS consists of a number of intelligent, co-operative and
communicative hardware agents — mobile robots — getting a common task.
Because of the intelligence they are able to divide the task in subtasks as
long as at least one agent is able to fulfill one subtask. Repeating this
procedure yields the solution of the common task. Newest research goes in
the direction of MMAS - Multiple Multi Agent Systems — different MAS
are involved for the solution of a complex task.

A MAS get a whole task. The host computer divides the whole task in a
number of different subtasks as long as a distinct subtask can be carried out
by at least one agent. The agents will fulfill their subtasks in a cooperative
way until the whole task is solved. Such a global task could be: assemble a
car. The agents — mobile, intelligent assembly robots — have to create
subtasks (e.g. assembling of wheels, windows, brakes,......) in an optimal way
(equal distribution of the workload of the agents) and distribute to the agents.

The main hurdles for MAS-research are the complexity of the whole
system. This complexity is dramatically increasing by adding new agents.
Therefore the interaction, communication, coordination of the tasks between
agents, and control are the topics for the development of a Multi Agent
System ( MAS ).

For heterogeneous robots it is difficult to implement the communication,
because each robot has its own kinematical structure, programming language
etc.. Furthermore the range of frequencies used for communication and the
capability of RF modules is limited. It is necessary to develop standardized
communication protocols and methods, which should be one of the works
for the next years.

Fig.la. shows the present situation of the communication between the
host and the agents. For the future the agents should also communicate with
the host and also with the other agents as shown in Fig. 1b and Fig.1c.

The characteristics of MAS are:

e cach agent has incomplete information or capabilities for solving the

problem and, thus, has a limited viewpoint;

e there is no system global control;

e (data are decentralized;

e computation is asynchronous.

In scientific papers one uses various approaches and denotations to subdivide
control strategies for autonomous mobile robots in different types. There are two
fundamental describing ideas: the functional and the behavior based approach.
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4.3. Robot Swarms — MAS - for demining

Robot swarms improve the capacity of robotic applications in different
areas where robots are already used today. Robot swarms are similar to — or
a synonym for - ‘Multi Agent Systems — MAS’. These systems are very well
known in software engineering — “software agents” - since more than twenty
years. In the last years there are more and more works related to “hardware
agents” like robots forming “robot swarms”.

Applying robots for demining there are two possibilities:

a. using mobile, intelligent multipurpose robots equipped with devices

for mine detection, mine removing as well as mine transportation;

b. using three different swarms of single-purpose robots equipped either

with detection devices or removing devices or transportation facilities.

Our approach is the second one — three different swarms in the minefield.
The detection robots scan the field for possible mines. If a metallic part —
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probably a landmine is detected one of the removal robots close to this site
removes the mine and takes it over to a transportation robot with free
capabilities. This robot transports the mine to a collection area out of the
minefield. The whole process is fully autonomous. Operators are only
needed for monitoring and of course maintenance. To achieve this goal the
robots must have a high level of intelligence and must be able to
communicate among themselves. Since the power supply of mobile robots is
very limited there is also need for docking stations. The host computer in
Fig. 2 is necessary to solve the path planning problem in a dynamic
environment. Each robot represents for all other robots a dynamic obstacle
which has to be avoided. The host computer controls the movements of all
robots by means of wireless communication. But soon such a host computer
will be obsolete (Fig.1c). Software implemented in the onboard computer of
each robot will take over this task.

Mines

Detection Robots

4
©
® Removal Robots
®

Transportation Robots

C1 ... C4 : Collection Areas
B1 ... B4 : Docking Stations

H : Host Computer

Figure 2. Humanitarian Demining Robot Swarms [Kopacek, 2002b]

Using different single purpose robots for the different tasks reduces the
weight of the robots. Therefore it is much easier to design robots which are
lightweight enough not to cause an explosion while crossing over a mine field.

As mentioned before the use of modular robots is perfect for the design of
task-specific demining robots because of the similarities between the tasks.
[Shivarov, 2001]

Since the complexity of a system raises the susceptibility to trouble
exponential it is always better to keep devices as simple as possible and
therefore to use simpler robots. Using smaller robots extends the operational
time before re-fuelling or re-charging is necessary or at least prevents the use
of bulky and heavy batteries or tanks.

On the other side the second possibility requires an increased effort in
communication between the robots in the swarm. If every robot is able to
perform the whole demining process by itself the communication is reduced
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more or less to get each other out of the way and ensure to cover all the area.
However the task-specific robots have to exchange a lot more of data. The
detection robots must work together since they are equipped with different
detection technologies. When they have found a mine they must signal it to
the removal robots and they have to inform after done work the
transportation robots.

4.3.1. Detection robots

The robots for the detection of landmines are probably the most simplest
of the three types. The basic composition of modules common for all three
types has to be upgraded only with the detection system. There are several
detection technologies in use respectively under development, none of them
able to detect a mine alone by itself. The solution is to use two or more of
these different sensors simultaneously. The first logical step would be to
attach different sensors on one robot. Since there are weight limits, and
limits in the amount of available energy, this is probably not the best
solution. Some of these technologies need strong power sources and some of
them are relatively heavy constructed. These facts will not help to keep the
weight of the robot low, so using for each type of sensor a single robot
seems to be the better solution.

The detection robots should communicate with each other, change data
and coordinate their work. If one robot with one distinct detection
technology has found a possible target, the area should be verified by all
other detection technologies before any further action is started. Therefore
the different technologies must be compatible to allow coordination. At least
the data from the sensors should be assessed by the same software.
Combining results from different mine detection technologies is not easy and
demands special strategies. These so-called sensor fusion technologies are
not only of concern for mine detection.

Another important point is the power supply of the detection swarm. One
possibility is to equip detection robots with an autonomous power source.
But this could complicate the recharging of the system. There would be need
for extra docking stations and at the worst for each detection technology a
different docking station.

This cooperation during the development and design process of the
modular robot system and landmine detection sensors is of greater concern
than only for an appropriate modular interface. Some of these sensor systems
are extremely sensible and may drop in performance in presence of distinct
materials. Using these materials for parts of the robot system which has to
carry the sensor technology has to be avoided. And many of the sensor
techniques work by using radiation in some range of the electromagnetic
spectrum. It has to be guaranteed that systems of the robot do not jam the
sensor technology or the other way round.
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4.3.2. Removal robots

The removal of landmines is probably the heaviest work during the whole
de-mining process. This is clearly a matter of the type of soil in which the
mines are buried. But generally this task needs the highest forces and
therefore the system has to be more stiff and heavy constructed.

The removal robots have also the most complex part to fulfill. While the
detection robots only transport the detection technology and the
transportation robots have to accomplish an advanced pick and place task,
the removal robots have to, in case of buried mines, dig out a highly
sensitive device, which must be handled extremely carefully, but at the same
time applying relatively high forces to penetrate the soil. In addition the
excavation of a mine is every time a different procedure. The main
parameters which differ for each buried mine are the type and shape of the
mine, the position relative to the surface and the type of soil in which the
mine is buried.

Since the excavation is a complex task a dexterous robot arm with a high
number of degrees of freedom is likely to be used. For the mine removal
various end-effectors may be necessary. The robot arm can be equipped with
a variety of standard tools which are similar to tools used for manual
excavation. All forms of shovels are doubtless of interest to remove foremost
close grained material. Grippers may used to sweep stones or other bigger
obstacles. These tools are commercially available and well proven.

Up to the present the most removal work performed at hazardous
materials was executed teleported. For that the aid of sensors is mainly
limited to force and torque sensors which ensure not to apply too high forces
to the sensible object. But the whole process is controlled by an operator
using video cameras to lead the tools. Using a robot for autonomous removal
of landmines presupposes the usage of sensors to compensate the
teleoperator. Two broad classes of sensing technologies support earthmoving
automation. One class allows determining the state of the robot itself, the
other class concerns perception of the environment around the earthmover.

Local state is achieved by measuring displacements at the robots various
joints. If the actuators are hydraulic cylinders the use of position transducers
would be a good choice. An alternative is to use joint resolvers, like
potentiometers, directly at rotary joints. Another form of state estimation is to
locate the robot arm with respect to some fixed coordinate frame. Many sensing
modalities have been used including, GPS, inertial sensors and reflecting
beacons. Successful estimation schemes combine several of these techniques.

4.3.3. Transportation robots

The transportation seems to be quite simpler than the removal of a
landmine. Basically the robot has to pick up the landmine, store it
somewhere during the transportation and deliver it at the collection point.
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An important decision in respect of the transportation robots is the
number of mines the robots should be able to carry. Carrying only one mine
would it make possible to use a rather simple robot. At the best it may
possible to retrench the storing place for the landmine. The robot could pick
up the mine with a gripper, lift it up somewhat above the ground and
transport it to the collection area while holding it tight with the gripper. The
use of a dexterous robot arm, like that one for the removal task, would be
disproportionate. A simple 2 DOF lift onboard the mobile robot platform
could be sufficient.

On the other side the application of a transportation robot with the ability
to carry more than one mine is in a manner useful too. Since transportation
robots are likely to be rather slow this approach is much more timesaving.
The volume of saved time depends on the amount and distribution of
collection areas in proportion to the field of activity as well. But establishing
lesser collection areas simplifies the further strategy for the disposal of the
collected landmines. To give the robot the ability to transport more than one
mine it must be equipped with some sort of storage device.

One principle would be of use to make the storage device of protective
material to mitigate accidentally explosions. One possibility is to use a
lockable storage device. But therefore the device must be designed with
regard to a maximal allowed load of explosives. An explosion inside a
locked container exceeding the maximal allowed load may be worse than
without any protective measures. Fragments of the blasting container could
damage the robot in addition. For this reason it would be better to use a
container which is opened upwards. This guarantees a way out for the
pressure wave in case of an accidental explosion.

An important factor for the decision of using single or multi transport
robots is the density of the minefield. If there are only few landmines per
surface unit the application of single-mine transportation robots is more
likely. In this case the work quota of the detection robots is much higher
compared to that of the removal and transportation robots. Therefore raising
the working capacity of the transportation robots would not increase the
overall efficiency perceptible.

4.4, Realization

The features of the robot for these three tasks have to be quite different.
For detection a light-weight robot only able to carry little load has to be
developed. For removal the robot has to be more stiff and heavy constructed
because removal requires force. The size of transportation robots depends on
the number and kind of the mines to be transported.

Another point of view which has to be taken into account is the time
necessary for these operations. Detection is usually relatively fast and is not
so time consuming than removal. According to some experiences the



170 ADVANCES IN AUTOMATIC CONTROL

removing time is 3 to 5 times more than the detection time. Transportation
time is also relatively small.

Therefore it could be advantageous to use three different types of robots
(Fig. 2): robots for detection (D), robots for removal (R) and robots for
transportation (T) of the mines. One main disadvantage of this philosophy is
if a robot of the swarm D (detection) has found or detected a mine it has to
send a command to the host computer or to the other robots. The host
computer or the other robots have to decide which of the robots of the swarm
R (removal) is in the neighborhood of this mine and not busy at that time
with removal operations on another mine. If a robot of the swarm R is
selected this robot gets usually wireless the position data and some other
information about the place of the mine. The R robot is now moving to
displace and start with the removal work. After the removal of the mine it
has to place the mine on the ground in a distinct position. One of the
transportation robots (T) have to pick up the mines and have to carry it to a
collecting place.

4.4.1. Mobile robots

Today we are in the position to develop robots of all three types mainly
using commercially available mobile platforms. As pointed out earlier it is
not economically feasible to develop so-called single purpose robots for each
of these three types. A good approach could be a kind of a tool kit [Shivarov,
2001] of mobile robots consisting of a mobile platform and different
equipments and tools compatible in hard- and software. A good approach
could be to have two platforms, one with wheels or chains and one walking
platform. According to the types of mines as well as the surface of the
minefield these platforms could be equipped with necessary tools in a very
short time.

Usually the mobile robots of both types available today are moving
relatively slow. Speed for wheeled and chained robots is between 0.5 and
0.7 m/s, walking robots are usually much slower. This could be a
disadvantage concerning the demining time but from the viewpoint of
control and path planning it is much easier to work with such slow robots.
We have in that case the usual problem of path planning of robots in a
changing environment. Usually in a minefield we have fixed obstacles like
trees, rocks, buildings as well as moving obstacles usually the robots of the
own or other swarms.

4.4.2. Humanoid robots [Kopacek, 2003]

The main feature of a real human is the two legged movement and the two
legged way of walking. In principle the stability during the walking decreases
with the number of the legs. At the begin of this development there were
consequently 8, 6 and 4 legged robots copied from the nature (insects, swarms,
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...). In the future two legged robots should be responsible for human tasks like
service applications, dangerous tasks, tasks on the production level, support of
humans in everyday life ...

The main advantage of legged robots is the ability to move in a rough
terrain without restrictions like wheeled and chained robots. Two legged
robots could work in environments which were until now reserved only for
humans. In addition to walking such robot could realize other movements
like climbing, jumping, swimming, .... Walking robots are much more
flexible than robots with other movement possibilities. Especially fixed and
moved obstacles can be surmounted by legged robots.

Two legged robots require new technologies in the field of robotics. In
some cases a combination from well known methods of mechanical
engineering, electrical engineering, electronics, control engineering,
computer sciences, applied physics are necessary.

Currently there are worldwide two categories of two legged humanoid
robots available:

e “Professional” humanoid robots.

e “Research” humanoid robots.

The humanoid robots of the first category are mostly developed but very
expensive and currently not available on the market. The robots of the
second category a usually prototypes

Therefore for several tasks e.g. humanitarian demining a two legged,
humanoid robot should be developed. These robots could be applied for all
three tasks of demining — detection, removing and transportation in the
future.

S. Summary

As pointed out demining is today a very time consuming, dangerous and
expensive task. Automatic demining e.g. as presented in this paper by
robots, is today and will be in the future a powerful tool to solve these
problems. All the existing and planed robots for humanitarian demining are
only able to detect the mines. Brutal force methods destroy mines without
detection — but with a not reasonable probability. In a next step our robots
have to be able to remove the mines from the ground.

“Multi Agent Systems — MAS” [Kopacek, 2002a] are very well known in
software engineering since more than 20 years. In the last years there are
some works related to the application in production automation. A MAS
consists of a number of intelligent, co-operative and communicative
hardware agents e.g. robots getting a common task. Because of the
intelligence they are able to divide the whole task in subtasks as long as at
least one of the agents is able to fulfill one subtask.

Repeating this procedure yields the solution of the common task. Newest
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research goes in the direction of MMAS — Multiple Multi Agent Systems —
different MAS are involved for the solution of a complex task. In a mid or
long term perspective it might be possible to develop “Humanitarian
Demining Multi Agent Systems — HDMAS ” consisting of a number of such
robots or agents [3]. Robot swarms or HDMAS for demining especially with
two legged (humanoid) robots are currently only a vision but will be reality
in the nearest future.
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Abstract
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This contribution addresses, in a tutorial and retrospective manner, the
parametrization of all controllers that stabilize a given plant with rational
transfer function. An account of the classical results that paved the way for the
parametrization is given. The parametrization result is then derived for several
definitions of stability. The parameter, which is a qualified rational function, is
shown to appear in the feedback system transfer functions in an affine manner.
A two-step procedure for control system synthesis is then formulated, namely to
determine all stabilizing controllers first, then meet additional performance
specifications by selecting the parameter. Various applications of this procedure
are given and illustrated by numerous examples. Advantages as well as
limitations of this approach are discussed.

linear systems, feedback systems, stabilization, parametrization, control system
synthesis

1. Introduction

The majority of control problems can be formulated using the diagram
shown in Figure 1. Given a plant S, determine a controller R such that the
feedback control system is (asymptotically) stable and satisfies some
additional performance specifications such as reference tracking, disturbance
attenuation, optimality, robustness, or system integrity.

It is natural to separate this task into two consecutive steps: (1)
stabilization and (2) achievement of additional performance specifications.
To do this, all solutions of the first step, i.e. all controllers that stabilize the
given plant, must be found.

! Supported by the Ministry of Education of the Czech Republic under Project LNOOB096
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Figure 1. Feedback control system

How can one characterize such controllers? In case the plant is stable and
one stabilizing controller R is known, then

_ R
1+ SR

is a stable rational function. On the other hand, if V' is any given stable
rational function, then the corresponding controller

V

1-SV
must necessarily stabilize the plant S. Therefore the stabilizing controllers
can be parametrized by the set of stable rational functions (Newton, et al.,
1957).

As argued by Kucera (2002), if H,s denotes the reference-to-error
transfer function (sometimes called the sensitivity function) and Hcomp the
disturbance-to-control transfer function (the so called complementary
sensitivity function) in the closed loop control system, namely

1 SR

Hsens= b comp ’
1+ SR P 1+ SR

then the preceding result can be phrased as follows: the control system is
stable if and only if Hcomp = SV, since V can be interpreted as the reference-
to-control transfer function from 7 to v. This means that H.,,, must absorb all
the unstable zeros of the plant S. In case the plant is unstable, however, V is
no longer arbitrary: the zeros of /" must absorb all the unstable poles of S.

To derive stability conditions, one needs to know the (unstable) poles and
zeros of the plant. Expressing S as the ratio of two coprime polynomials, S =
b/a, and assuming the controller in a like form, R = n/m, the two closed loop
transfer functions can be written as

h—"  —py.

H._.=a :
am + bn

sens

=aX, H =
am + bn comp

Consequently, a stable control system calls for stable rational functions X
and Y. These functions cannot be arbitrary, however, since Hyens + Heomp = 1.
A stability equation follows (Strejc, 1967)
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aX +bY=1.

Any stabilizing controller can be expressed as R = Y/X, where X and Y is
a stable rational solution pair of the stability equation (Kucera, 1974). This
solution can be expressed in parametric form, furnishing in turn an explicit
parametrization (Youla, ef al., 1976a) of all stabilizing controllers

R y+aT .
x—-bT

Here x and y are any polynomials satisfying the equation ax + by = 1
while T is a parameter ranging over the set of stable rational functions (and
bound to satisfy x — bT = 0).

The set of stabilizing controllers admits transfer functions R that are not
proper. Example: given S(s) = 1/s, one calculates x = 0, y = 1 so that

1-sT
R(s) T

Taking T =1 leads to the stabilizing controller R(s) = 1 —s. The resulting
feedback system is asymptotically stable but, alas, it has poles at s = oo.

If impulse modes are to be eliminated, stability has to be defined in a
different way. The asymptotic stability of the control system in Fig. 1 will be
replaced by the requirement that any external input &, r of bounded
amplitude result in the internal signals e, v (hence also u, y) of bounded
amplitude. One can say that such a control system is internally stable. While
the control system is asymptotically stable if and only if its characteristic
polynomial is Hurwitz, it is internally stable if and only if the four transfer
functions from d, r to e, v (or u, y) are proper (analytic at the point s = o)
and stable (analytic at the closed right half plane Re s > 0). Naturally, this
notion of stability does not capture hidden modes in the plant and in the
controller. These modes, however, cannot be stabilized by output feedback
anyway. That is why the internal stability is a natural option.

In order to study internal stability, it is convenient to express the transfer
functions of unstable systems as ratios of two coprime transfer functions,
each representing a stable system. Internal stability can than be told by
inspection: the four transfer functions have a trivial denominator. This is a
key observation in an attempt to obtain a simple condition for the internal
stability of closed loop systems (Desoer, et al., 1980). Accordingly, the
polynomial fractional representations used in the study of asymptotic
stability will be replaced by fractional representations over proper and stable
rational functions. For example, the integrator transfer function S(s) = 1/s
will be written in the form

(1 s )
S(S)_(s+7j(s+xj ’
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where 4 is a positive real; the particular value of 4 is irrelevant.
When studying discrete-time control systems, the typical proper stable
fractional representation has the form

1 1 Y z-1)"
S(Z)_Z—l_(z—kj(z—K) ’

where | A| < 1. A legitimate choice is 4 = 0. Proper and stable rational
functions in z whose poles are all located at the point z = 0 can be viewed as

-1 _
o)
z z 1-z

polynomials inz" "

This representation has been in use for a long time, see Kucera (1979).
The methodology explained above provides an elegant justification for the
use of z~ ! in lieu of z in the synthesis of discrete-time control systems.

2. Parametrization

We shall now derive a parametrization of all controllers that internally
stabilize a plant with a given rational transfer function, which is not
necessarily proper, nor stable. The derivation is a variation of the one given
by Vidyasagar (1985).

Theorem 1 Let S = B/A, where A and B are coprime, proper and stable
rational functions. Let X and Y be two proper and stable rational functions
satisfying the Bézout equation

AX +BY =1.

Then the set of all controllers that internally stabilize the control system
shown in Fig. 1 is given by
R Y+ AW
X-BW
where W is a parameter ranging over the set of proper and stable rational
functions such that X — BW =0.
Proof. It consists of three steps.

1) Fist we shall show that if S = B/4 and R = N/M are two coprime
fractions of proper and stable rational functions, and if C is defined by C :=
AM + BN, then the control system is internally stable if and only if 1/C is
proper and stable.

Indeed, the control system is internally stable if and only if the four
transfer functions

ol el )
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are proper and stable. The sufficiency part of the claim is evident: the transfer
functions are all seen to be proper and stable. The necessity part is not evident:
the denominator C can have zeros in Re s > 0 or at the point s = o which,
conceivably, might cancel in all four numerators AM, AN, BM, and BN.
However, this is impossible as the pairs 4, B and M, N are both coprime.

2) Further we shall show that a controller R internally stabilizes the plant
S = B/A if and only if it can be expressed in the form R = M/M for some
proper and stable rational solution pair M, N of the Bézout equation
AM + BN =1.

Indeed, if the equation is satisfied, then C = 1 and the control system is
internally stable. Conversely, if some controller R=N/M internally

stabilizes S, then C =AM +BN and the inverse 1/Cis proper and stable.

Therefore, M = M/C and N = N/C is a proper and stable rational solution
pair of the Bézout equation and it defines the same
controller R = N/M = N/M . The proper and stable factor C is seen to cancel

from both sides of the Bézout equation.
3) Finally we shall prove that all proper and stable rational solution pairs
of the equation AM + BN =1 are given by

M=X-BW, N=Y+AW,

where X, Y is a particular solution pair of this equation and W is a parameter
that ranges over the set of proper and stable rational functions.
Indeed, M and N satisfy the Bézout equation:

AX —BW)+BY +AW) =1.

It remains to show that every solution pair of the equation has the form
shown above for some proper and stable rational function . We have

AX-M)=B(N-Y).

Since 4 and B are coprime, 4 is a factor of N — Y while B is a factor of X —
M. Put W:=(N-Y)/A. Then X— M = BW, and the claim has been proved. m

Let us illustrate the above theorem by determining all controllers that
internally stabilize the plant

1
S(s)=——.
s—1
A fractional representation of the plant transfer function is obtained as
follows
1 B(s) s

. A=2"L Be)=——.
s—1 A(s) s+1 s+1
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The Bézout equation
ST v+ y(s)=1
s+1 s+1

has a particular solution X(s) = 1, Y(s) = 2 so that the formula for all
stabilizing controllers reads

1+ 57 )
Rs) =S
- — W(s)

s+1

where W is a parameter that ranges over the set of proper stable rational
functions.

The set of stabilizing controllers clearly contains controllers of any finite
order. If only PI controllers are of interest, one puts

kps+k
R(s) = KpSTH .

s
These controllers correspond to the parameter
(kp — s> + (kp — k, — s + kK

s+ kps + k,

W(s) =

Consequently, k,> 0 and k,> 0 in order for /¥ to be proper and stable.

Theorem 1 can be applied to both continuous-time and discrete-time
controllers. Accordingly, a rational function is defined to be stable if it is
analytic eitherin Res>0orin|z|>1.

In the case of discrete-time systems, additional constraints have to be
imposed: the transfer functions S and R are proper (so that the plant and the
controller are causal systems) and one of them is strictly proper (so that the
closed loop system is causal). The chronology of samples in the control
system is usually taken in such a way that R is to be strictly proper. Selecting
a particular solution pair X, Y of the Bézout equation such that Y is strictly
proper, and constraining the parameter  to be strictly proper and stable will
achieve this requirement. Incidentally, no distinction need be made between
asymptotic and internal stability in discrete-time systems — impulsive modes
do not exist.

3. Control system design

The most important property of the parametrization is that all transfer
functions in an internally stable control system are affine functions of the
parameter W. In contrast, the controller R appears in a nonlinear fashion:
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vl 1 R|d| |AX-BW) AY+AW)|d

y| I+SR|S SR|r| |B(X-BW) BY+AW)| r
As R and W are in a one-to-one correspondence, it is convenient to use W
in the design process and return to R subsequently. Thus the parametrization
of all stabilizing controllers makes it possible to separate the design process
into two steps: the determination of all stabilizing controllers and the

selection of the parameter that achieves the remaining design specifications.
The extra benefit is that both tasks are linear.

3.1. Asymptotic properties

Asymptotic properties of control systems can easily be accommodated in
the sequential design procedure. These include the elimination of an offset
due to step references, the ability of system output to follow a class of
reference signals, or the asymptotic elimination of specific disturbances.

The design procedure is best illustrated by an example. Given a plant
with transfer function

1
S(s) = —
s—1
find an internally stabilizing controller that asymptotically eliminates
harmonic disturbances
as +

d(s) =
s~ +100

as well as the offset due to step references

r(s) = ©
s
at the plant output y. Here o and [ are arbitrary constants that parametrize
the amplitude and phase of the family of all harmonic signals that have
frequency 10. Similarly y serves to describe the class of step references with
arbitrary magnitude.
The first step is to determine the set of all internally stabilizing
controllers. Referring to the previous example,

1+ 5 s
RGs) = S FL
1- — W(s)

s+1

where W is a proper stable rational parameter function. The next step is to
accommodate the specifications by constraining the parameter. When » = 0,
the output y equals
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-1
1 s% +100 as +
o= | osp |
+1 s+1 s°+2s+1 s +2s+1
When = 0, the tracking error e = r — y equals

-1
il )
s+1 s+1 s+1 s+1

Both functions are to be proper and stable, thus the inverses must be
absorbed in

1- b W(s).
s+1
This condition means that
1 52 +100
= W(s) = 5 W(s) = —— Wy(s)
s+1 ST+ 2s+1 s+1

for some proper and stable rational functions W, and W, Taking the least
common multiple, one obtains
3
+100
1-— L W(S) = g
s+1 (s+1)°
so that the simplest parameter equals

352 +97s+1

s?+2s+1

W(s) =

The resulting controller is

457 — 975 +101

R(s) =
s”+100

3.2. Optimal control

The sequential design procedure will be further illustrated on the design
of linear-quadratic optimal controllers. Given a plant with transfer function
S(s) in the form of a coprime fraction of two proper and stable rational
functions, S = B/A. The task is to find a continuous-time controller that
internally stabilizes the control system of Fig. 1 while minimizing the effect
of the disturbance d on the output y in the sense of minimizing the H, norm
of the transfer function
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H: S B
1+ SR

which is defined by
1 5 N
||H||2=E_L|H(J@)| do.

The set of all internally stabilizing controllers is described by the formula
_Y+Aw
X-BW’

where AX + BY =1 and W is a proper and stable rational parameter. In the
internally stable control system, one has

H=B(X-BW)=P-0W,

R

where P and Q are some proper stable rational functions. Consider the inner-
outer factorization (Doyle, et al., 1992) of Q defined as O = 0.0, where O

has unit magnitude on the imaginary axis and O, has no zeros in Re s > 0.
With this factorization,
P
Q| =9
J Qj 0

Next P/ Q; is decomposed as

PR — + RN ,

O 9], 9]

where { - }, is analyticin Re s >0 and { - } is strictly proper and analytic

i
9

|P-owl|,=|P-0,007|, = —Q W

2 2

in Re s < 0. With this decomposition,

2
P P
= {Q—} {5} o
2 - +

2 2
P P
12 LU o
{Qﬁl {%}+

as the cross-terms contribute nothing to the norm. The last expression is a
complete square whose first part is independent of . Hence the minimizing
parameter is

2

P o
0. '

1

2

2 2



182 ADVANCES IN AUTOMATIC CONTROL

lo)
0,
o

and if it is indeed proper and stable, it defines the unique optimal controller.
The consequent minimum norm equals
Q).

If the minimizing W happens to be improper or unstable, then no optimal
controller exists.
To illustrate, consider the following example:

s—1 (s=1Y s )
S(s)= N _(S+1j(s+1j

The Bézout equation has a particular solution X =2, ¥ = —1. The class of
all internally stabilizing controllers is

-1
R(s) = (—I—SWJ(%LHWJ
s+1 s+1

for an arbitrary proper stable rational W. The disturbance-to-output transfer

function is
2
H(s)= 23_1_(3_1} W
s+1 s+1

W= w

min,y 7], =

2

The inner-outer factorization yields

2
QZ_ZKHJ , 0, =1,
s+1

and the stable-antistable decomposition is

0, s-1  s-1
The H, norm of H attains minimum for W = 2. The corresponding
optimal controller is
-1
R(s) = R
4
Note that R is not proper. Nevertheless the control system is internally
stable: the impulsive mode of the controller cannot be excited in the closed
loop. From the practical point of view, however, the control system will not
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perform satisfactorily at high frequencies and a suboptimal strictly proper
controller may be preferable.

3.3. Robust stabilization

Generally speaking, the notion of robustness means that some
characteristic of the feedback system holds for every plant in a set. There are
three ingredients in this definition. Firstly, robustness refers to some
particular characteristic of the control system, like stability, asymptotic
tracking, suboptimal level of performance, or some other performance
condition. Secondly, the characteristic is to hold for every plant in the set.
The ultimate goal is that it holds for the actual plant. The actual plant is
unknown, however, so the best one can do is to make the characteristic hold
for a large enough set of plants. Finally, one fixed controller guarantees
robustness. Consequently, it makes no sense to call a control system robust
unless the particular characteristic and the set of plant models are specified.

The basis technique to model plant uncertainty is to model the plant as
belonging to a set. Such a set can be either structured — for example, there is
a finite number of uncertain parameters — or unstructured — the frequency
response lies in a set in the complex plane for every frequency. The
unstructured uncertainty model is more important for several reasons.
Firstly, relying on the frequency response, it provides a good connection
with the classical techniques and tools. Secondly, it is well suited to
represent high-frequency modeling errors, which are generically present and
caused by such effects as infinite-dimensional electromechanical resonance,
transport delays, and diffusion processes. Finally, and most importantly, the
unstructured model of uncertainty leads to a simple and useful design theory.

The unstructured set of plants is usually constructed as a neighborhood of
the nominal plant, with the uncertainty represented by an additive,
multiplicative, fractional, or feedback perturbation (Zhou and Doyle, 1998).
The size of the neighborhood is measured by a suitable norm, most common
being the H,, norm that is defined for any rational function analytic on the
imaginary axis as

||H||m = supm|H(joa)| .

This norm has a simple control engineering interpretation. It is the
distance in the complex plane from the origin to the farthest point on the
Nyquist plot of the transfer function, and it appears as the peak value on the
Bode magnitude plot.

This section will illustrate the design for robust stability under
unstructured norm-bounded multiplicative perturbations. Consider a
nominal plant with transfer function S and its neighborhood S, defined by

Sa(®) =[A+A()M(5)]S(s),
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where M is a fixed proper stable rational function and A is a variable proper
stable rational function such that || A || < 1. The idea behind this uncertainty

model is that AM is the normalized plant perturbation away from 1:

S
SA =AM .
S

Hence if || A ||OO <1, then for all frequencies

Sato)
S(jw)

so that ‘M ( jm)‘ provides the uncertainty profile while A accounts for phase

<|M(jo))|

uncertainty.
Now suppose that R is a controller that internally stabilizes the nominal
plant S. It follows from the Nyquist diagram that

| S()R(jo)M (jo)| <|1+S(jo)R(jo)|
for all ®. Consequently, the controller R will internally stabilize the entire
family of plants S, if and only if

SR
1+ SR

o0

This is a necessary and sufficient condition for robust stabilization of the
nominal plant S.

The set of all internally stabilizing controllers for S = B/A is described by
the formula

Y+ AW
X-BW

where AX + BY = 1 and W is a proper and stable rational parameter. The
robust stability condition then reads

lp-ow|, <.

where P := BYM and Q := — BAM are proper stable rational functions. Any
proper and stable rational W that satisfies this inequality then defines a
robustly stabilizing controller R for S. In case W actually minimizes the norm
one obtains the best robustly stabilizing controller.

As an example, consider a plant with the transfer function

R

Sr(S) = S+iers’
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where the time delay T is known only to the extent that it lies in the interval 0

<1 <0.2. The task is to find a controller that stabilizes the uncertain plant S..
T

The time-delay factor e~
the nominal plant

* can be treated as a multiplicative perturbation of

S(s)= s+l
s—1
by embedding S in the family
S (8) =[(1+ M (s)A(s)]S(s),
where A ranges over the set of proper and stable rational functions such that
|| A ||w <1. To do this, M should be chosen so that the normalized

perturbation satisfies
S(jo)

for all ® and t. A little time with the Bode magnitude plot shows that a
suitable uncertainty profile is

:‘e‘-imT—I‘S|M(joa)|

M(s)=3s+1.

s+9

Figure 2 is the Bode magnitude plot of this M and e "*—1for t = 0.2, the

A0 F -1

-1 o 1 2 k-
I 10 1( 10 10

Figure 2. Bode plots of M (dotted) and €~ %% —1 (solid)
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The task of stabilizing the uncertain plant S; is thus replaced by that of
stabilizing every element in the set Sy, that is to say, by robustly stabilizing the
nominal plant S with respect to the multiplicative perturbations defined by M.

Take

As)=""1 Bs)=1
s+1

in the fractional representation of the nominal plant S. The set of all
stabilizing controllers for § is then given by

145 s
Rs)=——=+L
W(s)

where W is a non-zero proper and stable rational parameter. The robust
stability condition reads

|P-ow], <.
where
35+1 s—1 3s+1
P(s)= , O(s)=— :
s+9 s+1 s+9

Since Q has one unstable zero at s = 1, it follows from the maximum
modulus theorem (Doyle, et al., 1992) that the minimum of the H, norm
taken over all proper and stable rational functions W is P(1) = 2/5 and this
minimum is achieved for

P(s)— P(1) :_E s+1
o(s) 535+1

Thus the robust stability condition is satisfied and the corresponding best
robustly stabilizing controller is

W(s)=

R(S):£S+9

13 s+1

3.4. Deadbeat control

The following application illustrates the design of discrete-time deadbeat
controllers. Given a plant with discrete-time transfer function S(z), written in
the form of a coprime fraction of two proper and stable rational functions, S
= B/A. The task is to determine a controller R that internally stabilizes the
control system of Fig. 1 while rendering the output y to follow any reference
r exactly in a minimum time. Consequently (Kucera and Kraus, 1995), the
control system can have poles only at the point z = 0 and the reference-to-
error transfer function
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H = !

1+ SR
must be a polynomial of least degree possible inz "

In the control system so designed, the polynomial H is given by the
formula

H=AX-BW)=P-0QW

and its degree can be minimized by a choice of W: it suffices to identify W
with the quotient of P/Q so that H becomes the remainder.
To illustrate, consider a discrete-time integrator plant

ez+(1-¢) =8+(1—8)Z_1

S(z) = .

z—-1 1-z—
sampled at the unit rate and displacement € of input and output sampling
instants, with 0 < & < 1. The Bézout equation admits a solution

X)) =1+(1-¢e)z ", Y(@)=z".

The set of all stabilizing controllers that allocate the closed loop poles to
the point z=0is

2 —(-z"hHw
1+(1-¢e)z "+[e+(1-g)z '1z7'W

R(z) =

for an arbitrary polynomial #W(z ). The resultant transfer function from 7 to e is
HzY=(-zY[1+(-e)z']-(1-ze+(-e)z"]z"'W.
Taking the quotient of the polynomial division of 1+(1-g)z~' by
gz~ ' +(1—€)z* gives the parameter ¥ = 0; hence the optimal controller

—1
R(z)=—"
1+(1-g)z"!
and the polynomial
Hz)=(1-z H[1+(1-¢e)z'].

The tracking error will vanish in three sampling periods.

3.5. Stabilization subject to input constraints

Most plants have inputs that are subject to hard limits on the range of
variations that can be achieved. The effects of actuator saturation on a
control system are poor performance and/or instability. Stabilization subject
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to input constraints can be formulated either as a local stabilization, when
saturation is avoided for a set of initial states and the control system behaves
as a linear one, or as a global stabilization, when saturation is allowed to
occur and the control system is nonlinear.

Consider the saturation avoidance approach. Given a discrete-time plant

y(2) = 8(2)u(z2) +T(2)x,

with the input

u(z)=ug +u,z" +u,z77

subject to the constraints
—u” <u,<u’, k=012,..,

where u"and u~ are positive constants and X, is the initial state. The task is
to find a controller (zero initial state assumed) of the form

u(z) = ~R(2)y(2)

such that the control system is locally asymptotically stable for any initial
state x, of the plant within a given polyhedron P, = {x: Nx <n}, where N

is a matrix and 7 is a vector.
Denote S = B/A and T = C/A the fractional representation of the plant.
The control sequence in a stable feedback system is

u=C(Y —-A4AW)x,.
Taking W in the form of a power series around the point z =
W) =pz ' +p,z70 +...

shows that the control sequence is an affine function of the parameters p1, p,,
... of the form

u, =M, (p,,p,,.-)%y, k=12,...,
and satisfies the given constraint if x, belongs to the polyhedron

Py ={x:M(py, py,--)x <m}, where

I M,(p,.p,.-) 1 u’
-M,(py.Ps.--) u

M(p,,py,-)=| M,(p,,ps,..) u
-M,(py,ps.--) u

3
[
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Now x, is in Py, so that Py must be contained in P,,.. Applying the Farkas
lemma (Henrion, et al., 2001), one concludes that the stabilization problem
has a solution if and only if there exists a matrix P with non-negative entries
and real numbers py, ps, ... such that

PN=M(p,,p,,..), Pn<m.

This is a linear program for P and py, p,, ... . The stabilizing controller is
then obtained by putting
W(z)= plz_l +p22_2 +....
If the power series W is approximated by a polynomial, then the program
has a finite dimension.

To illustrate, consider the plant described by the input-output and state-
output transfer functions

1
S(z) = o T(z)= o
1-2z 1-2z

The plant input is constrained as
-1<u, <1, k=12,. .

and the initial state x, belongs to the polyhedron

P, : {_IJ x < {é} (that is, |xo| < 1/3).

The set of stabilizing controllers is found to be

2z —(1-2z"YYW(2)
1+ W (2)

R(z) =

and the corresponding control sequence is
u(z)=[-4z" ' =2(1-2z""HYW(2)x,.

Now start with W(z) = 0 and check whether the resulting linear program

for P is feasible:
1| |-4 Y 1
L) A

It is not, hence no controller of order 1 stabilizes the plant.
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Proceed by choosing W(z) = p; z ' and check whether the resulting linear
program for p; and P is feasible:

1
P [ 1J=[—4_2p1 4+2p, 4p _4p1]T , P {é}ﬁ[l 11 I]T'
- 3

It is, and the solution

T

2 1[8 0 8 0
:——’P:—

=3 3{0 8 0 8}

furnishes the stabilizing controller

L, 2-2z7"
T

R(z)=z
1.5+z

The actual polyhedron of stabilizable initial states is
1 T T .
Py: 5[—8 g8 -8 8] Xy < [1 11 1] (that is, |xo| < 3/8)

and it includes Py as a proper subset.

The successive selection of a feasible parameter results in the increase of
the order of the stabilizing controller. This points out to a potential weakness
of the design procedure based on parametrization: each time an additional
design specification is achieved, the order of the controller is increased.

4, Conclusions

The parametrization of internally stabilizing controllers can easily be
extended to multi-input multi-output systems (Vidyasagar, 1985). Rational
matrices are represented as ,,matrix fractions®, that is to say, as the left and
right factorizations

S=B,4;' =4;'B,

of two proper and stable rational matrices, where 4, and B, are right
coprime and 4; and B, are left coprime. The set of all internally stabilizing
controllers is given by

R = (Yp + ApW)Xp —BpW) ' =(X, —WB,) ' (Y, +W4,),

where the proper and stable rational matrices X, , ¥, and X,, Y, satisfy the

A =B X, Bp]_,
Y, X, |-v, 4,|

Bézout identity
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and W is a proper and stable rational matrix parameter (Kucera, 1975; Youla,
etal., 1976b).

It is interesting to note that the set of internally stabilizing controllers can
be parametrized also for plants with irrational transfer functions. This is
possible whenever such a transfer function is expressed in the form of a
fraction of two coprime proper and stable rational functions. This property is
by no means evident (Vidyasagar, 1985) and it holds, for instance, for
transfer functions having a finite number of singularities in Res >0, each of
which is a pole.

Even more striking is the observation that internally stabilizing
controllers can be parametrized for nonlinear plants, where transfer
functions no longer exist. The key condition is again the possibility of
factorizing the nonlinear mapping that defines the plant into two ,,coprime®
mappings, one of them representing a stable system while the other one
representing the inverse of a stable system (Hammer, 1985). Technical
assumptions may prevent one from parametrizing the entire set of internally
stabilizing controllers; still, the subset may be large enough for practical
purposes.

The parametrization of all stabilizing controllers is a result that launched
an entire new area of research and that has ultimately become a new
paradigm for the design of optimal and robust control systems. Being of
algebraic nature (Kucera, 1993), it is a result of high generality and elegance.
The stabilizing controllers are obtained by solving a linear equation. This is
not because the plant to be controlled is linear but because it is an element of
the ring of fractions defined over the ring of stable plants (Vidyasagar,
1985). The requirement of stability is thus expressed as one of divisibility in
a ring: an element a divides an element b if there exists an element x
satisfying ax = b. That is why x is the solution of a /inear equation.

There is a dual result: the parametrization of all plants that can be
stabilized by a fixed controller. This result is useful in system identification.
In fact, the (difficult) problem of closed-loop identification of the plant
becomes a (simple) problem of open-loop identification of the parameter, as
discussed by Anderson (1998). Consequently, the parametrization may
facilitate the study of dual control.
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Abstract  This paper presents an integrated methodology for feedback control of
active vibration attenuation systems. The basic steps of the method-
ology are: open loop identification of the secondary path, design of a
robust digital controller, identification in closed loop of a ”control ori-
ented” model, redesign of the controller based on the closed loop identi-
fied model and controller reduction. The feasability of this methodology
is illustrated by its application on the Hutchinson active suspension.

Keywords: active control, active suspension, feedback control, closed loop identifi-
cation, controller order reduction.

1. Introduction

Feedback is used in active vibration control mainly for three reasons:

m Absence of a measurement correlated with the vibration source
(which is necessary for feedforward control).

m  Wide band vibration attenuation.

m  Potential robustness of performances with respect to system model
variations.

A number of techniques has been proposed for the design of feedback
controllers dedicated to active vibration attenuation [2, 3, 4]. Often an

193
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adaptation loop is added for the tuning of the controller because either
the identified model is not enough accurate or because the designed
controller is not enough robust. For more details on feedback used in
active vibration control see [4]-Chapter 3.

The key contributions of the present paper are related to:

m the identification of a good ”design model” by using up to date
open loop and closed loop identification methods and model vali-
dation tests;

m the design of a robust controller allowing to achieve severe perfor-
mance constraints in terms of the frequency attenuation charac-
teristics;

m  the use of a recent developed efficient controller reduction method
preserving the desirable properties of the nominal closed loop sys-
tem.

For more details on this methodology see [1].

To be specific we will start by presenting the system under consider-
ation for the experimental verification of the methodology.

The structure of the system is presented in Fig. 1, a photo of the
system being presented in Fig. 2. The controller will act upon the piston
(through a power amplifier) in order to reduce the residual force. The
system is controlled by a PC via an I/O card, the sampling frequency
being 800H z.

primary force (disturbance)

Actuator
(piston
position)

controller

support inertia chamber

Figure 1.  The active suspension system

The equivalent scheme is shown in Fig. 3.

The system input, u(t) is the position of the piston, the output y(t)
being the residual force measured by a force sensor (see figs. 1, 3).

The principle of the active suspension is to vary the system’s stiffness
in order to attenuate the vibrations generated by the part that we want
to isolate (primary force, disturbance). In our case, the primary force
has been generated using a shaker controlled by a signal given by the
computer.
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Figure 2. Active suspension system (photo)

C .
We call primary path transfer function (¢~% 5) the transfer function

between the signal sent to the shaker, p and the residual force y(t).

—d

B
We call secondary path transfer function (g Z) the transfer function

between the input of the system, u(t) and the residual force. The input
of the system being a position and the output a force, the secondary
path transfer f ’ - o

l p()
(disturbance)
q“-C/D

Controller Plant
t
Mg B/ Al

+
— R/S q v
(residual force)

Figure 3. Block diagram of the active suspension system

The frequency characteristic of the identified primary path model (the
effect of the disturbances on the output), between the excitation of the
shaker and the residual force is shown in Fig. 4. The control objective
is to minimize the modulus of the transfer function between the input
signal of the shaker and the residual force at low frequencies, using a
feedback control. In other words, to attenuate the first vibration mode,
without amplifying the disturbance effect in low frequencies (below 31
Hz) and minimizing the maximum amplification of the disturbances over
35 Hz by distributing it through the high frequencies up to 200 Hz.
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Primary path identified model
T T

40 T

Magnitude [dB]

i i i i i i i i i
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
f[Hz]

Figure 4.  The frequency characteristic of the primary path model (input: shaker’s
signal, output: residual force)

Assuming that a good model of the system is available, the difficulty
in controller design comes from the constraints in low frequencies (no
amplification is allowed below 31Hz). In our case the allowed amplifi-
cation in the frequency region over 35Hz is < 3dB. See for example [2]
for less stringent frequency specifications.

The methodology proposed for the design of feedback active vibration
control is illustrated in Fig.5.

The first stage is the open loop identification and validation of a dis-
crete time model for the secondary path (between the piston’s position
and the residual force).

Then a controller based on this open loop identified model is designed
and implemented (open loop based controller). The pole placement with
shaping of the sensitivity functions by convex optimization is used for
the design [11].

Once the open loop based controller is implemented, an identification
in closed loop is carried out [8]. This allows to get a better design model,
since identification in closed loop (using appropriate algorithms) will
enhance the precision of the estimated model in the critical frequency
regions for control.

Then a re-design of the controller is done based on the closed loop
identified model (nominal closed loop based controller).

The nominal controller is then implemented and tested.

The next stage is the reduction of the controller complexity, which can
be done using simulated or real data. The algorithms used for controller
reduction will preserve the desirable properties of the nominal closed
loop system [9, 6].
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Open loop identification of
the secondary path

Design of a
robust controller

Implementation

Closed loop identification
of the secondary path

Re-design of a
robust controller

Implementation and
performance tests

Controller reduction

Implementation and
performance tests

Figure 5. Design methodology

The last stage is a comparison in real time between the performances
of the nominal and reduced order controllers.

The paper is organized as follows: Section 2 will discuss the model
identification (in open and in closed loop). Section 3 will present the
controller design methodology. Section 4 will present the controller re-
duction technique. Section 5 will illustrate the application of the design
methodology to the Hutchinson active vibration attenuation system.

2. Open and closed loop identification

From a practical point of view, the identification of a plant model is
the first thing to do for the design of a controller.

The identification of a system is an experimental approach for esti-
mating a model of the real system. The identification procedure can be
divided in four different steps:
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I/O data acquisition (under an experimental protocol).

Estimation of the model complexity.

Estimation of the model parameters and choice of the noise model.
Validation of the identified model.

An important point in the identification of a system is the excitation sig-
nal. In this paper we use as excitation signal a PRBS (Pseudo Random
Binary Sequence). See [10] for details.

2.1. Open loop identification

The open loop identification algorithms minimize the error between
the output of the real system and the output of the estimated model.
In other words, they try to estimate a model whose output fits as much
as possible the part of the output of the real system generated by the
excitation signal. For details on open loop identification and validation
see [10].

2.2. Closed loop identification

Closed loop identification can be used when a controller (i.e. based on
an open loop identified model) exists, in order to obtain a better model
of the real plant since the precision of the estimated model is improved
in the critical frequency regions for control. Of course, this requires to
use specific algorithms.

Figure 6. Identification in closed loop

The closed loop identification algorithms minimize the error between
the true closed loop system and the adjustable predictor of the closed
loop. The objective of the closed loop identification is to obtain a better
predictor for the closed loop, using a better estimation of the plant
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model. The predictor of the closed loop is formed by the controller and
the estimated plant model (see Fig. 6). For more details on the closed
loop identification see [7, 8].

3. Controller design

The method used in this paper for the computation of a robust digital
controller is the pole placement method with shaping of the sensitivity
functions by convex optimization.

The combined pole placement/sensitivity function shaping method
consists of placing the dominant closed loop poles, specifying some fixed
parts of the controller and then adding auxiliary poles and controller
parts to fulfill specifications on the output and input sensitivity functions
by a convex optimization procedure [11].

3.1. Plant representation and controller structure

The structure of a linear time invariant discrete time model of the
plant (on which is based the design of the controller) is

—dp(,—1
_ 2 %B(z7")
Gz hy=2_""°2 / 1
= (1)
where:

d = number of sampling periods on the plant pure time delay;
A = 1+az7! + . tap, 2
B = bz 4. b,z "B

The controller to design is a RS-type controller (see Fig. 7). The sensi-

(disturbance)
(V)

Plant
/s . g'B/A

b(t)

(measurement noise)

Figure 7.  Structure of RS-controller

tivity functions for the closed loop are:



200 ADVANCES IN AUTOMATIC CONTROL

= the output sensitivity function (the transfer function between the
perturbation p;(t) and the output y(t)):

Sple™h = -2 2 2

= the input sensitivity function (the transfer function between the
input of the plant u(t) and the output y(t)):

A(z"HR(z7Y)

Sup(z71) = — P(z-1) (3)

where P(z7!) are the poles of the closed loop.

3.2. Design problem formulation

The problem may be formulated as follows: Given a nominal plant

z B nom

Anom
» the fixed parts of the controller (Hg and Hyg);

m the desired closed loop behaviour (the dominant closed loop poles
Pp and the acceptable region for the optimized ones);

model Gppm = obtained by identification, define:

m the desired upper bounds W, (w) for the modulus of the sensitivity
functions (performance and robustness objectives);

®m an objective to be minimized.
3.3. Controller parameterization

The parameterization used for the controller is the Youla-Kucera Pa-
rameterization:

E _ HR(RO + AnomHSQ) (4)
S HS(SO - ZidBnomHRQ) ’
where the fixed parts of the controller, Hg, Hg and A,om, Bnom are
polynomials of 271
The central controller (@ = 0) can be obtained by solving the Bezout

equation for Ry and Sp:

AnomHSSO + ZidBnomHRRO = Pp, (5)

where Pp is a stable polynomial containing the desired dominant closed
loop poles. Expressing @ as a fraction of polynomials 4 and « (with «
stable), we obtain:
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E _ HR(ROa + AnomHSﬁ) (6)
S Hs(Sooz — z_dBnOmHRﬁ)

Prom = ApomS + ZidBnomR = Ppa, (7)

where the zeros of Pp are the fixed closed loop poles and the zeros of «
are the additional (optimized) ones.

Using the parameterization and constraint formulation presented above,
a controller (R and S) with the required properties may be obtained by
convex optimization. For more details on the optimization procedure
see [11].

4. Controller reduction

The design of a robust controller (see Section 3) leads normally to
high order controllers. There exist two main approaches to obtain a
reduced order controller:

m  to reduce the order of the plant model and then to compute a low
order controller based on the reduced model;

m to compute a high order controller based on the nominal plant
model, and then to reduce the order of the obtained controller.

The second approach seems more appropriate because the approximation
is done in the final step of the controller design. In addition, the first
approach in this case did not allowed to obtain enough simple controllers.

Identification in closed loop offers an efficient methodology for the
controller order reduction. The most important aspect of the controller
reduction is to preserve as much as possible the desirable closed loop
properties.

One block diagram for reduced order controller identification is pre-
sented in Fig. 8. The simulated nominal closed loop system (the upper
part of Fig. 8) is constituted by the nominal designed controller, K and
the best identified plant model, G. The lower part is constituted by
the estimated reduced order controller, K and the plant model, G. It
is assumed that the nominal controller stabilizes the real plant and the
identified plant model.

The parametric adaptation algorithm will try find the best reduced
order controller of a given order which will minimize the closed loop input
error (the difference between the input of the plant model generated in
the nominal simulated closed loop, u, and the input of the plant model
generated by the closed loop using the reduced order controller, @).

Identification of a reduced order controller can also be done using real
data [9].
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Figure 8. Closed-loop identification of reduced order controllers using simulated

data (input matching: CLIM)

One can also consider as an objective for controller order reduction
to minimize the closed loop error between the plant output generated
in the nominal simulated closed loop and the plant output generated in
the closed loop using the reduced order controller (CLOM algorithms)
[5].

For more details on the algorithms see [9, 5, 6].

An important aspect for the reduction procedure, from the valida-
tion point of view, is that the reduced order controllers should stabilize
the nominal model, G, and they should give sensitivity functions which
are close to those obtained with the nominal controller in the critical
frequency regions for performance and robustness [9].

5. Application of the designed methodology to
an active suspension

The design methodology proposed in the previous sections will be
illustrated on an active suspension. The active suspension has been
presented in the Section 1 of this paper.

The primary path transfer function has been identified in open loop.
The excitation signal sent at the input of the shaker is a PRBS with 10
cells shift register and the frequency divider p = 2. For the identification
we used 2048 data points.

The primary path identified model has the following orders: ng = 12,
np = 9, delay d;y = 2. The frequency characteristic of the identified
model is presented in Fig. 4.
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One can see that there exist several vibration modes, the first one
(that we desire to attenuate) being at 31.5Hz with a damping factor
0.093.

We shall present below the results obtained, step by step.

5.1. Step 1: Open loop identification of a discrete
model for the secondary path

The excitation signal sent at the input of the system (the piston) is
a PRBS with 9 cells shift register and the frequency divider p = 4. For
the identification we used 2048 data points.

The reason of using a frequency division p = 4 is that we are interested
to obtain a good model in low frequencies, a PRBS with p = 4 having a
higher energy in low frequencies. See [10] for details.

The identified model of the secondary path has the following orders:
nA = 12, nB = 11, delay d = 2, and it has been identified using the
Recursive Maximum Likelihood method with a variable forgetting factor.

The frequency characteristic of the identified model is presented in
Fig. 9 (thin line), the first vibration mode being at 31.98Hz with a
damping factor 0.078. As we can see, there are 6 vibration modes from
which 5 are very low damped (< 0.078). We have chosen the best model
from the point of view of the open loop validation techniques.

Active suspension identified models (open and closed loop)
40 T T T T T

20+

10r-

g
(]
3 or
=
g
=
101
Open loop identified model Closed loop identified model
—20 fl= 31.98 Hz; xi =0.078 fl= 32.76 Hz; x! =0.085 i
f2 = 145.08 Hz; xi = 0.712 f2 = 107.70 Hz; xi = 0.641
3 = 158.59 Hz; xi = 0.040 3 = 157.13 Hz; xi = 0.062
f4 = 239.56 Hz; xi = 0.037 4= 221.92 Hz; xi = 0.024
_30 5 = 279.19 Hz; xi = 0.028 5 = 273.02 Hz; xi = 0.033 ]
6 = 364.73 Hz; xi = 0.016 6 = 371.13 Hz; xi = 0.045
-40 | | | | | Il Il
50 100 150 200 250 300 350 400
f[Hz]
Figure 9. The frequency characteristics of the secondary path model (input: piston

displacement, output: residual force)
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5.2. Step 2: Design of a robust controller

Having now an open loop identified model, identified in Step 1, one
can pass to the computation of a robust digital controller. We used the
methodology presented in Section 3.

In order to compute the controller, we fixed a pair of dominant poles
at the frequency of the first vibration mode of the open loop identified
model with a damping factor 0.8. We introduced also some fixed parts
in the controller (in Hg):

m Hp = 1+¢ ! (assures the opening of the loop at 0.5f; - robustness

reason);

m  a pair of zeros at 215H z with a damping factor 0.01 (assures a very
low gain of the controller at the frequency where the energy of the
PRBS used for identification is low (0.25f5) and where therefore
one has an uncertainty on the model);

m a pair of zeros at 20.5Hz with a damping factor 0.01 (assures
the opening of the loop in low frequencies, because of the fact
that attenuating the first vibration mode may other way produce
amplification in low frequencies (below 31Hz)).

The constraints on the sensitivity functions are the templates presented
in Fig. 10. The template on the S, function has been established as a
function of the desired disturbance rejection, the one on Sy, is a function
of the saturation problems of the actuator. The template on Sy, is at
—12dB at the frequency corresponding to the first vibration mode and
at 0dB at the frequencies over 35Hz (up to 150H z), because we should
like a very little amplification in this frequency region. We ask a little
value of S, at 0.25f; because of the uncertainties of the identified model
in this frequency region. The objective is to minimize the S, sensitivity
function in the regions of interest (see the template) without sticking
out from the template on S,.

The resulting controller (the nominal one) has the following complex-
ity (the orders of polynomials R and S): nr = 27, ng = 28. The output
sensitivity function Sy,, respectively the input one, S, are presented
in Fig. 10. From Fig. 10 one can see that we obtain a good disturbance
rejection (low magnitude of Sy,) at the frequency corresponding to the
first vibration mode (=~ 31H z) and that we do not amplify at all in low
frequencies. The maximum amplification over 31H z is below 3dB.

5.3. Step 3 and 4: Controller implementation and
closed loop identification

Having now the nominal controller (which stabilizes also the real
plant), computed at Step 2, we can proceed to the closed loop iden-
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Figure 10.  Sensitivity functions

Table 1. Closed loop validation results

| Plant model || Open loop | Closed loop |

C.L. Err. var. 1.5368 0.1477 |
[RN ()| maw 0.4802 0.0340 |
Vinnicombe 0.7624 0.3587 |

tification of the secondary path in order to improve the quality of the
open loop identified model (see Stepl).

We use the same excitation signal from the open loop identification
(Step 1) and we add it on the input of the system (the piston), which is
now in feedback with the nominal controller (see Fig. 3)

We identify a model having the same complexity as the open loop
one. We use the F-CLOE (Filtered Closed Loop Output Error) method
[8].

The closed loop validation results for the open loop, respectively
closed loop identified models, are presented in Table 1. The first two
lines give the variance of the residual closed loop error and the maxi-
mum of the normalized cross correlations between estimated output and
residual closed loop error. The third line gives the Vinnicombe distance
between the identified transfer function of the real closed loop system
and the closed loop transfer function of the simulated closed loop (nomi-
nal controller + model to validate). For details on closed loop validation
and Vinnicombe distance see [8, 10], and [12], respectively.

One can see that the closed loop identified model validates better than
the open loop one.
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5.4. Step 5: Re-design of a controller

Having now a better model of the real system, we compute a robust
digital controller based on this model, in order to improve the perfor-
mances of the controller on the real system.

The controller based on the closed loop identified model is obtained
using the same methodology and the same constraints (templates on the
sensitivity functions) imposed in Step 2.

5.5. Step 6: Performance tests

In order to test the performances of the nominal controller on the real
system, we present the spectral density of the residual force in open and
in closed loop (see Fig. 11). One can see an attenuation of about 7dB

Spectral density of the residual force in open and in closed loop
10 T T T

T T
— Open loop
= Closed loop (nominal controller)

Vrms [dB]

I I I I I I
50 100 150 200 250 300 350 400
f[Hz]

Figure 11.  Spectral density of the residual force in open and in closed loop

at the frequency corresponding to the first vibration mode (~ 31Hz),
without any amplification in low frequencies. The tolerated amplifica-
tion (3 dB) over 35 Hz has been verified, so the controller obtained
accomplished the desired performances.

5.6. Step 7: Controller reduction

In order to do the order reduction of the nominal controller, we shall
give the results obtained using the CLIM direct reduction method pre-
sented in Section 4, based on simulated data. The plant model used
is the closed loop identified model. We use as external input a PRBS
generated by 10 cells register and with a frequency divider of p = 2. We
use 4096 data points and a variable forgetting factor. For more details,
see [9, 6].
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We present the reduction results by showing the sensitivity functions
(Syp and Syp in figs. 12, 13) for the nominal controller K, with np =
27,ng = 28 and for three reduced order controllers: K7 with ng = 19,
ng = 20, K9 with ngp = 12, ng = 13 and K3 with ng = 9, ng = 10
respectively (a fixed part Hp = 1+¢~! has been imposed in the reduced
order controllers). K3 controller has a lower complexity than the pole
placement one.

Syp - Output sensivity function
T T T

4 T T

dB

-2 |

== Nominal (nR = 27, nS = 28)
— nR=19,nS =20
— - nR=12,nS=13

nR =9, nS = 10

I I I I I I I I I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 05
flfs

-8

Figure 12.  Output sensitivity for the active suspension (controller reduction using
CLIM algorithm on simulated data)

Sup - Input sensivity function
T T T T T T
10 — Nominal ("R = 27, nS = 28) -
— nR=19,nS =20
) — - nR=12,nS=13
\ nR=9,nS =10

©
T -20

I I I I L I
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
flfs

Figure 183. Input sensitivity for the active suspension (controller reduction using
CLIM algorithm on simulated data)
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Note: The reduced controller Ky corresponds to the complexity of
the pole placement controller.

One can see the closeness of the sensitivity functions.

Similar results are obtained by using real data for the reduction of the
controller complexity.

5.7. Step 8: Performance tests

To illustrate the performances of the resulting controllers (K,, Ki,
K5 and K3) on the real system, the spectral density of the residual
acceleration in open and in closed loop is shown in Fig. 14. The spec-
tral densities obtained in closed loop operation are compared to those
corresponding to the open loop operation.

The performances of the reduced order controllers are close to that
of the nominal controller and all achieve a significant reduction of the
vibrations around the first vibration mode of the plant model.

Spectral density of the residual acceleration in opened and in closed loop (simulated data)
10 T T T T T

T T
— - Open loop

= Nominal (nR = 27, nS = 28)
— nR=19,nS=20

— -nR=12,nS=13

o /\ nR=9,nS =10

Vrms [dB]
|

I I I I I I
50 100 150 200 250 300 350 400
f[Hz]

Figure 14.  Spectral density of the residual acceleration in open and in closed loop
(controller reduction using CLIM algorithm on simulated data)

6. Conclusions

The methodology presented in this paper allowed to design a feedback
control for an active vibration system and has been successfully tested
in real time.

The real system has been identified in open and in closed loop. The
resulting controller accomplished the desired performances. The nominal
controller has been simplified by a procedure preserving the closed loop
properties. The reduced order controller (19 parameters instead of 55)
gives very close results to those of the nominal controller.
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Abstract
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Model predictive control is a control technique in which a finite horizon optimal
control problem is solved at each sampling instant to obtain the control input.
The measured state is used as initial state and only the first control of the
calculated optimal sequence of controls is applied to the plant. A key advantage
of this form of control consists in its ability to cope with complex systems and
hard constraints on controls and states. This resulted in a wide range of
applications in industry, most of them in the petro-chemical branch. In this
survey, a selected history of model predictive control is presented, with the
purpose to outline the principles of this control methodology and to analyze the
progress that has been made. The initial predictive control algorithms, mainly
based on input/output models, are recalled in the introduction and then we focus
on the more recent work done in nonlinear model and hybrid model predictive
control. The stability problem and the computational aspects are discussed to
formulate some fruitful ideas for the future research.

model predictive control, discrete-time systems, nonlinear systems, hybrid
systems, constraints, stability

1. Introduction

Model Predictive Control (MPC) is a control strategy that offers
attractive solutions, already successfully implemented in industry, for the
regulation of constrained linear or nonlinear systems and, more recently, also
for the regulation of hybrid systems. Within a relatively short time, MPC has
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reached a certain maturity due to the continuously increasing interest shown
for this distinctive part of control theory, and this has been illustrated by the
prolific literature on this subject, including (Garcia et al., 1989; Qin and
Badgwell, 1997; Allgéwer et al., 1999; Camacho and Bordons, 1999; Morari
and Lee, 1999; Mayne et al., 2000; Rawlings, 2000; Maciejowski, 2002).

The reason for the rapid development of MPC algorithms mainly consists
in the intuitive way of addressing the control problem. In comparison with
conventional control, which uses a pre-computed control law, predictive
control is built around the following key principles: the explicit use of a
process model for calculating the future behavior of the plant, the
optimization of an objective function subject to constraints (which yields an
optimal control sequence) and the receding horizon control strategy. The
MPC methodology involves solving on-line an open-loop optimal control
problem subject to input, state and/or output constraints. The graphical
interpretation of this concept is depicted in Fig. 1.

F
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Figure 1. Graphical interpretation of model predictive control

At each sampling instant &, the measured variables and the process model
(linear, nonlinear or hybrid) are used to predict the future behavior of the
controlled plant over a specified discrete-time horizon called prediction
horizon (N). This is achieved considering a future control scenario as the
input sequence applied to the process model, which must be calculated such
that certain desired (imposed) objectives are fulfilled. To do that, a cost
function is minimized subject to constraints, yielding an optimal control
sequence over a discrete-time horizon named control horizon (N,). Note that
N, < N and if the control horizon is strictly smaller than the prediction
horizon, the control input will be kept constant after N, sampling time
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instants. According to the receding horizon control strategy, only the first
element of the computed optimal control sequence is then applied to the
plant.

The original MPC algorithms, addressing linear systems exclusively,
utilized only input/output models. In this framework, several solutions have
been proposed both in the industrial world, IDCOM — Identification and
Command (later MAC — Model Algorithmic Control) at ADERSA (Richalet
et al., 1978) and DMC — Dynamic Matrix Control at Shell (Cutler and
Ramaker, 1980), which use step and impulse response models, and in the
academic world (the adaptive control branch) MUSMAR - Multistep
multivariable adaptive regulator (Mosca et al., 1984), predictor-based self
tuning control (Peterka, 1984), EHAC — Extended Horizon Adaptive Control
(Ydstie, 1984), EPSAC — Extend Predictive Self-Adaptive Control (De
Keyser and Van Cauwenberghe, 1985). Other MPC algorithms were also
developed later on, from which the most significant ones are GPC —
Generalized Predictive Control (Clarke et al., 1987) and UPC — Unified
Predictive Control (Soeterboek, 1992).

Next, the MPC algorithms have been designed for state-space models and
extensions to nonlinear models followed shortly. In the framework of
Nonlinear Model Predictive Control (NMPC), several alternatives have been
studied and implemented with good results, such as dual-mode NMPC
(Michalska and Mayne, 1993), quasi-infinite horizon NMPC (Chen and
Allgower, 1996; Chen and Allgower, 1998) or contractive NMPC (de
Oliveira Kothare and Morari, 2000). Also, a more recent stabilizing NMPC
algorithm has been presented in (Magni et al., 2001).

The first MPC approach to the control of hybrid systems has been
reported quite recently in (Bemporad and Morari, 1999). Since then, several
MPC schemes have been proposed for particular relevant classes of hybrid
systems, such as the ones in (Bemporad et al., 2000; De Schutter and Van
den Boom, 2001; De Schutter et al., 2002; Mayne and Rakovic, 2002; Lazar
and Heemels, 2003).

By now, the linear MPC theory is quite mature. Important issues such as
on line computations, the interplay between modeling-identification and
control, and system theory subjects like stability and robustness are well
defined. In the sequel, we will only focus on the NMPC and the MPC
framework for hybrid systems and the associated problems.

2. NMPC - Basic concepts and problem formulation

When nonlinear systems (models) are employed, despite the slightly
different problem formulation, the basic concepts are still the key principles
of predictive control. The use of a nonlinear model only complicates the
finite horizon optimal control problem that has to be solved on-line.

Consider the general discrete-time nonlinear systems described by the
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difference equation:

X = S (xu,) (1)
subject to input and state constraints of the form:
upelU, Vk>20 x,eX, Vk=0, (2)

where x, € R"is the state vector, u, € R" is the control input vector and

A) =110, f20), .... , fa()]" is a vector containing smooth nonlinear
functions of their arguments, which are zero at zero. In the simplest form,
the sets U and X are defined by:

Uz{“k € R |umin Sug Sumax}r Xz{xk € R" | Xin <X Sxmax}’(:;)

where Uin, Umax, Xmin, Xmax ar€ given constant vectors.

The control objective is to regulate the state x to a desired equilibrium
point X,. As any equilibrium point X, can be reduced to the origin via a
suitable change of coordinates, we consider for the rest of the paper that the
goal is to steer system (1) to the origin, while fulfilling the constraints (2).

The predictive control approach to the above stated control problem leads
to the minimization of the cost function:

N-1
J(xp )= ZF(xi\ka”i\k)+L(xN\k) 4)
i=0
subject to:
Kk = f(xk\k’“k\k ) Xip = X
ul‘keU, i€[0,N,], ui‘kzuN”,ie[Nu,N], (5)
ik eX, ie[0,N],
where w, =[u,, uy, ... u, ] are the manipulated controls, F() is the

stage cost and L(.) is a suitable terminal state penalty term. The stage cost
specifies the desired control performances and it is usually a quadratic
function in x and u:

F(xl-,ui)zxiTQxl- +ul-TRul- (6)

with O and R positive definite and symmetric weighting matrices.

Note that, for simplicity, it is assumed that the prediction horizon N is
equal to the control horizon N,. Thus, the NMPC control problem can be
stated as:

Problem 1 Solve:
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min{J (x;,uy )| u;p €U, i €[0,N-1]; x;/ € X, i€[0,N1; xo/5 =X }.(7)
up

which yields the optimal control sequence

w, ={ug, Uy o Uy ]s (®)

and apply to plant (1) only the first element of (8).

The initial condition from (5) shows that the system model used to
predict the future in the controller is initialized by the actual system state. In
general, at each time instant k£ the full state x; is assumed to be measured or
must be estimated. Model-plant mismatch and disturbances are not
represented in the optimization problem.

In general it would be desirable to use an infinite prediction horizon, i.e.
N =00, and to minimize the cost function (4) with L = 0, in order to achieve
stability of the closed-loop system. However, the open-loop optimal control
problem that must be solved on-line is often formulated using a finite
prediction horizon, resulting thus in a finite parameterized problem which
allows a (real-time) numerical solution of the nonlinear programming Problem
1. It is obvious that the shorter the prediction horizon is, the less time
consuming are the calculations involved, so it is advantageous from a
computational point of view to implement MPC schemes using short horizons.

Still, the problem now consists in the fact that the actual closed-loop input
and state trajectories will differ from the open-loop trajectories, even if no
model mismatch and no disturbances are present. Moreover, it is by no means
true that a repeated minimization of a finite horizon cost function in a receding
horizon manner leads to an optimal solution also for the infinite horizon
problem with the same stage cost F' (Bitmead et al., 1990). In fact the two
solutions differ significantly if a short horizon is utilized, which implies that
there is no guarantee that the NMPC closed-loop system will be stable. Hence,
when using finite horizons in standard NMPC, the employed cost function
cannot be simply developed from the desired physical objectives.

2.1. NMPC algorithms with guaranteed stability

The most perceptive way to achieve stability, when an NMPC algorithm is
utilized to calculate the control law, is to choose an infinite prediction horizon.
In this case, with the state available for measurement, no model mismatch and
no disturbances it follows directly from Bellmann’s principle of optimality
that the open-loop input and state trajectories calculated at a specific time
instant k£ as a solution of the NMPC Problem 1, are in fact identical with the
closed-loop trajectories of the nonlinear plant. This implies closed-loop
stability because any feasible predicted trajectory goes to the origin.

Since nearly all stability proofs for NMPC follow along the same basic
steps as for the infinite horizon proof, at this point, it is worth mentioning the
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key ideas: considering the cost function as a Lyapunov function, it is first
shown that feasibility at one time instance does imply feasibility at the next
time instance for the nominal case, in a second step, it is established that the
cost function is strictly decreasing and thus the state and the input are
converging to the origin, and finally, in a third step, asymptotic stability is
established using the continuity of the cost function at the origin and its
monotonicity properties.

Unfortunately, an infinite horizon for the NMPC Problem 1 is only useful
as a theoretical concept, because the solution of such a high dimension
optimization problem is extremely difficult, if not impossible to obtain. Due
to this reason, finite horizon approaches are preferred for NMPC, despite the
inconsistencies between the open-loop predicted trajectories and the closed-
loop actual trajectories mentioned above. Instead of using an infinite
prediction horizon, stability is achieved / guaranteed by adding suitable
constraints (not connected with physical restrictions or desired performance/
requirements) and penalty terms to the original cost function (4). Therefore,
these extra conditions are referred as stability constraints. In the following,
two representative finite horizons NMPC schemes with guaranteed stability
are presented.

Dual-mode NMPC This NMPC approach was introduced in (Michalska
and Mayne, 1993) and consists in the use of two different controllers that are
applied in different regions of the state space depending on the state being
inside or outside of some terminal region that contains the origin. For the
case in which the state is outside the terminal region an NMPC controller
with a variable finite horizon is applied and, when the current state has
entered the terminal region, a linear state feedback control law is employed.
Thus, the proposed NMPC algorithm utilizes the following twofold control
strategy:

U, =

{ Uyrps X, 2Q ©)

Kx,, ifx,eQ.

The terminal region Q and the state feedback are calculated off-line such
that the terminal region is a positive invariant region of attraction for the
nonlinear system controlled by the linear state feedback algorithm and thus,
the input and state constraints are satisfied with this linear controller in Q.
According to the dual-mode approach, when the state is outside Q, the length
N of the horizon is considered as an additional minimizer and Problem 1 to
be solved, becomes:

min{J(x;,u,,N) | u;, €U, i €[0, N-1]; x,, € X, i €[0, NT; xo; = x,} (10)
w, ,N

with the additional terminal inequality constraint
Xy €Q,, (11)
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which ensures that at the end of the horizon, the state has to lie on the
boundary Qp of the terminal region Q.

Starting from the outside of terminal region, the dual-mode NMPC
controller guarantees the reaching of the terminal region boundary in a finite
time. The close-loop stability is attained due to the use of a stabilizing local
linear feedback control law. From the computational point of view, the dual-
mode NMPC solution is more attractive because a inequality constraint is
used, rather than a terminal equality constraint. The main drawback consists
in the requirement to switch between control strategies and in determining
the terminal region Q.

Quasi-infinite horizon NMPC The quasi-infinite horizon NMPC strategy
was presented in (Chen and Allgower, 1996) and then further developed in
(Chen and Allgower, 1998), where the inequality stability constraint

xy €Q (12)
and the quadratic terminal penalty term
L(xN)zx]{,PxN (13)
have been added to the standard NMPC Problem 1. The authors started from
an infinite horizon cost function described by
© o0
JOO(Xk,Uk)ZZF(Xi,ui), (14)
i=0

where u; is an infinite length control sequence. Splitting (14) in two parts,
Problem 1 can be recast as:

N-1 o0
minJoo(xk,uf)zmin{ZF(xi,ul-)Jr ZF(xi,ul-)}. (15)
uy u? Li=0 i=N

The basic idea is that the final cost L is not a performance specification
that can be chosen freely, but rather that the P matrix must be pre-computed
such that the penalty term (13) is a good approximation of the second term in
(15) (the infinite stage cost). Unfortunately, this is not usually feasible for
general nonlinear systems, without introducing further restrictions. In
particular, if the case is that the trajectories of the closed-loop system remain
within some neighborhood of the origin (€2) from the time instant £ + N
towards infinity, then, an upper bound on the second term of (15) exists. The
terminal region Q is built such that a local state feedback law similar to the
one employed in dual-mode NMPC asymptotically stabilizes the nonlinear
system in Q. Moreover, it is shown in (Chen and Allgéwer, 1998) that if the
terminal region Q and the terminal penalty matrix P is chosen according to
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Procedure 1 of (Chen and Allgdwer, 1998), then

3 F(x;, Kx;)<x3Pxy (16)
i=N

holds and the following equality is obtained
moioan(xk,uf):mliVnJ(xk,uk), (17)

with J being the cost function as in the standard NMPC Problem 1. This
implies that the optimal value of the finite horizon optimization problem
bounds the value of the corresponding infinite horizon optimization problem,
and thus asymptotic stability of the closed-loop system can be achieved,
irrespectively of the control performance specifications.

Although the idea of using a local state feedback and a terminal
inequality constraint are inspired by dual-mode NMPC, the main advantage
of quasi-infinite NMPC comes from the fact that the control law is
calculated solving the same NMPC problem, not depending on the state
being inside or outside the terminal region, so no switching is involved in
this case.

3. MPC for hybrid systems

A general model of hybrid systems leads to an extremely high complexity
approach for the synthesis, analysis and computation of the controller. So it
is necessary to focus on particular subclasses of hybrid systems that allow
efficient computational methods for MPC and capture a wide range of
industrially relevant processes. In the following, we present two subclasses
to which MPC has already been applied successfully.

3.1. MPC of mixed logical dynamical systems

Mixed logical dynamical (MLD) systems are a subclass of hybrid
systems described by interacting physical laws, logical rules and operating
constraints. For this class of systems there are both continuous and binary
inputs, states, outputs and auxiliary variables. MLD systems include a wide
set of models, among which linear hybrid systems, finite state machines,
some classes of discrete event systems, systems with discrete or qualitative
inputs, constrained linear systems, bilinear systems, piecewise linear output
functions, nonlinear dynamic systems where the nonlinearity can be
expressed through combinational logic. The main motivation for the MLLD
framework is that in many applications the system to be controlled should be
described by means of differential equations as well as by means of logic
(i.e. due to on/off switches, gears or valves). In the MLD setting the logic is
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converted into integer variable linear inequalities to make the model
mathematically tractable. This leads to a description of MLD systems with
linear dynamic equations subject to linear mixed-integer inequalities (i.e.
inequalities involving continuous and logical variables).
The MLD systems are described by equations of the form (Bemporad and

Morari, 1999):

Xy = Ax, + By, + B, 5, + B3z,

v, = Cx; + Dyt + D, 8, + Dsz, (18)

E 6, + Exzy < Euy + Egx, + Es
where x, =[x” (k) x] (k)" is the state vector with x, (k) € R denoting the
continuous part of the state and with x, (k)€ {0,1}" denoting the logical
(discrete) part of the state, and & is sampling time instant. The output y, and
the input u, have a similar structure as the state vector, and z, e R",

8, €{0,1}" are auxiliary variables. MPC proved to be a successful tool for

stabilizing MLD systems to a desired reference point, or for solving the
(reference trajectory) tracking problem. The first MPC algorithm formulated
for MLD systems (Bemporad and Morari, 1999) performs, at each sampling
time instant £, the following operations:

Solve:
m'nJ(vk,xk)=ink w—X ’ +Huk U Py
)} p= +i] ellg, +i—1] ellp
2 s s P
+sz+i71|k ~Zellg, +H kit~ el + (19)
+Hyk+i—1\k =Y. ;
subject to:
Xy = Ax, + Bu, + B,d, + Byz, (20.1)
v, =Cx, + D, + D,d, + Dyz, '
EQ, +Eyz, < Eu, + E;x, + E; (20.2)
Xiene = Xe - (20.3)

Apply to plant (18) only the first element of the optimal control sequence
VZ = [uzlk ’uZ+1|k ,...,uZ+N_1|k ], namely u,tlk , accordingly to the receding

horizon control strategy.
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In the above equations, the standard MPC notation has been used, where
N is the prediction horizon and X, represents the value of the state vector

after i - steps ahead in the future, calculated at the sampling time instant &
using the MLD model (18), the measured state x, and the corresponding

inputs from the control sequencev, . Also, in equation (19), the quintuple
(x,,u,,z,,0,,y,) is an equilibrium quintuple for the MLD system (18) and
|||| 0 denotes the Euclidean norm weighted by matrix Q. Note that the

optimization of the cost function (19) must be fulfilled subject to the feasibility
constraints (20.1) (which ensure that feasibility at one sampling instant implies
feasibility at the next time instant), the constraints (20.2), imposed by the
nature of the MLD system, and the terminal state equality constraint (20.3)
that guarantees stability. Provided that the matrices used in the objective
function (19) are positive definite and that the constrained minimization
problem is initially feasible, it has been proven in (Bemporad and Morari,
1999) that the MPC control law (19)-(20) stabilizes the closed loop system
(18)-(19)-(20). The potentialities of the method and its impact in process
control have been demonstrated through simulation case studies on a
Kawasaki Steel gas supply system in (Bemporad and Morari, 1999).

However, this MPC approach has a drawback, which consists of a
mixed integer quadratic programming problem (MIQP), NP hard, which
must be solved on-line at each sampling time instant subject to constraints.
Although there are several algorithms for solving the MIQP problem, such
as cutting plane methods, decomposition methods, logic-based methods
and branch and bound methods, a high computational effort is required,
which restricts this control scheme to slow processes. Also, condition
(20.3) will not be satisfied for any N so if the prediction horizon is chosen
too small, a solution to the constrained optimization problem may no
longer exist, hence feasibility is lost. These problems were addressed in
(Bemporad et al., 2000), where infinity norms have been used in (19)
instead of 2-norms and an explicit solution has been obtained for the MPC
problem for MLD systems. This can be achieved by reformulating the
original MPC problem as a multiparametric mixed integer linear program
(mp-MILP) and obtaining the explicit piecewise linear control law off-line.
The equality constraint (20.3) has been removed, and a terminal cost has
been added to the cost function (19), such that stability is guaranteed
irrespective of the length of the prediction horizon. Thus, the
computational effort is reduced and feasibility is increased.

However, due to the fact that the explicit piecewise linear control law
calculated off-line consists in a set of state feedbacks, which are used in
certain regions of the state space, a finite number of linear inequalities has to
checked at each sampling time to determine in which region the current state
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resides. Hence, the explicit solution still requires some on-line computations,
which increase in complexity with the length of the prediction horizon (the
number of control regions increases).

3.2. MPC of Piecewise Affine (PWA) systems

Another relevant class of hybrid systems is the class of PWA systems,
described by equations of the form (Sontag 1981):

eQ ., (21)

x(k+1)= A,x(k)+ Bu(k)+ f, for [x(k)} J

u(k)

where 4, e R™, B, e R™, [, eR", VjeS= {1, 2,...,s}, k>0 denotes
the discrete-time instant and {Q, | j e S} is a finite set of polytopes (i.c.

compact and convex polyhedrons) with mutually disjoint interiors. The
PWA systems are particularly important due to the fact that equivalences
exist between piecewise affine systems and several other relevant classes of
hybrid systems (Heemels et al., 2001).

Recently an optimal control solution and an optimal control and receding
horizon control solution have been presented in (Kerrigan and Mayne, 2002)
for constrained PWA systems with bounded disturbances. The optimal
control is determined in this case by comparing the solutions of a finite
number of multiparametric linear programming problems, instead of solving
on-line a multiparametric mixed integer linear programming problem.
Although this approach might not be realizable for large or complex
systems (due to the computations required for calculating the robust
controllable sets), the controllable sets theory can be used for studying the
feasibility of the MPC problem for MLD systems (i.e. a lower bound N on
the prediction horizon can be estimated such that feasibility is guaranteed
for any N>~ ). Another MPC algorithm for piecewise affine systems, that
uses reverse transformation, has been presented in (Mayne and Rakovic,
2002).

An approach for reducing the on-line computational load encountered in
MPC algorithms for piecewise affine systems has been presented in (Lazar
and Heemels, 2003). This method is based on an algorithm that solves off-
line the controllability problem with respect to an invariant target set. The
algorithm calculates a minimum of discrete events controllable path to the
target set and organizes the resulting state space regions (sets) in a tree-like
structure. For an initial state (or a measured state), a controllable path to
the target set with a minimal number discrete events is easily obtained and
a resulting ordered sequence of state space regions is pre-computed; each
region corresponds to a single sub-model, part of the piecewise affine
system. Then, it has been shown that under suitable assumptions the
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minimal discrete events controllable path can be used to develop a semi-
explicit (sub-optimal) computationally more friendly MPC algorithm for
piecewise affine systems.

4. Conclusions

The research on model predictive control has now reached a relatively
mature stage. This rapidly evolving control methodology has proved to be a
successful solution for the control of industrial applications where hard
constraints are presents. The research in the academic world has been focused
on the stability and the robustness of model predictive control. These problems
have already been thoroughly investigated for linear and nonlinear systems,
leading to a (all most) complete framework. Recently, model predictive
control has also been extended to some relevant classes of hybrid systems and
hybrid MPC tends to become as trendy as nonlinear MPC.
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Abstract

We present an analysis of possible blocking phenomena, deadlock, in Discrete
Event Systems (DES) having corrective and/or Preventive Maintenance
Schedules (PMS). Although deadlock avoidance analysis for several classes of
DES systems has been widely published, and although different approaches for
PMS exist, it is not obvious how to mix deadlock avoidance and maintenance
theories to improve throughput. In this paper we show that for some DES
structures having reentrant flow lines, it is not necessary to stop activities in the
DES, for the case one or more machines in production lines are in PMS.
However, PMS may cause deadlock to occur if activities continue in some
machines. We propose deadlock-free dispatching rules derived by performing
circular wait analysis for possible deadlock situations in systems with PMS.
This is accomplished by integrating the PMS structure and failure dynamics into
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a separate DES system that acts as a disturbance in the primary Reentrant Flow-
line DES system. We propose a matrix formulation and a Finite State Machine
to synchronize both subsystems.

Keywords: deadlock avoidance, Petri nets, discrete event systems, reentrant flow

lines, maintenance

1. Introduction

In this paper we address the problem of avoiding possible deadlock
situations on Flexible Manufacturing Systems or Discrete Event Systems
(DES) having shared resources in Reentrant Flow-lines [Kumar 93], with
scheduled maintenance jobs. It is no doubt Preventive Maintenance (PM) is
a vital activity for improving machines availability in DES. This improving
of availability is due to the decreased number of corrective maintenance jobs
in machines, which lead to a much more costly production times. PM
methods, like the Reliability-Centered Maintenance method has been used
for years, and is still a recommended approach [Smith 1992]. Recent studies
have proven advantages of using PM techniques. For example, [Hicks 1990]
has shown improvements in cost-reduction in different Army sites in the
state of Texas. In Hicks’ work, recommendations are given to keep
improving PM schedules. One important recommendation is the search for
automated expert systems for optimal use of machines in systems with PM
schedules. In this paper, we present one expert system with PM schedules
based on matrices that avoid blocking phenomena in reentrant flow-lines. If
DES contains Multipart Reentrant flow-lines (MRF), i.e. shared resources
perform more than one job for same product, in a system producing several
products, and if it is possible not to stop processes, even if one or more
machines are in PM, then blocking phenomena can occur if jobs are not
correctly sequenced in the remaining non-in-maintenance resources. This
blocking phenomenon is known as system deadlock [Banaszak et al. 90,
Hsieh et al. 94, Ezpeleta et al. 95, Fanti et al. 97, Lewis et al. 98]. Therefore,
it is very important that the Discrete Event (DE) controller, after knowing
which resources are in PM or corrective maintenance, properly sequences
jobs and assigns available resources.

In this paper we restrict our analysis to systems lacking key resources
[Gurel et al. 00]. These key resources are critical structured resources that
might lead to possible Second Level Deadlock (SLD) [Fanti et al. 00].
Systems lacking SLD are called regular. In [Mireles et al. 02], we provide a
matrix tests for system regularity. Based on the decision-making matrix
formulation introduced in [Lewis 92-93], this paper presents the
development of a deadlock-free augmented discrete event controller for
regular MRF systems with failures and PMS. This augmented controller
contains a framework capable of handling failures and maintenance-
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capabilities in the DES structure. We describe the DE controller (DEC)
formulation, and show how to analyze and compute in matrix notation the
structures needed for deadlock-free dispatching algorithms. Based on these
matrix constructions, we integrate PM systems’ information for deadlock-
free dispatching rules in our augmented DEC matrix formulation by limiting
the work-in-progress (WIP) in some critical subsystems, which we define
later. This is accomplished by integrating a Finite State Automata system
composed of the primary Reentrant Flow-line DES system, and the
disturbance-acting PMS structure containing failure dynamics.

2. Matrix-based discrete event controller

A novel Discrete Event Controller (DEC) for manufacturing workcells
was described in [Lewis et al. 93, Mireles et al. 0la-b]. This DEC is based
on matrices, and it was shown to have important advantages in design,
flexibility and computer simulation. The definition of the variables of the
Discrete Event Controller is as follows. Let v be the set of tasks or jobs used
in the system, r the set of resources that implement/perform the tasks, u the
set of inputs or parts entering the DES. The DEC Model State Equation is
described as

X=F,®v®F.®F ® F,®u ®F, ®ii, , (1)

where: X is the task or state logical vector, F is the job sequencing matrix,

F is the resource requirements matrix, F is the input matrix, F_is the

conflict resolution matrix, and . is a conflict resolution vector.

This DEC equation is performed in the AND/OR algebra. That is,
multiplication ® represents logical “AND,” addition @ represents logical
“OR,” and the over-bar means logical negation. From the model state
equation, the following four interpretations are obtained. The job sequencing
matrix F, reflects the states to be launched based on the current finished
jobs. It is the matrix used by [Steward 81] and others and can be written
down from the manufacturing Bill of Materials. The resource requirement
matrix F, represents the set of resources needed to fire possible job states
this is the matrix used by [Kusiak et al. 92]. The input matrix F, determines
initial states fired from the input parts. The conflict resolution matrix F,

prioritizes states launched from the external dispatching input #., which has

to be derived via some decision making algorithm [Graves 81]. The
importance of this equation is that it incorporates matrices F, and F;,
previously used in heuristic manufacturing systems analysis, into a rigorous
mathematical framework for DE system computation.

For a complete DEC formulation, one must introduce additional matrices,
S; and S, as described next. The state logic obtained from the state equation
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is used to calculate the jobs to be fired (or task commands), to release
resources, and to inform about the final products produced by the system.
These three important features are obtained by using the three equations:

Start Equation (task commands) v, =S, ® x 2)
Resource Release Equation re=S ®x 3)
Product Output Equation y=5,®x . 4)

3. Matrix analysis of MRF systems

In these sections we present a technique for deadlock-free dispatching for
MRF systems with maintenance schedules, and show how to implement
some notions from other papers using matrices. First, we integrate PM
systems in MRF structures using our matrix approach, and then, we
determine the deadlock constructions needed for free dispatching. This
yields computationally efficient algorithms for analyzing the structure of
MREF and deadlock-free dispatching.

Part P1

Conveyor J R3 i out
Rla | Cl a T
PartP1 __ "y
I (2) Robots

Part P2 > el -
ar I P > Conveyor (2) Robots Part P2
R1b C2 I type 3 out
> I
R3c R3b
conveyor
C3 .
(2) Machines
Type A

2) Robzots I' R2a
e
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T R2b

Figure 1. Multipart Reentrant Flow Line Problem

Consider the following definition of Multiple Reentrant Flow-lines,
which define the sort of discrete-part manufacturing systems that can be
described by a Petri net. The characteristics of MRF systems are:

e No preemption. A resource cannot be removed from a job until this

job is completed.

e Mutual exclusion. A single resource can be used for only one job at a time.
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e Hold while waiting. A process holds the resources already allocated to

it until it has all resources required to perform a job.

e For the DE systems we consider in our analysis, the following are

their particularities:

e Each job uses only one resource.

e After each resource executes one job, it is released immediately for its

availability.

e In this paper we also consider handling scheduled preventive

maintenance, as well as machine failures.

An example of a class of MRF system is given next. Consider the
Multipart Reentrant Flow-line problem shown in Figure 1. This system uses
two types of machining resources and three types of robotic resources,
machine types A and B, and robots type 1, 2 and 3. Any of the (two) robotic
resources type 1 moves incoming parts P1 and P2 to conveyors C1 and C2
respectively. Any of the (two) robotic resources type 2 can accomplish two
jobs, jobs R2a and R2b. Job type R2a moves part type P2 from conveyor C2
to buffer of (any of the two) machines type B. Job type R2b moves machined
part type P2 from (any of the two) machines type B to conveyor C3. Any of
the (two) robotic resources type 3 can accomplish three jobs, jobs R3a, R3b,
and R3c. Job type R3a moves part type P1 from conveyor C1 to buffer of
(any of the two) machines type A. Job type R3b moves machined part type
P1 from (any of the two) machines type A to parts out P1. Job type R3c
moves machined part type P2 from conveyor C3 to parts out P2.

In this example, for simplicity, we are assuming buffer sizes on
conveyors and machines equal to one. This assumption will help us
emphasize possible deadlock situations when resources are been in failure or
scheduled for maintenance. Also, if we consider larger buffers, we will reach
a practical point where the buffer might be full and so our same deadlock
situation will appear.

3.1. Failure/Maintenance DES structure

In this section we present an extension of the matrix framework presented
in section 2 to incorporate DES systems with Failure and/or PMS. When
human operators proceed to fix failures in machines/resources or proceed to
perform a preventive maintenance, their jobs can be seen as specific jobs
holding such machines/resources. The problem is that holding such resources
being in Failure or PMS can lead to system deadlock. Therefore, in order to
be able to control a DES with failures and/or maintenance schedules, one has
to consider that each of such machine/robotic resources is in one of three
possible states: In-Service state, Failure state, or in PM state. Then, for each
resource in a PN representation, has to illustrate the Failure and PM states, as
in the PN addition system in figure 2. We call this PN system the Failure-
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Maintenance (FM) system. In this figure, the places and transitions
highlighted as “In-Service Status” belong to the FMR system, where ¢, and ¢,
represent transitions eJob;; and Jobje, for the j number of jobs from resource
R;. Notice that transition #g; fires when a failure occurs in resource R; (for
i=1,2...n=number of resources) while performing operation Job;, after
finishing this repair job, #s; should be fired (in the PN from figure 2, this can
be easily ensured by adding a virtual place between each t;; and t;; transition
pairs). Transition fy,; will fire when a preventive maintenance M, for resource
R; is requested. When a transition tg fires, a failure repair job, Fl;, is
requested for execution. Maintenance times for jobs type M, are
deterministic times. However, repair time jobs, type F,,;, are stochastic and
not deterministic, and usually F,,, job times are larger than M, job times.
Note that in order to improve throughout, transitions #; are preferred over all
others. However, transition ., is not always an ‘urgent’ transition to fire due
to a scheduled PM, by presence of a new token in place M,,;. This is, the
supervisor can decide whether it is more important to finish pending jobs, or
proceed to maintenance of corresponding resource R;.

other f'obs other jobs
i Inj  failures

tmi

Mant
Ly t L finish other
N -~ ) N — Y pending jobs j
Maintenance In-Service Failure
status status status

Figure 2. Corrective, In-Service and Preventive status of FM

The definition of the Failure-Maintenance system structure follows. Since
the structure discussed in section 2 is now augmented by the addition of
corrective and PMS, the FM structures, we need to re-define the formulation
from section 2. For this, we need to include jobs type Fi, and M., (the
repair and the maintenance jobs, respectively), and the control transitions
that activate these jobs for every type of resources R;. We include these sets
in our now augmented matrix form. We integrate these FM structures by
incorporating in matrices F and S the transitions and places shown in figure
3. This figure shows black and gray dots, representing ones and zeros in the
rows & columns shown. To properly maintain FM structures, we supervise
the maintenance-integrated system, and keep track of job markings that
belong to this system. That is, the number of tokens in the FM addition
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system for each resource plus the number of tokens in the job set of same
resource is always constant and equal to the initial marking in that resource
(assuming no maintenance is in schedule at the time the initial marking is
calculated.)

Resource places are he only places shared between PM structures and the
original PN (with no PMs). Notice also that for any of these two options, the
‘travel’ of tokens between one system to the other is through resource places
R. Unless, of course, if a failure happens at the moment a machine is
performing a job, a token passes from that job to failure status job place F.;
(by firing corresponding tg). For this case, we consider the part was not
finished, and stays in standby as a damaged part or for to be re-machined.
Then, when failure happens, t; is fired with high priority and start
maintenance failure job type Fp.

Fa Foy Fh ST ST
Mar My FgJobyJob; Ry M,y Frep1 Jobydobi; Ry

12

fr12

Figure3. F,, F,, F,, SVT,, S.T matrices for resource R,

This separation of systems MRF and FM is practical for the following

reasons:

1) Since FM system does not have resource loops and does not generate
extra resource loops if exist any in the general existing system, this
facilitates deadlock analysis on the MRF system without worrying
about dynamics on FM systems.

2) It is possible to maintain and control an independent FM subsystem
with its appropriate PMS, and the existing general system by properly
handling the marking vectors from both systems. It is clear that at any
given time, the total number of tokens in a job set from a specific
resource set, plus the available set of resources from that set is
maintained equal to the initial marking of that resource set. This total
number of tokens is diminished by one, for every job been in
maintenance, i.e. been in its corresponding FM system’s job set. Then,
by maintaining for each resource this number of tokens equal always
to the sum of tokens from both systems, it is possible to maintain
control of the MRF and FM systems.

Figure 2 shows the FM Petri net system structure that has to be added for
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each resource in the FMR system to supervise preventive and corrective
jobs. Figure 3 shows the matrix representation section representing only the
FM system of resource R;. For the class of MRF systems we are considering
including FM, deadlock can occur only if there is a circular wait relation
among resources [Deitel 84, Gurel et.al 00]. Circular wait relations are
ubiquitous in reentrant flow-lines and in themselves do not present a
problem. However, if a circular wait relation develops into circular blocking,
then one has deadlock. But, as long as dispatching is carefully performed,
the existence of circular wait relations presents no problem for regular
systems [Gurel et.al 00]. In this paper we restrict our analysis to regular
systems. This systems lack key resources. These key resources are critical
structured resources that might lead to possible Second Level Deadlock
(SLD) [Fanti et al. 00] situations in MRF systems. In [Mireles et al. 02a-b],
we provide a matrix tests for system regularity.

3.2. Circular waits: simple circular waits and their unions

In this section we present a matrix procedure to identify all circular waits
(CW) in MRF systems. CWs are special wait relationships among resources
described as follows. Given a set of resources R, for any two resources 7; r;
CR, r; is said to wait for 7;, denoted r,—7;, if the availability of 7; is an
immediate requirement to release r;, or equivalently, if there exists at least
one transition xeer,nre. Circular waits among resources are a set of
resources 7, Fp,...ry, which wait relationships among them are r,—
ry—>...—r,, and r,— r,. The simple Circular Waits (sCW), are primitive
CWs which do not contain other CWs. If sSCW are present in the PN system
structure, these are identified by constructing a digraph of resources.
[Hyenbo 95] demonstrated a technique to identify such sCW. We used his
approach to construct digraphs in matrix form. The entire sets of CWs are
the sSCW plus the circular waits composed of unions of non-disjoint SCW
(unions through shared resources among sCW.)

In [Mireles et al. 0I], we obtained two matrices, C,, and G, using
digraph theory and string algebra. C,, provides the set of resources which
compose every CW (in rows), that is, an entry of ‘one’ on every (i,j) position
means that resource j is included in the /™ CW. G provides the set of
composed CWs (rows) from unions of sCW (columns), that is, an entry of
‘one’ on every (i,j) position means that /" sCW is included in the "
composed CW.

3.3. Deadlock analysis: identifying critical siphons and
critical subsystems

Three important sets associated with the CWs C are the siphon-job sets
Js(C), the critical siphons, S.(C), and critical subsystems, J,(C). The critical
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siphon of a CW is the smallest siphon containing the CW. Note that if the
critical siphon ever becomes empty, the CW can never again receive any
tokens. This is, the CW has become a circular blocking. The siphon-job set,
J5(C), is the set of jobs which, when added to the set of resources contained
in CW C, yields the critical siphon. The critical siphons of that CW C are the
conjunction of sets J(C) and C. The critical subsystems of the CW C, are the
job sets J(C) from that C not contained in the siphon-job set J((C) of C. That
is Jo(C) = J(C\ J(C). The job sets of CW C are defined by J(C) = U,ec J(1),
for J(r) = r**nJ, where J is the set of all jobs.

In order to implement efficient real-time control of the DES, we need to
compute these sets in matrix form. We need intermediate
quantities *C and C*, input and output transitions from C, and which in

matrix form for each CW are denoted 4C and Cy respectively, computed as,

dC = C'out Sra and (5)

Cy=C,u F.". (6)

In terms of these constructions, matrix form sets are described next,
indicating ‘one’ on every entry (i,j) for places that belong to that set existing
in every /" CW. The job sets described earlier for each CW C, J(C), in
matrix form (for all CWs arranged in rows) are described by

Je=aCF,=Cys S, (7)

The siphon-job sects are defined for each ™ CW C; as J(C)=
J(C)N(*C \ C*). In matrix notation, we can obtain them for all CWs by

J;=JcA(C,F)). (8)

The critical subsystems, J,(C;) = J(C)\ Jo(C;), in matrix form for all CWs
C; are obtained by

Jo=Jc A(Cy Fv). )

4. Deadlock avoidance

In terms of the constructions just given, we now present a minimally
restrictive resource dispatching policy that guaranties absence of deadlock
for multi-part reentrant flow lines. To efficiently implement in real time a
DE controller with this dispatching policy we use matrices for all
computations. We consider the case where the system is regular, that is, it
cannot contain the Critical Resources (CR) (so-called structured bottleneck
resources or ‘key resources’ [Gurel et al. 00] existing in Second Level
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Deadlock (SLD) structures [Fanti et al. 97, 00].) For this case, we described
in [Mireles et al. 02], a mathematical test to verify that MRF systems are
regular. If that is not the case, we can still use this matrix formulation, but
with a different dispatching policy designed for systems containing second
level deadlock structures. We will present such dispatching policy for FMRF
systems having CR in a forthcoming work.

4.1. Dispatching policy

In this section we consider dispatching for regular systems. In [Lewis et
al. 98] was given a minimally restrictive dispatching policy for regular
systems that avoids deadlock for the class of MRF systems considered in this
paper, but without the failures or PMS. To understand this policy, note that,
for this class of systems, a deadlock is equivalent to a circular blocking
(CB). There is a CB if and only if there is an empty circular wait (CW).
However, CB is possible (for regular systems) if and only if (iff) the
corresponding critical siphon from any CW is empty. This is, there is a
deadlock iff all tokens of the CW are in the Critical Subsystem.

Therefore, the key to deadlock avoidance is to ensure that the WIP in the
Critical Subsystems is limited to one less job than the total number of initial
tokens in the CW (i.e. the total number of resources available in the CW).
Preliminary off-line computations using matrices are used to compute the
Critical Systems. A supervisor is assigned to each Critical Subsystem (CS)
who is responsible for dynamic dispatching by counting the jobs in that
CS and ensuring that they do not violate the following condition, for each
CW C,

m(Jo(Ci)) < mo(Cy). (10)

That is, the number of enabled places contained in the CS for each C;
must not reach the total number of resources contained in that C;. In (10),
mo(C;), is the initial marking of C;,. However, having failures and PM jobs,
the total number of available resources will be diminished. So that m,(C))
does not represent anymore the actual available resources contained for that
C.. To be able to keep track of such available resources, we need to define
the total number of job places from systems FM corresponding to resources
contained in a CW C,, by Jyr(C)). Then, if we diminish m(C;) by jobs
currently in failure and/or PM in Jur(C;), our CB supervision test (10), we
will be able to ensure actual available resources which will ensure deadlock-
free dispatching. This is, our new CB supervision test is

m(Jo(C))) < {myo(C;) - Ine(C))}. (11)

A graphical example of using (11) is pictured in Figure 4. This system
has two circular waits, C;={M1, R3}, and C2={M2, R,}. This system
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contains five FM systems split as separate subsystems. Notice that initial
mo(C;)=4 for i=1,2.
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Figure 4. Complete Petri Net and FM° system structures

The current status shown in Figure 4, is that CW C, has two jobs pending
in m(J,(C;))=2, jobs R3a and ml. Then, since Jyr(C;)=0 (no jobs in places
Fmy, Mmy,, F3, and M,3), and m.(C;)=4, we are able to fire transition t; to
have a total of three tokens allowed by (11). However, since a new attempt
to start a PM job at place M,,,; is in place, and if we fire transition t,mi,
Jvr(C;) will become one, then we should not fire t; since C1 would be in
deadlock, due to (11). For CW C,, the allowable number of resources should
be <{m,(C,) - Jmp(C5)}. This is, should be smaller that 3. Then, we can not
fire transition to, since C, will get into CB until failure maintenance Frep, is
finished. Therefore, it is better not to get into blocking and wait till one of
the jobs m2 is finished to diminish m(J,(C,)) by firing t;;.

The appropriate way to keep the markings of resources equal in both
systems is to use Finite State Automata techniques to supervise both
subsystems alternatively. This is, run one (several) discrete event(s) in
any one of these subsystems, then holds its markings and passes the new
marking of resources R, m(R), before one run event(s) in the other
subsystem. This Finite Element Machine interaction between subsystems is
shown in Figure 5.
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For implementation of the DEC, in every DE iteration, we can use any
desired dispatching policy. For example, FBFS, which maximizes WIP and
machine percent utilization. However, it is known that FBFS often results in
deadlock. Therefore, we combine FBFS with our new deadlock avoidance
test (11). Thus, before we dispatch the FBFS resolution, we must examine
the marking outcome with our deadlock policy. If this resulting outcome
does not satisfy (11), then the algorithm denies or pre-filters in real time
the firing and we apply again the FBFS conflict resolution strategy for the
next possible allowable firing sequence. Then, using FBFS while
permitted, we will try to satisfy in most of the current status of the cell the
case m(Jo(Ci)) = {mo(C;) - Imr(C))}-1. The later condition is an extended
policy from that called MAXWIP policy, defined in [Huang et al. 96].

5 ) N N

- Preventive Maintenance - =h (

Schedules FM DES - Automatic dispatching
- Failure Maintenance Coordinator Coordinator | _ Deadlock-free dispatch
- Failure/maintenance Job routin:
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FM SYSTEM OBJECTIVES PN/DES CONTROLLER’S OBJECTIVES

Figure 5. Finite State Automata interactions between the FM subsystem and
DES controller structure

5. Conclusions

We show an analysis of blocking phenomena in Discrete Event Systems
(DES) having corrective and/or Preventive Maintenance Schedules (PMS).
We show that for some DES structures having reentrant flow-lines, it is not
necessary to stop all activities in the DES, for the case one or more
machines are in corrective and/or PMS. We proposed deadlock-free
dispatching rules derived by performing circular wait analysis for possible
deadlock situations. We analyzed the so-called critical siphons, certain
critical subsystems and resources to develop a DE controller that
guarantees deadlock-free dispatching with PMS by limiting the work-in-
progress in the critical subsystems associated with each CW. This is
accomplished by integrating a Finite State Automata supervision between
two subsystems. One system is the Reentrant Flow-line system structure
controlled by the DES matrix formulation, and an extra DES system
contains the failure and preventive maintenance dynamics, called FM
system structure. Deadlock-free dispatching is possible by passing the
markings of available resources between these two subsystems. The extra
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FM DES system acts as a disturbance in the primary Reentrant Flow-line
DES system.
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Abstract A CIM planning and control architecture is presented, mainly regarding its
software aspects. The system was developed and tested on a flexible
manufacturing cell endowed with industrial equipment. Artificial intelligence
methods and tools were used, namely expert systems, multiagent systems and
rule based programming. The approach that combines centralized planning and
monitoring with de-centralized and distributed decision making and control sub-
systems aims at a high flexibility and autonomy.
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1. Introduction

The use of new Artificial Intelligence (Al) techniques for planning and
controlling in Robotics and CIM (Computer-Integrated Manufacturing)
systems is a topical approach (Murphy, 2000; Parunak, 1999). One problem
in applying the new methods is the difficulty of testing them on industrial
systems. With respect to this, the presented research has the advantage of
being based on a benchmark system that is used for both research and
education. As depicted in Fig. 1, this system is exploiting a Flexible
Manufacturing Cell (FMC), mainly endowed with real industrial equipment.
In order to test a new planning and control architecture it was considered that
the respective cell is part of a CIM system, so that various FMCs may
exchange resources among them and the planning and control approach must
be able to handle this. The goal for the whole system is to assemble the
desired type and number of products, in the shortest time. A classical
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planning and control solution was carried out first (Panescu, 2001); now a
new one is under development, so that an optimal operation, greater
autonomy and flexibility should be obtained.

Figure 1. The layout of the FMC; 1 — robot controllers; 2 — storage devices for raw parts;
3 — IRB 1400 robot; 4 — PC Mill 55 machine tool; 5 — FlexLink conveyor; 6 — OptiMaster
vision control station; 7 — IRB 2400 robot; 8§ — assembly table; 9 — storage device for
processed parts; 10 — storage device for final products

Though in the considered manufacturing system there is a certain
sequence of main operations, namely part processing, quality control and
assembly, certain issues make the planning and control processes difficult.
These are as follows:

e The main operations are accompanied by auxiliary operations, which
must be properly planned to assure no interruption for the system;
these refer to part transfer, feeding/unfeeding of the machine tools and
storage devices.

e The time parameters of the FMCs are variable.

There are certain resources that act as bottlenecks. For example, in the
FMC where the experiments were conducted these are the two robots,
the conveyor and the storage devices. Concerning them, a wrong
planning may cause deadlocks.

e To increase the CIM system autonomy and flexibility, the production
goals were considered to appear randomly, and the planning system
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should be able to deal with them. It means that the planning process is
to be interleaved with execution phases and re-planning when needed.
To handle all these situations a new architecture was developed, making
use of expert systems and agents techniques, as it is shown in the next
paragraphs.

2. The architecture of the planning and control system

The control of the CIM system is achieved in a hierarchical manner. The
decision part is placed on the higher level sending main commands towards
the classical control sub-systems (robots and machine tools controllers, etc).
This level is composed of a multi-expert system in conjunction with some
multiagent systems, as shown in Fig. 2. An expert system deals with CIM
planning and another one is in charge with production monitoring. The first
expert system is continually receiving the goals and is also considering the
tasks already fulfilled by the CIM system, based on the results from the
monitoring expert system. Thus an adaptable operation is possible; as soon
as some outputs (e.g. processed parts) are available from any FMC, they will
be considered in the planning process. Such an operation is supported by the
chosen implementation that is a rule based one; the monitoring expert system
sends facts towards the planning one, and these activate in an opportunistic
manner rules that plan new activities based on newly available resources
(e.g. certain products’ assembly using the recently processed parts).

Goals Resources

'

| Planning Expert Systems |<——| Monitoring Expert Systems |

><:k
Y

FMC, FMC,
Multiagent system Multiagent system
- -

M, l— M, M; | —] Mj
Y Y \ v
IRB IRB Operational
2400 1400 elements

Figure 2. Planning and control architecture

It is to note that the planning and control architecture possesses both
centralized and decentralized features. The two expert systems provide a
centralized management of the main CIM systems goals — assembling of the
products. Otherwise a distributed architecture is achieved through the use of
several FMCs with specific planning and control systems. As already
mentioned, for each FMC the control architecture is a hierarchical one. On
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the top level there is a software multiagent system that gets the action
decisions. These are transmitted to the control systems of the real equipment,
namely to the operational elements. For example, in the FMC,, the one used
for experiments (see Fig. 1), the two robots receive the action decisions. In
this way, in an indirect manner, the robots have been transformed in the two
agents of a multiagent system. This solution was adopted as the robot
controllers can run only programs in their specific programming
environment (the RAPID language). Thus, the CLIPS programs (Giarratano
and Riley, 1989) that implement two software agents, representing action
planning for each robot, are running on two distinct computers, being
connected (by an Ethernet link) with the robot controllers.

3. On flexible manufacturing planning based on multiagent
systems

In the considered FMC and generally in a manufacturing process, the
robots may appear as actors establishing the main events. Many of the
features required for such a role, like autonomous, flexible operation and
continuous interaction with the environment, are naturally conducting
towards the agent systems technique (Wooldridge, 2002). According to the
architecture of Fig. 2, two software agents have been considered, named M,
and M,, corresponding to and guiding the two robots of the FMC,. By the
interaction with the planning expert system and between themselves, both
agents are goal based ones (Russel and Norvig, 1995). As FMC, is a cell that
can provide both part processing and assembly, for M, the main goals refer
to assembling certain products, and for M, these correspond to the auxiliary
operations related to part processing on the machine tool. Besides these,
secondary goals for M, are the ones received from M, (when this one needs
its help) and also those arising from its own motivation (e.g. the conveyor
discharge). For M,, when there is no main goal, it may also take into account
secondary goals received from M, or its own goals, which refer to liberating
some resources. For example, if there is no primary goal from M, (no goal to
supply the machine tool), and some raw parts are on conveyor, M, will
decide to transfer a raw part from conveyor to the storage device; thus the
conveyor that is a shared resource is freed.

A hierarchy exists between the two agents: M, is ranked higher than My;
this means that M, must accomplish the goals on part processing received
from M, first (these are its primary goals) and only then consider its own
goals. Even so, the dependence between the two agents is not a unilateral
one, but a reciprocal one (Wooldridge, 2002). Indeed M, depends on M, in
satisfying certain production goals. This is the case when a certain part is
needed for assembling and is not available from another production cell,
conducting to the necessity of being produced on the machine tool of FMC;.
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In such a case M, has to consider the goal received from M; and decide
about a sequence of actions for machine tool feeding, starting of the
processing, and finally transferring of the processed part, via conveyor, to
the robot represented by the agent M,. Meanwhile M, depends on M, as in
certain conditions it cannot fulfill some tasks only by itself. This is the case
when the machine tool must be fed and there is no raw part in the storage
device near the IRB 1400 robot. Then the agent M, will ask the help of M;,
which may pass a raw part from the storage device near it, by using the
conveyor.

A main property for a multiagent system is its communication ability. In
the designed scheme there are several communication channels. First, there
is a transfer of information from the planning expert system to the
multiagent systems dedicated to various FMCs, representing the goals these
must achieve. Then, the agents of the same system can exchange messages
between them. Semantically these refer to assertions, requests, acceptances
and refusals (Wooldridge, 2002), while syntactically they are all under the
form of the facts in a rule based system (the agents are implemented in
CLIPS). Even for the information received from environment, namely from
the robot controllers, there is a C interface, which converts it into facts that
are included in the agents’ knowledge bases.

As an example on how planning and control of the FMC, are managed,
starting from the goal of assembling a certain product, M; will make a
request towards M, when a certain part is needed for assembling and it is not
already available from another FMC. When the message is received — the
formalism is closed to that of KQML (Wooldridge, 2002) — in the
knowledge base of M, the following fact appears:

(goal of M1 part type D)

The above fact is under the CLIPS appearance and if it activates a chain
of rules that find a plan for the respective goal fulfillment, then a message of
acceptance will be sent to M;. When the agent M, cannot manage by itself,
but there is a plan of fulfilling the goal by cooperation, a conditional
acceptance is sent back towards M;. This may be the case in the considered
example when the raw part necessary for processing a part of type D is not
available in the storage device near the IRB 1400 robot. After receiving the
message, the following fact appears in the knowledge base of M;:

(goal of M, raw_part for type D)

This one activates a chain of rules, which search for an adequate raw part
in the storage near the IRB 2400 robot and the possibility of transferring it to
the IRB 1400 robot. In the peculiar case when the conveyor and the storages
near the IRB 2400 robot are full, the agent M, further asks the help of M,
that will be requested to discharge a position from the conveyor.
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The above example illustrates how a multiagent cooperation strategy can
conduct to solving, in an autonomous manner, manufacturing problems with
multiple robotic actions. The mechanisms of agents’ goal based motivation
and communication proved to be useful in some other cases, as follows.

e When a storage device or the conveyor is full the robots will take the
initiative (there is a self-motivation with respect to this) to discharge
it, even if there is no production goal justifying this by that time. After
such an action, the agent responsible for it will inform the other ones,
by sending a message of assertion type. Such behavior was chosen
when the Petri net of the FMC, was studied and the necessity of
deadlock avoidance was considered.

e As already mentioned, there is a continuous exchange of information
between the multiagent systems and the two expert systems from the
top level. This allows the planning and control system to manage the
whole CIM system operation, even if the duration of various
operations is variable. For example, in the FMC,, when a part is
processed on the machine tool and one of the same kind arrives from
another FMC, the IRB 2400 robot will immediately use this in the
assembling process, in order to minimize the time of product delivery.
In such a case the agent M, informs M, about the event and so M, will
make a plan to store the processed part in its storage. If such a plan
fails (e.g. its storage of processed parts is full), M, will further ask for
the cooperation of M;. In the same time, as the monitoring expert
system is informed about such events by the multiagent systems of the
corresponding FMCs, a feedback is sent towards the planning expert
system and re-planning is started.

e Besides messages of acceptance, illustrated in the previous cases,
refusals are also possible. As an example, when M, receives a goal to
process a certain part on the machine tool and there is no
corresponding raw part in its storage device it will ask the help of M;.
In the case that the storage device near the IRB 2400 robot does not
contain any corresponding raw part, the answer of M, to the request of
M, will be a refusal. In this case, the monitoring expert system is
informed about the failure of the processing operation, and again the
planning expert system will have to re-plan the goal towards another
cell.

4. Conclusion

A few conclusions resulted from the research developed so far on Al
based planning and control in CIM. As with other new techniques, there is a
gap between research and industrial application of multiagent systems; the
presented architecture is to be regarded as reducing this gap, because real
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equipment and problems were used. Agents and expert systems, through the
way they consider the environment, the communication and the opportunist
management of events, are able to deal with ill-structured problems. This is
the case for many CIM systems, since it can be difficult to possess, from the
beginning, all necessary information for planning and control, but this may
appear randomly, as it is the case of the market’s requests. Moreover, when
the CIM system is a complex one, with several manufacturing cells, the
combination of centralized/de-centralized planning and control provided by
the proposed architecture, together with the modularity of the respective Al
methods, conduct to a greater adaptability and autonomy, in comparison
with the classical solutions.

Through a hierarchical structure, with the AI sub-systems on higher
levels, robotic applications get new enhancements, as this contribution
showed. Even using current industrial robots, which possess little
intelligence, when connected with software agents these can become more
flexible tools, and CIM systems that have such robots as central actors can
be much easier deployed.
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Abstract

Keywords

A MATLAB toolbox has been developed to handle the basic problems of
discrete event dynamical systems that are modeled by Petri nets. In the Petri Net
Toolbox five types of Petri nets (untimed, transition-timed, place-timed,
stochastic and generalized stochastic), with finite or infinite capacity, can be
used. A user-friendly graphical interface allows activating three simulation
modes (accompanied or not by animation) and running specific functions that
cover the key topics of analysis such as coverability tree, structural properties
(including invariants), time-dependent performance indices, max-plus state-space
representations. A design procedure is also available, based on parameterized
models. By incorporating instruments to explore the dynamics of Petri net models, as
well as animation facilities to support the intuitive understanding and to guide the
users in the exploitation of the software, the Petri Net Toolbox proves to be a
valuable aid for Control Engineering education.

Control Engineering education, discrete event systems, Petri nets, MATLAB
software

1. Motivation and objectives

The Petri Net Toolbox (PN Toolbox) was designed, implemented and
tested at the Department of Automatic Control and Industrial Informatics of
the Technical University ,,Gh. Asachi” of lagi. It is software for simulation,
analysis and design of discrete event systems (DES), based on Petri net (PN)
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models, and embedded in the MATLAB environment. Our initiative brought
remarkable benefits for training and research because Control Engineering
students are familiar with the exploitation of Graphical User Interfaces
(GUIs) (The MathWorks, 2001a) based on this popular software. The
integration of the PN Toolbox with the MATLAB philosophy has the
incontestable merit of broadening the MATLAB's utilization domain
towards the area of discrete-event systems, which is now covered only by the
State-Flow package. The orientation of the PN Toolbox was also meant to
permit further development in the sense of hybrid systems, since MATLAB
incorporates comprehensive libraries for studying continuous and
discontinuous dynamics.

In the current version (namely 2.0) of the PN Toolbox, five types of
classic PN models are accepted, namely: untimed, transition-timed, place-
timed, stochastic and generalized stochastic. The timed nets can be
deterministic or stochastic, and the stochastic case allows using appropriate
functions to generate random sequences corresponding to probability
distributions with positive support. The default type of an arc is regular, but
the user is allowed to change it into double or inhibitor, if necessary. Unlike
other PN software, where places are meant as having finite capacity, our
toolbox is able to operate with infinite-capacity places. In addition, the PN
Toolbox allows the assignment of priorities and/or probabilities to
conflicting transitions. As an educational aid, this software is suitable for
applications illustrating the theoretical concepts provided by courses on PNs
with different levels of difficulty, e.g. (Pastravanu, 1997), (Pastravanu et al.
2002), (Matcovschi, 2003), allowing relevant experiments for studying the
event-driven dynamics of physical systems encountered in many technical
fields (such as flexible manufacturing systems (FMSs), computer systems,
communication protocols, power plants, power electronics).

The main goal envisaged by the designers of the PN Toolbox was to
provide a collection of instruments for education and training at a graduate
level, exploitable under MATLAB. Therefore, the focus was placed on
developing students’ skills in mastering PN models as a generous framework
for dealing with discrete-event systems. Although a large number of tools
are advertised for various types of PN problems (Mortensen, 2003), the
unified treatment permitted by the PN Toolbox for untimed,
deterministic/stochastic P- and 7-timed PNs, stochastic and generalized
stochastic PNs, ensures the premises for an efficient instruction. Thus, the
user needs a short time to learn how to handle the PN Toolbox and his major
intellectual effort is invested in the construction and careful analysis of the
PN models. The interest shown by the authors for the convenient usage of
the PN Toolbox is reflected by the numerous improvements brought to its
previous versions (Mahulea et al, 2001), (Matcovschi et al, 2001),
(Matcovschi et al., 2002).
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For attaining the proposed teaching goal, we preferred to orient our work
towards enhancing the quality and reliability of the procedures devoted to
standard topics rather than developing new algorithms. Consequently, the
authors’ attention focused on the following targets: (i) implementation of
efficient algorithms for simulation, analysis and synthesis, (ii) creation of
powerful visual support for the intuitive understanding of PN model usage,
and (iii) elaboration of a comprehensive online help including animated
demonstrative examples of handling the software.

2. Simulation, analysis and design

The PN Toolbox has an easy to exploit GUI (Matcovschi et al., 2003)
that gives the possibility to draw PNs in a natural fashion and allows a
straightforward access to various commands starting adequate procedures for
exploiting the PN models.

The simulation mechanism is based on the rule for enabling and firing of
transitions specific to the type of the current PN model. Consequently, the
simulation is driven by an asynchronous clock corresponding to the
occurrence of events (Cassandras, 1993). In the untimed case, the
sequencing of the events is reduced to simply ordering their occurrence,
without any temporal significance, unlike the timed case when simulation
requires a continuous correlation with physical time.

Three modes of simulation are implemented in the PN Toolbox, namely:
Step, Run Slow and Run Fast. The Step and Run Slow simulation modes are
accompanied by animation; the user can record the progress of the
simulation in a log file with HTML format. After ending a simulation (run in
any of the three modes) a number of Performance Indices are available to
globally characterize the simulated dynamics. They refer to: (i) transitions:
Service Sum (the total number of firings during the simulation), Service Rate
(the mean frequency of firings), Service Distance (the mean time between
two successive firings), Utilization (the fraction of time when server is
busy); and (ii) places: Arrival Sum, Throughput Sum (the total number of
arrived/departed tokens), Arrival Distance, Throughput Distance (the mean
time between two successive instants when tokens arrive in/depart from the
place), Waiting Time (the mean time a token spends in a place), Queue
Length (the average number of tokens weighted by time). For timed or
(generalized) stochastic PNs, while in the Step and Run Slow simulation
modes, the Scope facility opens a new MATLAB window that displays
(dynamically) the evolution of a selected performance index versus time.

For untimed PN models, the behavioral properties (e.g. boundedness,
liveness, reversibility, etc.) may be studied based on the coverability tree of
the net. The coverability tree is built with or without the w-convention. The
w-convention means the usage of a generic symbol (herein denoted by “®”)
for referring to unbounded markings (Murata, 1989). The structural
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properties are approached as integer programming problems (Matcovschi et
al., 2001); the minimal-support P- and T-invariants (Martinez and Silva,
1982), (David and Alla, 1992) are displayed, on request, in separate windows.

A facility for the synthesis of timed or (generalized) stochastic PN models
is Design, which allows exploring the dependence of a Design Index on one
or two Design Parameters that vary within intervals defined by the user. For
each test-point belonging to this (these) interval(s) a simulation-experiment is
performed in the Run Fast mode. The results of all these simulation-
experiments yield a graphical plot (2-D or 3-D, respectively) defining the
dependence of the selected Design Index on the Design Parameter(s), the
extreme values of the Design Index are numerically displayed.

The PN Toolbox is able to derive, directly from the topology and initial
marking of a place-timed event graph, the max-plus state-space representation
(Bacelli ef al., 1992). The following facilities are available for the max-plus
analysis (Matcovschi et al.,, 2002): e displaying the matrix-form of the
equations; @ max-plus simulation; @ graphical plots of the simulation results.

3. Visual information and animated demos

To enlarge the addressability of the PN Toolbox, it includes a series of
animation facilities aiming either to support the intuitive understanding or to
guide the users in the exploitation of the software.

In the simulation modes Step and Run Slow, numerical computation is
accompanied by animation whose role consists in feeding the user with
visual information (current token contents of the places, currently firing
transition), complementary to the numerical data available at the end of a
simulation experiment. The animation technique is based on the general
philosophy of the object-oriented graphics system, called Handle Graphics
(The MathWorks Inc., 2001b). The nodes and arcs of a model are uniquely
identified as MATLAB objects whose properties define (i) the characteristics
of the PN, (ii) the graphical representation of the objects in the special area
reserved for model drawing and (iii) the simulation status. The animation
effects are obtained by automatically calling the set function for the
properties referring to the appropriate instance of an object.

At the same time, the PN Toolbox was meant to illustrate, by short
movies, behaviors that are typical for discrete event systems, for example
sequential/parallel sharing of resources, routing policies, services in queuing
networks, etc. The implementation combines, by means of the ActionScript
Toolbox for Macromedia Flash (Macromedia, 2003), various techniques
such as 2D and 3D graphics developed in Adobe Photoshop 7 (Adobe
Systems Inc, 2003) and Maya 4.5 (Alias|Wavefront Inc, 2003), respectively.
Each movie shows the physical motion of a real-life system synchronized
with the token dynamics in the associated PN model, as resulting from the
tutorial examples commented on in the following section. The movies are
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accessible on the web site we have created for the PV Toolbox (Mahulea et
al., 2003).

On the PN Toolbox site, the user can also find the online help of our
software as well as some animated demos whose purpose is to present
specific sequences of operations in handling the GUI and the interpretation
of numerical results. Watching these demos, the user learns how to handle
the key problems of discrete event systems within a PN framework: usage of
adequate PN type (untimed, P/T-timed, stochastic or generalized stochastic)
in model construction, study of behavioral/structural properties, analysis of
max-plus representation, simulation and interpretation of the results,
parameterized design, etc.

4. Tutorial examples

The four tutorial examples briefly described below were designed to
prove the effectiveness of the PN Toolbox in assisting the DES training
based on the Petri net theory. These examples cover a large area of classical
topics and the incorporated animation is extremely profitable especially for
the beginners along the lines detailed in the previous section.

Demo 1 refers to a computer system with two processors sharing two
disks (in parallel) which is a version of the “Two Dinning Philosophers”
well-known problem (Dijkstra, 1968), illustrated by a movie from which a
frame is captured in fig. 1.

[ 3 Petri Net Toolbar - Demos - Microsolt Internet Explorer 1811
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Figure 1. Frame in the Demo I movie illustrating the “Two Dinning Philosophers”
problem together with the dynamics of the associated PN model
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The addressed problems are: ® construction of an untimed Petri net
model; e analysis of deadlock (via the coverability tree); ® prevention of
deadlock through lookahead feedback (Lewis et al., 1995); @ access to the
following information about the Petri net model: incidence matrix, minimal-
support P- and T-invariants, structural properties.

Demo 2 refers to a manufacturing system with a sequentially shared robot
(Desrocheres and Al-Jaar, 1993), (Zhou and DiCesare, 1993), illustrated by a
movie from which a frame is captured in fig. 2. The addressed problems are: ®
construction of a P-timed Petri net model; e analysis of deadlock (via
simulation); e prevention of deadlock by limiting the number of pallets; ®
analysis of time-dependent performance indices and e study of a performance
index depending on two design parameters (see fig. 3).
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Figure 2. Frame in the Demo 2 movie illustrating the functioning of a manufacturing
system concomitantly with the dynamics of the associated PN model

Demo 3 refers to a flow-shop system with three machines, adapted from
(Bacelli et al., 1992). The addressed problems are: @ simulation and animation
in the Run Slow mode; ® record of the simulation results in a log file; ®
computation of the cycle time, ® max-plus analysis of a place-timed event
graph: max-plus state-space representation, setting of the values for the input
vectors, max-plus based simulation and plots of the components for the input,
state or output vectors (see fig. 4).

Demo 4 refers to an open markovian queuing network (Cassandras,
1993). This demo illustrates: ® construction of a generalized stochastic Petri
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net model; ® usage of the Scope and Diary facilities; ® analysis of time-
dependent performance indices.
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Figure 3. Frame in Demo 2 introducing, by animation, the usage of parameterized design
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Figure 4. Frame in Demo 3 presenting, by animation, the usage of max-plus analysis
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5. Conclusions

Despite the large offer of software products available for MATLAB, none
of its toolboxes provides instruments able to handle Petri net models. This
fact has motivated the development of the PN Toolbox based on a user-
friendly graphical interface that makes it very attractive for students because
they don’t have to spend time for code writing and their attention can
exclusively focus on the topics of Control Engineering. The facilities created
for simulation, analysis and design prove useful in many types of
applications including a wide range of event-driven dynamics, as illustrated
by the four tutorial examples briefly presented in the text.
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Abstract In previous works on componentwise asymptotic stability (CWAS), the analysis
of CWAS for a given linear system requested the investigation of an auxiliary
system of difference (in the discrete-time case) or differential (in the
continuous-time case) inequalities, built from the state equation of the studied
system. Our paper shows that, by the adequate usage of the infinity norm, the
analysis of CWAS can circumvent the construction of such inequalities and can
apply the standard tools of asymptotic stability (¢ - § formalism, properties of
the operator describing the system dynamics, Lyapunov functions) directly to
the studied system. These novel results reveal the complete meaning of CWAS
as a special type of asymptotic stability.

Keywords: componentwise asymptotic stability, stability analysis, flow-invariant sets,

linear systems

1. Introduction

The concepts of componentwise asymptotic stability (CWAS) and
componentwise exponential asymptotic stability (CWEAS) were introduced
and characterized for continuous-time dynamical systems by Voicu, who
explored the linear dynamics in (Voicu, 1984a; b) and the nonlinear
dynamics in (Voicu, 1987). Voicu's works relied on the theory of time-
dependent flow-invariant sets (Pavel, 1984) which allowed a refinement of
the standard stability notions, by the individual monitoring of the state-space
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trajectories approaching an equilibrium point. Later on, CWAS and CWEAS
were extended by Hmamed to continuous-time delay linear systems
(Hmamed, 1996) and to 1-D and 2-D linear discrete systems (Hmamed,
1997). Recently, Pastravanu and Voicu dealt with CWAS and CWEAS of
interval matrix systems in both discrete-time and continuous-time cases
(Pastravanu and Voicu, 1999; 2002). For a survey of some results based on
time-dependent flow-invariant sets see (Voicu and Pastravanu, 2003).

All the researches mentioned above focused on the characterization of
CWAS / CWEAS via difference inequalities (in the discrete-time case) and
differential inequalities (in the continuous-time case). Consequently,
emphasis was placed on studying the properties of the operators defining
such inequalities, which were different from the operators describing the
system dynamics.

The purpose of the current paper is to point out the existence of direct links
between the dynamics of the studied system and CWAS / CWEAS as a special
type of asymptotic stability. It is shown that such links are ensured by the
usage of infinity norm and operate as particular forms of well-known results in
the classical theory of stability. Thus, the analysis of CWAS / CWEAS can
circumvent the construction of the inequalities mentioned above and can apply
standard tools in stability theory directly to the investigated system.

During the last decade, the infinity norm has been used in several works
devoted to the study of polyhedral invariant sets and their application in
control — see, for instance, the remarkable survey paper (Blanchini, 1999)
and the papers cited therein. For most of these researches, the polyhedral
invariant sets do not depend on time, or if they do, the time-dependence is
understood as a contraction of exponential type, operating uniformly on the
constraints of the initial conditions (which is actually induced by the
exponential-type decreasing of a non-quadratic Lyapunov function
associated with linear systems). Therefore, such researches (focusing on the
generality of the polyhedrons, but neglecting the generality of the time
dependence) do not realize that the studied invariance is strongly related to a
special type of asymptotic stability (actually meaning CWAS / CWEAS).

Besides the intrinsic value of the stability analysis tools developed by our
paper, we are also able to bridge the gap between the research trend
commented above and the CWAS / CWEAS framework. Thus, CWAS /
CWEAS as special type of AS, reveal the complete meaning of the
invariance for symmetrical rectangular sets, whose dependence of time is a
priori stated and explicitly defined.

2. CWAS and CWEAS derived from flow invariance

This short presentation of the key concepts and results on CWAS and
CWEAS is based on the initial formulation proposed for the continuous-time
case in (Voicu, 1984a; b) and, later on, unified for discrete-time and continuous-
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time cases in (Pastravanu and Voicu, 1999, 2002).
Consider the linear system:

x'(t) = Ax(f), AeR"™, (1)

where te€T denotes the independent variable with discrete-time meaning
T =Z,, or continuous-time meaning T =R, and the action of the operator
()'is defined by:

' x(¢+1) for the discrete-time case te T=Z7,;
x'(r) = 2)

x(¢) for the continuous-time case t€ T=R,.

Definition 1. Given the vector function h(¢): T — R", which fulfils the

following conditions:
(a) in the discrete-time case (T=Z,), h(t) has positive components

h(t)>0,i=1,...,n,and }i_{gh(t)zO,

(b) in the continuous-time case (T =R, ), h(t) is differentiable, has positive
components A4,(¢)>0, i=1...,n, and }i_l}gh(t)zO, system (1) is called
componentwise asymptotically stable (CWAS) with respect to h(¢) if

Vi, teT, t,<t:|x ()| < h(t) = |x@)| < h(t), i=L...,n,3)

where x,(¢), i=1,...,n,denote the state variables of system (1).00

CWAS allows the individual monitoring of each state variable and
therefore it represents a refinement of the standard concept of asymptotic
stability where the evolution is characterized in the global terms of a vector
norm.

Theorem 1 All the functions h(t) that fulfill the conditions in Definition I

are solutions of the difference inequality (in the discrete-time case) or
differential inequality (in the continuous-time case):

W) > A h(), (4)
where the matrix A € R™" is built from matrix A in equation (1), as follows:
(a) for the discrete-time case:

a; =la; |, i, j=1,n; (5a)

)
(b) for the continuous-time case:
a,=a,, i=1,---,n,

ii > (5b)

a; =a;l, i#j, i,j=1--,n.
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System (4) confers a consistent dynamical signification to the operator

A, pointing out the origin of the CWAS concept in the theory of flow-

invariant sets. Within this context, it is worth saying that system (4) might

have solutions h(#) that do not fulfill the condition limh(z) =0 in Definition
[—0

1, but such solutions are able to define time-dependent sets, which are flow-
invariant with respect system (1).

Theorem 2 System (1) is CWAS with respect to an arbitrary h(t) which

fulfils the conditions in Definition 1, if and only if the matrix A built
according to (5a) or (5b) is stable in Schur or Hurwitz sense, respectively.
The usage of CWAS with respect to a particular vector function h(¢) of

exponential type yields:
Definition 2. (a) In the discrete-time case, system (1) is called
componentwise exponential asymptotically stable (CWEAS) if there exist a

vector d € R", with positive components d, >0, i=1,...,n, and a constant
0<r <1 such that

Vi, teT=Z,, t,<t:|x, )< dr® = |x;@)|< dr', i=1,...,n.(6a)

(b) In the continuous-time case, system (1) is called componentwise
exponential asymptotically stable (CWEAS) if there exist a vector d e R”,
with positive components d, >0, i=1,...,n, and a constant » <0 such
that

Vi,,teT=R,, t,<t:|x,(t,)|<de” = |x()|<de”, i=1,...,n.0(6b)
The linearity of the dynamics of system (1) guarantees the equivalence
between CWAS and CWEAS.

Theorem 3 For both discrete-time and continuous-time cases, system (1) is
CWAS with respect to an arbitrary h(t) which fulfils the conditions in
Definition 1 if and only if system (1) is CWEAS.

On the other hand, the exponential form of the vector function h(z)
considered in Definition 2 results in an algebraic characterization of
CWEAS, or, equivalently, CWAS.

Theorem 4 System (1) is CWAS (or equivalently CWEAS), if and only if the
system of inequalities constructed with the matrix A (5a) or (5b):

Ad<rd, deR", d. >0, i=1,...,n, reR, (7)

has solutions 0<r <1 in the discrete-time case, or r <0 in the continuous-
time case, respectively.
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The special structure of matrix A built according to (5a) or (5b) induces
a spectral property to A of crucial importance for the compatibility of
inequality (7):
Theorem S Denote by A, (A), i=1,...,n, the eigenvalues of the matrix A .
i) (o) If A is defined according to (5a), then A has a real nonnegative
eigenvalue (simple or multiple) denoted by A_, (A), meaning the spectral
radius, which fulfills the dominance condition

L (A, (A), i=1,...,n (8a)

max

(b) If A is defined according to (5b), then A has a real eigenvalue
(simple or multiple), denoted by A__(A), meaning the spectral abscissa,

max

which fulfills the dominance condition
Re[A4 (A)]<A . (A), i=1,...,n. (8b)
ii) The system of inequalities (7) is compatible if and only if
A (A)<r. 9)

max

3. CWAS / CWEAS and € ~ é formalism

Although it was eminently clear that CWAS, or, equivalently, CWEAS
represented a stronger concept than the standard asymptotic stability, no
proof has been constructed yet for this statement in terms of norms (which
actually provide the classical tools for defining asymptotic stability). Let us
show that the exponential asymptotic stability incorporates the concept of
CWEAS as a special case, by using the well known € ~ & language. Therefore
consider the following general condition which ensures the exponential
asymptotic stability for the equilibrium point {0} of linear system (1) (e.g.
(Michel and Wang, 1995), pp. 107):

(a) for the discrete-time case:

Ve>0 38(£)>0, 0<w<1:[x(ty)| S 5(e) = Vi1, :||x(1)]| < g0 ™ 3(10a)
(b) for the continuous-time case:
Ve>0 38(£)>0, o<0:]|x(5,)|<5(e)= Vi>t,:||x(?)||< ge”™ ,(10b)

where || || denotes an arbitrary vector norm in R”".
On the other hand, define the vector norm:

1% [lp., =l D7 L., (11)
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where the diagonal matrix
D =diag{d,,---,d,} (12)
is built with the positive constants d, >0, i=1,---,n.

Theorem 6 System (1) is CWEAS if and only if condition (10) is met with
o(g)=¢, w=r and for the vector norm ||||,,, given by (11).
Proof. The inequality ||x(¢,)||,,<¢& is equivalent to the componentwise
inequality | x(¢))[< ¢ dand

(a) for the discrete-time case, the inequality | x(7)||,, <& 7' is
equivalent to the componentwise inequality | x(¢)[< & d ' for t>1¢;

(b) for the continuous-time case, the inequality || x(¢)||,, <& €™ is

equivalent to the componentwise inequality | x(¢)[< e d €™ for t>¢,.m
Proving that the CWEAS property is obtainable from the general
definition of the exponential asymptotic stability, this result motivates us to

further explore the standard instruments used by the stability analysis of
linear systems in order to characterize CWAS / CWEAS.

4. CWAS / CWEAS and properties of operator A

Theorems 4 and 5 are extremely valuable in characterizing the CWAS
(CWEADS) of system (1), because they permit a complete exploration of the link

between the scalar r, vector d and matrix A constructed according to (5).
Nevertheless, they are unable to link » and d directly to matrix A used in system
(1). One can overcome this disadvantage, by introducing the matrix norm
subordinate to the vector norm |||, defined in (11) with (12):

M, = D"'MDJ|,, MeR"". (13)

Theorem 7 Consider a square matrix A and the matrix A built from it
according to (5). A positive vector d and a constant r are a solution of

inequality (7) if and only if
Mo (A) ST, (14)

where p,, (A) denotes a matrix measure defined by:
(a) for A built according to (5a):

Hp (A) = Allp., 5 (152)

(b) for A built according to (5b):



Componentwise asymptotic stability 263

I+7A|],, -1
19, (A) = lim T TA T 21 (15b)
>0+ T
Proof. Algebraic inequality (7) can be written as:
A/d)>.ad <r,i=l...n, (16)
Jj=1
or, equivalently:
ir_Ill’_e}ﬁ{(l/d[)Zlc_zvdj}Sr. (17)
J=

(a) For the discrete-time case, all the elements a; constructed in

accordance with (5a) are nonnegative and, therefore, (17) is equivalent to:
IDAD||, <7, (18a)

which, taking into account (15a), means inequality (14).
(b) For the continuous-time case, in accordance with (5b) all the elements
a;, i# j,arenonnegative. If the same big positive constant 1/z>||A|l,, is

added to both sides of each inequality (16), then all the elements a, +1/7
become also nonnegative and, therefore, (16) is equivalent to:

||D"'(lI+A)D||m£r+l, (18b)
T T

which, taking into account (15b), means inequality (14).m

Remark 1. The matrix measure defined by (15b) for D=1 the identity
matrix is frequently referred to as the "logarithmic norm" (Deutsch, 1975)],
although it does not meet all the properties of a norm.1

Remark 2. The n inequalities given by (16), which are equivalent to
CWEAS, express the condition that the generalized Gershgorin disks of the
matrix A lay inside the unit circle or in the left half plane of the complex plane.
In the continuous-time case these disks are identical to those of the matrix A (as
pointed out in (Voicu, 1984b)), and in the discrete-time case, they can be
identical to those of the matrix A, or symmetrical with respect to the imaginary
axis of the complex plane. Therefore the usage, in the very recent paper (Polyak
and Shcherbakov, 2002), of condition (16) for the particular case d, =1,

i=1,...,n, as a parametric definition for a property called "superstability" has

no reason and yields particular forms of the CWEAS results available from
(Voicu, 1984a; b; 1987)], (Pastravanu and Voicu, 1999; 2002).00
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Theorem 8 The dominant eigenvalue A, (A) introduced in Theorem 4
Sfulfills the condition:

A A) = min p1y, (A), (19)

max D=diag{d,}
where py, (A) is defined by (15a) or (15b), in accordance with the
procedure for building A (5a) or (5b), respectively.

Proof. (a) In the discrete-time case, (19) results from the equality proven in
(Theorem 2, (Stoer Witzgall, 1962)) for nonnegative matrices:

— =
Ze(R) = min | D'ADI,. (200

together with:
IDAD||, =D AD||, = 1, (A) . (21a)

(b) In the continuous-time case, (19) results along the same lines, by
taking into consideration the nonnegativeness of the matrix I/ + A, as well

as the fact that for small 7>0 (i.e.7<1/|| A ||, satisfied) one can write:
1. — . a1 =
Ay CI+A)= min [|[D” (—I+A)D||, (20b)
T D=diag{d;} T

and

. P G- IR L1 1

lim|||D” (—=I+A)D||, —— |=lim | [ D" (=1+ A)D||, —— |= 14, (A) .m (21b)
70+ T T 70+ T T

Theorem 9 Linear system (1) is CWAS / CWEAS if and only if
(a) for the discrete-time case, there exists a vector with positive entries

deR", such that
ty, (A) <1, (22a)

(b) for the continuous-time case, there exists a vector with positive entries
deR", such that

ty, (A)<0, (22b)
where w,, (A) is defined according to (15a) and (15b), respectively.

Proof. It results directly from Theorems 2 and 5 combined with Theorem 8. m

S. CWAS / CWEAS and Lyapunov functions

The previous results fully motivates the idea of investigating CWAS by
special Lyapunov functions, whose expressions contain precise information
about the vector functions h(¢) used in Definition 1.
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Theorem 10 Consider a vector function h(t) that fulfills the conditions in
Definition 1. System (1) is CWAS with respect to h(t), if and only if

Ve, x(0)=| H ()x(@)]],,
H(1) = diag{h, (1),..., h, (1)}

is a weak Lyapunov function for system (1).
Proof. Given the properties of the vector function h(¢), in both discrete-time

(23)

and continuous-time cases ¥ (¢,x(¢)) > 0 for any t and x(¢) # 0.
(a) In the discrete-time case, V(¢,x(¢)) is a weak Lyapunov function for

system (1) means:

Vt+1,x(t+1))

VteT=Z,, Vx(t)e R" \ {0}: V(t,x(1))
, X

(24a)

which can be also written as:

-1 -1
VieT=7., vx(t)eR"\{oy: LHL(F DA_TIU))(H OXDle 1 (250
[ H(@0)x(7) ||,
If (25a) is true, then we have:

VieT=1,: e | (H™ (r + DAH))H ™ ()x(0) ||, <1, (26a)

that is equivalent to the boundedness of the operator norm:
VieT=2Z_:|H'(¢t+)AH®)|, <1. (27a)
Now, taking into account the equality:
VieT=Z, : |H ' (t+1)AH®)|, = H'(t+DAH()|,,, (28a)
relationship (27a) yields:
VieT=Z, :|H " (t+1)AH®)|, <1, (29a)

which means that inequality (4) is satisfied with h(#) meeting conditions in
Definition 1, i.e. system (1) is CWAS with respect to h(¢).

Conversely, if system (1) is CWAS with respect to h(z), then
relationship (27a) holds and allows writing:

|(H7 @+ DAR@)YH (OXO) |l
IH (0)x (1) L,

VieT=Z,, Vx(t)e R" \ {0}:

» » (30a)
NH @+ DAH@) [, [ H (0)x(®) |l

IH™ ()x(0) L.,

= H' (¢ + DAH() ||, <1,
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which shows that (25a) is true, i.e. V(¢,x(¢)) defined by (23) is a weak

Lyapunov function.
(b) In the continuous-time case, V' (¢,x(¢)) is a weak Lyapunov function

for system (1) means that V' (¢,x(¢)) is nonincreasing along any trajectory of
system (1), i.e.
VieT=R,, Vx(1)eR"\{0}, Ve>0:V(t+7,x(t+7)—V(t,x(t))<0, (24b)

which, for small 7 >0 can be also written as:

I(H™' (¢ + ) + 7A)HO)H " (Ox(0)) ||, <1

VieT=R_,Vx(t)e R" \ {0}:
IH (0)x(®) L,

(25b)

If (25b) is true, then, for small 7 >0, we have:

VieT=R,, e | (H (¢ + ) A+ 7A)H@)H ™ (1)x(2)) ||, < 1,(26b)

that is equivalent to boundedness of the operator norm:
VieT=R, :|H'(¢t+0)A+7AH®) |, <1. (27b)
Now, taking into account the equality:
VieT=R, : |[H 't +0)A+zA)HQ) |, =| H ' (¢ + )T+ 7A)H(®)]|,, ,(28b)
valid for small 7 > 0, relationship (27b) yields:
VieT=R, :|H'(t+0)A+7AH®) |, <1, (29b)

which means that inequality (4) is satisfied with h(t) meeting conditions in
Definition 1, i.e. system (1) is CWAS with respect to h(t).
Conversely, if system (1) is CWAS with respect to h(t), then relationship

(27b) holds and allows writing:

| (B @+ ) (A + rAVHOH Ox(0) |, _
ITH (Ox(@) L.,

[H™ (t+ )+ 7AH® L, | B Ox(@) |,
I (6)x(0) I,

VieT=R,,Vx(t) e R" \{0}:

<! = H ¢+ )X +7AH(@) || <1,

(30b)

which shows that (25b) is true, i.e. V(¢,x(¢)) defined by (23) is a weak
Lyapunov function. m

For the particular case when testing CWEAS and the vector function
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h(?) considered in Definition 1 is of exponential type (see Definition 2), the
explicit time-dependence of the Lyapunov function becomes redundant as
shown below.

Theorem 11 System (1) is CWEAS with d; >0,i=1,---,n, if and only if
V(x(@®)) =l x(?) llp (31)

is a strong Lyapunov function.
Proof. Given the particular form of matrix D used in (31), V(x(¢)) >0 for
any ¢t and x(¢) # 0), in both discrete-time and continuous-time cases.

(a) In the discrete-time case, V' (x(¢)) is a strong Lyapunov function for
system (1) means:

V(x(e+D) _

VieT=Z,, Vx(t)e R" \{0}: 0
X

1, (32a)

which can be also written as:

|(DAD)YD ™ x() I, _

VteT=2Z_, Vx(t)eR" \{0}: -
: ID'x(t) I,

1. (33a)

If (33a) is true, then we have:

VieT=Z,: max | (D 'AD)YD ' ()x())|, <1, (34a)
D~ ()X ()]l =1

that is equivalent to boundedness of the operator norm:
VieT=Z, :|D'AD|, <1. (35a)
Thus, we have shown that
Hns, (A) = Alp.,=| D' AD |, <1, (362)

which, in accordance with Theorem 9, ensures CWEAS of system (1) with
d; >0, i=1---,n.

Conversely, CWEAS of system (1) with d; >0, i=1,---,n, means
CWAS with respect to h(¢) = dr', 0<r<1, which, according to Theorem
10, is equivalent to:

*(l‘+1)D*1A tD 7ZD71 ¢
I DD O

VieT=2Z,, Vx(t)e R" \ {0}: Er—
|7 D" x() ||,

or, furthermore:
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|(DADYD x|l _
D7 x(0)L,

VieT=7Z,, Vx(t)eR" \{0}: (38a)

Thus, we have proved the validity of (33a) and, consequently of (32a),
i.e. V(x(¢)) is a strong Lyapunov function for system (1).

(b) In the continuous-time case, V' (x(¢)) is a strong Lyapunov function
for system (1) means:

Va0 V@)

VieT=R,, Vx(1)eR":1i ,  (32b)
70+ T
which, for small 7 >0 can be also written as:
D' (I+7A)DD 'x(¢
VieT=R,, vx()eR"\{o}: 1D IFTADD XD | - 35,

ID™'x(t) L,
If (33b) is true, then, for small 7 >0, we have:

VieT=R,, max [(D"'A+7A)D)D 'x®)].<1, (34b)
D™ x ()|l =1

that is equivalent to boundedness of the operator norm:
VieT=R, :|D'(I+7A)D|, <. (35b)

Thus, we have shown that

<0,(36b)

I+7A||p, -1 D 'I1+7A)D|, -1
70+ T 70+ T

which, in accordance with Theorem 9, ensures CWEAS of system (1) with
d, >0, i=1--,n.

Conversely, CWEAS of system (1) with d; >0, i=1,---,n, means
CWAS with respect to h(¢) = de”, r<0, which, according to Theorem 10,
is equivalent to:

Vie T=R,,Vx(1)e R" \ {0}:
[ "D A +7A)e D) "D X)), _,
le™ D™ x(0) ., )

(37b)

or, furthermore:

ID" A+ 7DD XO) |l _ e
D7 x(0) .

VieT=R,, Vx(t)e R" \ {0}: <1.(38b)
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Thus, we have proved the validity of (33b) and, consequently, of (32b),
i.e. V(x(¢)) is a strong Lyapunov function for system (1). m

Remark 3. In papers (Kiendl et al, 1992), (Polanski, 1995), (Loskot et al,
1998) the usage of Lyapunov function (31) is understood in the sense of
standard AS, but pointing out the invariance of a time-independent
polyhedral set. Papers (Blanchini, 1994; 1995) notice that Lyapunov
function (31) induces a time-dependence of exponential type for the
invariant polyhedral sets; however the stability analysis is addressed within
the classical framework, without any interpretation of the componentwise
meaning. Moreover, the case of invariant polyhedral sets with arbitrary time-
dependence (not only exponential) remains completely ignored by these two
papers. O

6. Conclusions

By using the infinity norm, well-known results from the classical theory of
stability can be particularized so as to characterize CWAS / CWEAS as a
special type of asymptotic stability. Thus, our approach allows developing
connections between the dynamics of system (1) and CWAS / CWEAS, by
circumventing the usage of auxiliary system (4) and applying standard tools
in stability theory directly to system (1). The key results refer to the
exploitation of the following instruments: € - 6 formalism (Theorem 6),
properties of operator A (Theorem 9), time-dependent Lyapunov functions
for testing CWAS with respect to an arbitrary vector function (Theorem 10)
and time-independent Lyapunov functions for testing CWEAS (Theorem 11).
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Abstract Independent Component Analysis (ICA) is an emerging field of fun-
damental research with a wide range of applications such as remote
sensing, data communications, speech processing and medical diagno-
sis. It is motivated by practical scenarios that involve multisources and
multisensors. The key objective of ICA is to retrieve the source signals
without resorting to any a priori information about the source signals
and the transmission channel. ICA using second-order statistics and
high-order statistics based techniques and the corresponding algorithms
will be presented to perform the blind separation of stationary or cy-
clostationary sources. In the last part of the paper, a case study with
real data having as subject dams displacements monitoring will be pre-
sented.

Keywords: independent component analysis, blind source separation, second-order
statistics, high-order statistics, large dams monitoring

1. Independent component analysis
1.1. Problem Formulation

Independent Component Analysis (ICA) is a statistical and computa-
tional technique, that can be seen as an extension to Principal Compo-
nent Analysis (PCA) and Factor Analysis (FA)(Hyvérinen, et al., 2001).
ICA is a much more powerful technique, capable of finding the underly-
ing factors or sources when these classic methods fail completely. The
data analysed by ICA could originate from many different kinds of ap-
plication fields, including digital images, economic indicators and psy-
chometric measurements.

271



272 ADVANCES IN AUTOMATIC CONTROL

Figure 1.  Mixing and separating. Unobserved signals: s; observations: x; estimated
source signals: §

The simple ICA model assumes the existence of n independent signals
s1(t), ... ,sn(t) and the observation of as many mixtures z1(t), ...,z (t),
these mixtures being linear and instantaneous, i.e.

ri(t) = 3 asy() (1

for each 1 = 1,n. This is compactly represented by the mixing equation
x(t) = As(t), (2)

where s(t) = [s1(t),...,s,(t)]7 is an n x 1 column vector collecting the
source signals, vector x(t) similary collects the n observed signals and the
square n X n "mixing matrix” A contains the mixture coeflicients. The
ICA problem consists in recovering the source vector s(t) using only the
observed data x(t), the assumption of independence between the entries
of the input vector s(t) and possible some a priori information about
the probability distribution of the inputs. It can be formulated as the
computation of an n X n ”separating matrix” B whose output §(¢)

8(t) = Bx(t) (3)

is an estimate of the vector s(¢) of the source signals (see Figure 1).

ICA is closely related to the method Blind Source Separation (BSS)
or blind signal separation. A ”source” means here an original signal,
i.e. independent component. ”Blind” means that we no very little, if
anything, on the mixing matrix, and make little assumptions on the
source signals. ICA is one method, perhaps the most widely used, for
performing blind source separation.

In many applications, it would be more realistic to assume that there
is some noise in the measurements, which would mean adding a noise
term in the model:

y(t) = As(t) (4)
x(t) = y(t)+n(d).
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1.2. Identificability of the ICA model

The identificability of the noise-free ICA model has been treated in
Comon (1994). By imposing the following fundamental restrictions (in
addition to the basic assumption of statistical independence), the iden-
tifiability of the model can be assured:

1 All the independent components s; with the possible exception of
one component, must be non-Gaussian.

2 The number of the observed linear mixtures m must be at least as
large as the number of independent components n, i.e. m > n.

3 The matrix A must be of {full column rank.

Usually, it is also assumed that x and s are centered. If x and s are
interpreted as stochastic processes instead of simply random variables,
additional restrictions are necessary. At the minimum, one has to assume
that the stochastic processes are stationary in the strict sense. Some
restriction of ergodicity with respect to the quantities estimated are also
necessary.

In the ICA model of eq. (2), it is easy to see that the following
ambiguities will hold:

1 We cannot determine the variances (energies) of the independent
components. The reason is that, both s and A being unknown, any
scalar multiplier in one of the sources s; could always be cancelled
by dividing the corresponding column a; in A by the same scalar.
As a consequence we may quite as well fix the magnitudes of the
independent components; as they are random variables, the most
natural way to do this is to assume that each has unit variance:
E[s?] = 1. Then the matrix A will be adapted in the ICA solution
methods to take into account this restriction.

2 We cannot determine the order of the independent components.
The reason is that, again both s and A being unknown, we can
freely change the order of the terms in the sum (1), and call any
of the independent components the first one.

1.3. Algorithms for ICA

Independent Component Analysis is mainly performed using the in-
formation on signal statistics. When the signals are temporal coherent,
it is possible to solve the problem using only the second-order statistics,
but if the signals are temporal white or have identical normalized spec-
tral densities, without any information on a priori source distributions,
the solution will need using of order statistics higher then second order
for the received signals. If the source signal distributions are known, the
problem could be solved by maximum likelihood method. We underline
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that in the case of source signals temporal white and Gaussian, the blind
source separation problem has not solution.

In the next two sections we present two approaches: the first supposes
the signals temporal coherent and exploits the second-order statistics
using intercovariance matrix of observations, and the second supposes
the signals white temporal and exploits statistics of order higher than
two, using non-linear functions.

2. ICA using second-order statistics
2.1. Second-Order Information

The first step of the ICA procedure (Belouchrani, et al., 1997) consists
of prewhitening the signal part y(¢) of the observation. This is done via
a whitening matrix W, i.e. a nxm matrix (we consider n sources and m
mixtures) such that Wy(¢) is spatially white. The whiteness condition
is

I, = WR,W' = WAATWT, (5)

where I,, denotes the n x n identity matrix. Equations (5) implies that
WA is a unitary matrix: for any whitening matrix W, it then exists a
unitary matrix U such that WA = U. As a consequence, matrix A can
be factored as

A =W"U=W¥"uy,...,u,l, (6)

where # denotes the pseudoinverse and U is unitary. The use of second-
order information - in the form of an estimate of R, (0) which is used to
solve for W in (5) - reduces the determination of the m xn mixing matrix
A to the determination of a unitary n X n matrix U. The whitened
process X, (t) = Wx(t) still obeys a linear model:

%0 (1) © Wx(t) = W(As(t) + n(t)) = Us(t) + Wn(t).  (7)

The signal part of the whitened process now is a unitary mixture of the
source signals. Note that all the information contained in the covariance
is 'exhausted’ after the whitening, in the sense that changing U in (7)
to any other unitary matrix leaves unchanged the covariance of x,,(¢).

2.2. Whitening Matrix Computation

This step is implemented via eigendecomposition of the sample co-
variance matrix R, (0). We consider here that the noise covariance is of
the form R, (0) = 02I,,. The whitening procedure is the following:
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1 Istimate the covariance matrix Rx(O) using 1" samples of the ob-
servations:

R 1L
R.(0) = = > x(t)x(®)T (8)

2 Perform the eigendecomposition of the R, (0) covariance matrix

R.(0) = HAHT, (9)
WI ere

H=[hy,.., h,]
and

A = diag[A, ..., A\l

with A\; > A; for ¢ < j. The number of sources can be estimated
starting from the spectrum A (Wax and Kailath, 1983; Yin and
Krishnaiah, 1987).

2

3 Estimate noise variance - as the average of the m — n smallest

eigenvalues of A

1
~9 _ .
& _—m—n,z Ai- (10)
i=n+1
4 Compute the whitening matrix W as:
W=AHT, (11)
where /
A" = diag[(\ —6%) V2, (A —67) 7

and

H =[hy,...,h,]
This resulted matrix is used to obtain the whitened process
Xo(t) = Wx(t), t=1,...,T. (12)

2.3. Intercovariance Matrix Estimation

Starting from the whitened process x,,(t), K intercovarince matrices
of this process are computed:

Ry(k) = —— > Xu(t)xuw(t — k)7, (13)
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where 1 > k > K. The resulted matrices are of n x n dimension, and the
computation effort does not depend of number of sensors, m. The value
of K will be selected to realize a trade off between the statistic efficiency
and computation effort. The value of the delays used in computation
depends also on the length of the signal correlations. If we have a priori
information on spectral density of sources, the value of K can be optimal
chosen.

2.4. Joint Diagonalization

Let Ry, = {Ry (k)1 < k < K} be a set of K matrices with common
size n X n. A joint diagonalizer of the set R, is defined as a unitary
maximizer of the criterion

K
CU) Y Y |diag(UTR, (k) U)P, (14)
k=1

where |diag(-)| is the norm of the vector build from the diagonal of the
matrix argument. The problem is solved by a generalization of Jacobi
technique (Golub and Loan, 1989; Souloumiac and Cardoso, 1991; 1994).
2.5. Mixing Matrix and Source Signals Estimation

Let U = [y, .., 0,] be the unitary matrix resulted by joint diagonal-
ization. If the objective of the blind identification is source separation,
a brute estimation of these can be computed by:

(1) = UT%, (1) (15)

To estimate the mixing matrix need to inverse the effect of whitening,
and the mixing matrix can be estimated by

A =W#U. (16)

To obtain at the output of the separator a maximum signal/noise ratio
the source signals are estimated by

8(t) = ATR,(0) " 'x(¢). (17)

2.6. The Algorithm

The general scheme of the SOBI algorithm (Second Order Blind Iden-
tification) can now be described by the following steps:
Step 1. Form the sample covariance R, (0) and compute the whitening
matrix W.
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Step 2. Whitening the data provided by the sensors:
Xo(t) = Wx(t), t=1,...,T.

Step 3. Estimate K intercovariance matrices Ry, (k) of %, (t) for differ-
ent time delay k=1,..., K.

Step 4. Jointly diagonalize the set of intercovariace matrices in a base
U=[a,..., 0,

Step 5. Estimate the mixing matrix with

A =W*U.

Step 6. Estimate the source signals by

§(t) = ATR,(0) x(1).

Note that at the second step of the algorithm the observation dimen-
sion is reduced to n, the source number. It results that the intercovari-
ance maftrices estimation is performed in a space of reduced dimension.

3. ICA using high-order statistics

In the basic approach to solve ICA problem, the temporal structure
of the received signals is in fact omitted and s(t) and x(t) are regarded
as realizations of random vectors s and x. We seek the solution of the
form (3).

The problem for solving the separating matrix B is somewhat sim-
plified if we consider only one of the source signals at a time. From
equation (3) it follows:

8 =blx (18)

2

with b7 the i-th row of B.

The problem is further simplified by performing a prewhitening of the
data x: the observed vector x is firstly linearly transformed to another
vector whose elements are mutually uncorrelated and all have unit vari-
ance. It can be shown that after this step, B will be an orthogonal
matrix.

A recent review of various information theoretic contrast functions
for solving B, like mutual information, negentropy, maximum entropy,
and infomax, as well as the maximum likelihood approach is given by
Cardoso (1998).

As an example of contrast functions, consider the case of maximizing
the kurtosis F{3}} — 3[E{5?}]? of the estimated signals 3;. Because we
assumed that the estimated signals have unit variance, this reduces to
maximizing the fourth moment E{s}}. Its gradient with respect to b;
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is 4E{(b!x)3x}. In a gradient learning type rule, the row b} of the
separating B would be sought using a version of this gradient, in which
the expectation is dropped and the gradient is computed separately for
each input vector x. In addition, a normalization term would be needed
that keeps the norm of b;, equal to one - remember that the matrix B
would be orthogonal due to the prewhitening of the data x.

A much more efficient algorithm is the following fixed point iteration

(Hyvérinen and Oja, 1997):
1 Take a random initial vector b(0) of norm 1. Let k = 1.
2 Let b(k) = E{x(b(k — 1)Tx)3} — 3b(k — 1). The expectation can
be estimated using a large sample of x vectors.
3 Divide b(k) by its norm.
4 If |b(k)Tb(k — 1) is not close enough to 1, let & = k + 1 and go
back to step 2. Otherwise, output the vector b(k).

The final vector b(k) given by the algorithm equals the transpose of
one of the rows of the (orthogonal) separating matrix B.

To estimate n independent components, we run this algorithm n
times. To ensure that we estimate each time a different independent
component, we use the deflation algorithm that adds a simple orthogo-
nalizing projection inside the loop. Recall that the rows of the separating
matrix B are orthogonal because of the prewhitening. Thus we can esti-
mate the independent components one by one by projecting the current
solution b(k) on the space orthogonal to the rows of the separating ma-
trix B previously found.

This algorithm, with the whitening and several extensions, is imple-
mented in Matlab in the FastICA package which is a public domain
package. A remarkable property of the FastICA algorithm is that a very
small number of iterations seems to be enough to obtain the maximal ac-
curacy allowed by the sample data. This is due to the cubic convergence
of the algorithm.

Another algorithm intensively used in practice is JADE (Joint Ap-
proximate Diagonalization of Eigen-matrices) (Cardoso and Souloumiac,
1993). Tt is a typically batch algorithm using tensorial techniques as
eigenmatrix decomposition. The algorithm is quite complicated, requir-
ing sophisticated matrix manipulation.

4. Case study - DAMS displacements
monitoring

One of the main objectives for dams displacements monitoring is to de-
tect any abnormal behaviour alteration as early as possible. Any change
in a dam response under the same loads may be due to a structural
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Figure 2. Arch dam physical model

deterioration culminating with the dam collapse. A change detected in
real time can be decisive for the possible strengthening works.

Experience (Mazenot, 1971; Ispas, et al., 2000) shows that the values
of gross measurements recorded for dams point out the superposition
of the following main three components: time, hydrostatic load, and
temperature (see Figure 2).

The time or irreversible component corresponds to an evolution in
time, those trend is that of being amortized (strengthened) or amplified
(deteriorated); the reversible hydrostatic component corresponds to the
hydrostatic pressure effect of the lake, while the reversible seasonal com-
ponent depends on the distribution of temperatures and precipitation.

The objective of the application was to separate the components
(sources) mentioned above starting from the displacements of the dam,
without a priori knowledge of the generator phenomena or of the propa-
gation environment, and by using only of the raw displacement measures.
The application was dedicated to Vidraru dam, Romania, for a period
of 1200 days.

The evolution of the dam displacements for x and y directions are
given in Figure 3 and Figure 4, respectively, at different levels.

For these displacements, when SOBI algorithm has been used, resulted
3 independent sources which can be assimilated with the hydrostatic
pressure component (lake level), seasonal component (temperature) and
irreversible component. These are represented together with the lake
level and temperature in Figure 4. It can be noted that there are strong
similarities between the estimated sources, representing seasonal and hy-
drostatic components, and temperature and lake level evolutions. The
irreversible component, last represented, does not create special prob-
lems concerning dam safety.
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source 3 assimilated with the irreversible component

The results represent only a preliminary analysis of the dam under
study. More experiments and data analysis by different methods are
necessary for a complete investigation of the dam behaviour.

5. Conclusions

The paper presented some methods and algorithms for independent
component analysis based on second-order statistics and high-order statis-
tics, to perform the blind separation of stationary or cyclostationary
sources. The SOBI (Second Order Blind Identification) algorithm is de-
scribed in detail and it is applied in an application having as subject
displacements monitoring of an instrumented dam.
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Abstract The paper presents aspects concerning the systematic design of fuzzy controllers
(of Mamdani type and Takagi-Sugeno type) with dynamics. There are
considered PI and PID fuzzy controllers resulting in fuzzy control systems
which are type-II and type-IlI fuzzy systems according to Koczy (1996) and
Sugeno (1999). The fuzzy controllers are applicable to a wide range of
applications.

Keywords: PI controllers, fuzzy controllers, dynamics, design, digital simulation

1. Introduction

The “classical” engineering approach to the reality is essentially a
qualitative and quantitative one, based on a more or less “accurate”
mathematical modeling. In this context the elaboration of the control strategy
and of the controller requires an “as accurate as possible” quantitative
modeling of controlled plant (CP). Some advanced control strategies require
even the permanent reassessment of the models and of the parameters values
characterizing these (parametric) models. By many aspects the fuzzy control
is more pragmatic by the capability to use a linguistic characterization of the
quality of CP behavior and to adapt it as function of the concrete conditions
of CP operation.

The basic fuzzy controllers (FCs) with dynamics have a specific
nonlinear behavior, accompanied by anticipative, derivative, integral and —
more general — predictive effects and adaptation possibilities to the concrete
operating conditions. The “coloring” of the linguistic characterization of CP
evolution — based on experience — will be done by means of parameters
which enable the modification of FC features.
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In some applications the development of fuzzy control systems (FCSs) is
often done by heuristic means that can be sometimes accompanied by failures.
A systematic design approach can be advantageous; some design procedures
developed by the authors and presented in this paper compensate the lack of
general design methods applicable to certain categories of systems.

The authors thank the colleagues from the “Gh. Asachi” Technical
University of lasi for the possibility to meet and share opinions concerning
controller development techniques, and for the opportunity offered by the
Symposium on Automatic Control and Computer Science where the authors
have presented research results; part of these results are included in this paper.

2. Of fuzzy controllers: continuous time analysis

The shape of the non-linearity (Driankov, et al., 1993) of a FC can be
modeled in a large variety of forms by an adequate choice of the variable
parameters taking part to the FC informational modules. The FCs can obtain
dynamic features by additional dynamic processing of some of system
variables in terms of differentiation and / or integration. The effects of these
components can be reflected either in permanent regimes — by the
disturbance rejection or just the alleviation of the control error — or in
dynamic ones, by improving the phase margin (in generalized sense),
reducing the overshoot, the settling time, and / or relaxing the stability
conditions.

The derivative (D) and integral (I) components can be implemented in
conventional digital version; these components can create a quasi-
continuous (Q-C) equivalent of the analogue D and 1 components,
respectively. Two methods for the accomplishment of Q-C D and I
components are presented as follows.

Firstly, for the D component, the usual computation relation is given by
the relation (1):

1 *
dsz—-(ek—ek_l), keN", (1)

s

with Ty — the sampling period. In the case of a rapid variation of the input
variable e(f) which could be harmful on the implementation of the D
component, then either ¢, can be pre-filtered in terms of a first order delay
(PT1) law, or the D component is obtained as function of the actual sample
e and of an “old sample” e;.,,.
Secondly, for the I-component, a version of computation relation is given
by the relation (2):
k k=1 k=1
ak=Zei=ek+Zei , or o,=x,+e, with xk:Zei. (2)
i=0 i=0 i=0
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Such characterizations will also permit a relative Q-C equivalence of the
digital case; by using the first order Pade approximation, these two
components can be expressed as:

s 1+s-T./2
(), ols)x———-e(s). (3)
s-T

N

d(s)r ———
(s) 1+s-TS/Ze

The equations (3) ensure a continuous pseudo-transfer function for the
FC with dynamics; it justifies the analysis of FCs in the linear case (Siler and
Ying, 1989).

By employing the widely accepted experience in the design of PI
controllers and the very good control features offered by these controllers
(zero steady-state, enhancement of control system (CS) dynamics —
alleviation of the settling time and / or of the overshoot — by the pole-zero
cancellation technique), the knowledge on linear PI controllers can be
incorporated in the properties of strictly speaking FCs (without dynamics).

The PI fuzzy controllers (PI-FCs) are very useful because starting from
the features of a basic linear PI controller can systematically develop them.
But, the arbitrary introduction of dynamic components in the FC structure
creates a lot of difficulties mainly concerning the interpretation of
introducing the dynamics in CS behavior in different regimes, and the
increase of the number of the degrees of freedom in controller design and
implementation. The analysis of the behavior of some FCSs has been
performed in (Precup and Preitl, 1995).

There will be obtained two versions of PI-FCs, the position type and the
velocity type. The position type PI-FC can be further accomplished in two
versions obtaining the integral component on either the output or the input of
the FC, in structures of fuzzy controllers of Mamdani (Mamdani, 1974) or of
Takagi-Sugeno type (Takagi and Sugeno, 1985).

The Mamdani version of position type PI-FC — presented here — is
characterized by the presence of the integral component on FC output, with
the basic relation:

u(t):ki.j‘[kFl‘e(r)+kd'kF2'é(T)]'dT. 4)

The relation (4) characterizes a typical dependence for a PI controller. By
expressing (4) in its operational form, the Q-C equivalent of the PI-FC is
obtained:

l+s-T,/2

”(S)zki'—'(kﬂ"'km'kd' >
s-T

l+s-T./2

s

]-e(s). (5)

Therefore, the expression of the pseudo-transfer function can be
expressed:
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ki-kp _ k

1

k. T,
H (s)=—-(1+s-T,) with k = , T.= ko, +—.(6
c() s ( 1) c T i kFl d 2 ()

s

The position type PI-FC is characterized by the following discrete time
equation obtained by differentiating (4) and using (1):

_ €r €k
up=u;  +T, ki'kFl'ek"‘kd'sz'T— . (7

Hence, the discrete time equation of an incremental PI-FC obtains
immediately the form (8):

Auy=(k; kp To+k, kpy)e,—kykp-e ., (8)

where Auy; = uy — u; ., stands for the increment of control signal.

Using the presented approach there can be also developed many versions
of PD fuzzy controllers (PD-FCs) and of PID fuzzy controllers (PID-FCs)
(see, for example, Tang and Mulholland (1987) Kawaji, et al. (1991),
Galichet and Foulloy (1995), Moon (1995), Mann, et al. (1999).

3. Details regarding a design method for Mamdani PI
fuzzy controllers

The standard version of the Mamdani type PI-FC with integration of
output / control signal, Fig.1, is based on the numerical differentiation of the
control error ¢, under the form of the increment of control error, Ae, = e, — ¢,
.1, and on the numerical integration of the increment of control signal Auw.
The FCSs with Mamdani type PI-FCs are type-Il fuzzy systems (Koczy,
1996; Sugeno, 1999).

The design of this controller starts with expressing the discrete time
equation of the Q-C digital PI controller (PI-C) in its incremental (velocity
type) version:

Au,=K, Ae,+K,-e, =K, (Ae, +a-e,), )

where the parameters {Kp, K;, a} are functions of {kc, T}}:

ke T kT K, 2T,
H. (s)=——- 1+S'T; > Ko=k-|1-——— , K, = = ) =—"1= - (10)
C() 5T ( ) P C( 2T,\J 1 Tl a KP 2.T—-T

i i s

On the basis of (10) and of the representation of Aw, in the phase plane
<Ae, e;>, Fig.2, the pseudo-fuzzy features of the Q-C digital PI-C are
worthwhile:

- there exists a “zero control signal line” Auy = 0, having the equation (11):

Aep+a-ep=0; (11)
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- this line divides the phase plane in two half-planes, with Au; > 0 and
Auk < 0,

- the distance from any point of the phase plane to the “zero control
signal line” corresponds to the absolute value of the increment of
control signal |Auy |; it is influenced by the properties of the strictly
speaking FC.

The fuzzification can be solved as follows: for the input linguistic
variables (LVs) e, and Ae; there are chosen 5 (or more, but an odd number)
linguistic terms (LTs) with regularly distributed triangular type membership
functions (m.f.s) having an overlap of 1, and for the output LV A there are
chosen 7 LTs with regularly distributed singleton type m.fs, Fig.3,
corresponding to the specific strictly positive parameters of this PI-FC, {B,,
Bae, Bau}. These parameters are in connection with the shapes of the m.f.s of
the LTs corresponding to the input and output LVs. The complete rule base
can be expressed as a decision table in the form of Table 1. The inference
and defuzzification methods represent the designer’s option (Driankov, et
al., 1993).

"

An 1
L_ — F k 1 1 k
]-'E .EI.E]{ 1-2: -

Figure 1. Structure of PI-FC with integration on controller output

Auy
2B, -Be 01 Be 2Be e 3Bay, B0 Bay  3Bau
-2Bpe -Bae  Bye 2B, Ay oy au

Figure 3. Shapes of membership functions of Mamdani PI fuzzy controller with
integration on controller output
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Table 1. Decision table of Mamdani PI-FC with integration on controller output

Aey\ ey NB NS ZE PS PB
PB ZE PS PM PB PB
PS NS ZE PS PM PB
ZE NM NS ZE PS PM
NS NB NM NS ZE PS

NB NB NB NM NS ZE

The main steps of the design method are:
- the dependence (11) is valid for the “zero control signal line”, resulting in:
Ae, B,

==, (12)
e, B

(2

e

- a further the condition in the form of (13) is fulfilled along the
“constant control signal line”, Auy= Ba,:

By, =Au,=K,-(Ae, +a-e,)=K,-B,.,; (13)
- the condition (13) can be transformed into:
B,,=K, a-B,=K,-B,; (14)

based on designer’s experience; one of the parameters, for example B,, is
chosen, and the other two parameters, Ba, and By, result from (13) and (14).

It must be highlighted that by applying this method for tuning the FC
parameters, {B., Ba., Ba.}, the parameters of the basic linear PI-C (10), k¢
and T;, are taken into consideration in the design relations (13) and (14).
Such controllers have been applied in several papers including (Precup and
Preitl, 2001).

The obtained control signal in its incremental form Awu; can be further
used in the CS: directly, if the actuator contains the integral component (I), or
by computing the actual value of control signal according to (15):

U, =u,  +Au,. (15)

4. Details regarding a design method for Takagi-Sugeno
PI fuzzy controllers

The structure of a Takagi-Sugeno PI fuzzy controller is similar to that
presented in Fig.1, but the FCSs with these FCs are type-IIl fuzzy systems
(Koczy, 1996; Sugeno, 1999). The specific feature of Takagi-Sugeno FCs
with dynamics is in the fact that the consequent of the rule base can contain
expressions of conventional controllers resulting in a blend of conventional
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controllers due to the interpolative property of the fuzzy control rules
(Babuska and Verbruggen, 1996).

The FCS comprising a Takagi-Sugeno PI-FC presented in this Section
will ensure desired behaviours of the FCSs in dynamic regimes with respect
to the step modifications of the reference input (w) and of four types of
disturbance inputs (v). This is ensured for the beginning by the separate
design of two continuous time linear PI controllers of type (10). For the
design of the Takagi-Sugeno PI-FC it is necessary to discretize these two
continuous linear PI controllers. The use of Tustin’s method results in two
incremental Q-C digital PI-Cs:

Au,=Au, =K, -Ae, +K/-e,,
Au,=Au;=K} Ae, +K e, , (16)

where the parameters of these two incremental digital PI controllers, {Kp",
K;"} and {K?", K;'}, are computed in terms of (17):

T kT, T kT
K=k 1-—— |, K=", K=k 1-—— |, Kj=—S—= . (17)
P~ ¢ [ Z.ZWJ 1 ™ P~ ¢ [ ZTLWJ 1 I

i

The structure of the proposed Takagi-Sugeno PI-FC is presented in Fig.4,
and it consists of: the strictly speaking PI-FC, the additional fuzzy block FB1
for computing the current regime 7, the fuzzy block FB2 for computing the
current status sy, and the linear blocks with dynamics.

The blocks {PI-FC, FBI1, FB2} are Takagi-Sugeno fuzzy systems, and
the inference and defuzzification methods can be selected according to the
designer’s option. The fuzzification is done by the m.f.s from Fig.5 (Aw, =
wiwy 1 — increment of reference input) outlining the parameters of the
Takagi-Sugeno PI-FC to be determined by the design method: {B., Bac, Baw,
B,, B, B,}.

The fuzzy block FB1 has the role of observing the dynamic regime by
computing the variable ;. The linguistic terms “WR” and “VR” correspond
to the dynamic regimes caused by the modification of w (wr) and v (vr),
respectively. The fuzzy block FB2 that operates in parallel with PI-FC,
computes the variable s; characterizing the current status of the fuzzy control
system. The linguistic term “ZE” corresponds to an accepted steady-state
regime with almost zero ¢; and Aey, and the linguistic term “P” corresponds to
the situations when either e; is non-zero or e, is zero but it has the tendency to
modify. The rule bases by Precup and Preitl (2002), expressed as decision
tables, assist the inference engines of FB1 and FB2.

The inference engine of the strictly speaking PI-FC employs the rule base
gathered in the decision table from Table 2. Such a decision table ensures
quasi-PI behaviour of the PI-FC. An additional parameter o was introduced,
o € (0, 1], for the sake of FCS performance enhancement.
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Figure 5. Accepted input membership functions
Table 2. Decision table of Takagi-Sugeno PI-FC
Tk
WR VR
ey 23
N ZE P N ZE P
P Auy” Aw” a Auy” Aw’ Au’ a Ay’
Aey ZE Au Au Auy Auy” Auy” Auy”
N a Auy” Auy” Auy” a Auy” Auy” Auy”

In comparison with the previous Section, the fuzzy controller design
becomes more complex due to the increased number of fuzzy blocks, and it

consists mainly in the following steps:

- choose the values of the parameters B,, and B,; since these values have
to be different in order to create a clear difference between the two
regimes, wr and vr; this is achieved by choosing B,,=1 and B, =2;

- choose the values of the parameters B,, and Bj; these values must be
sufficiently small to clearly point out the constant values of wy, and of

e, and Aey, respectively; for a unit step modification

of w and a 2%

settling time is accepted the recommended values for these two

parameters are By, = 0.02 and B; = 0.02;

- design two continuous PI-Cs (with respect to the reference input and
with respect to the disturbance input) and compute the value of the



Fuzzy controller with dynamics, a systematic design 291

parameter B, there is applied the modal equivalences principle
(Galichet and Foulloy, 1995) resulting in:

B, ,=2T.-B,(2T" -T,), (18)

where 7" represents the medium value of the integral time constant,
and B, is chosen in accordance with the experience of the control
system designer. The relation (18) will ensure the approximate
equivalence between the Takagi-Sugeno PI-FC and the separately
designed two linear PI controllers (Precup and Preitl, 2002).

5. Advanced structures of fuzzy controllers

By starting with the PI fuzzy controllers presented in Sections 3 and 4,
there will be presented here design aspects regarding the controllers with
fuzzy adaptation of conventional controller parameters and predictive fuzzy
controllers.

5.1. Controllers with fuzzy adaptation of conventional PI
controller parameters

This class of controllers belongs to the class of self-tuning nonlinear
controllers having some features. Firstly, the (basic) conventional controller
used in the CS is developed on the basis of a classical design method, for a
settled steady-state operating point. Secondly, depending on the modification
of CP operating conditions, the parameters of the conventional controller are
on-line adapted by the fuzzy adaptation block (F-AB) based on a specific
fuzzy adaptation strategy (see also the results of De Silva (1991) and Zhao, et
al. (1993)).

The structure of a CS comprising a Q-C digital PI-C (in incremental
version (9)) with fuzzy adaptation of the parameters {kc, T;} or {Kp, K;} as
function of ¢; and Ae; is presented in Fig.6-a. This Q-C digital PI-C has at
least two control features:

- firstly, the integral term, K;-¢;, mainly affects the overshoot; therefore,

the value of K; is adjusted as function of the control error;

- secondly, the proportional term, Kp-Agy, affects both the first settling
time / the rise time and the overshoot; the increase of Kp results in the
increase of the overshoot and in the decrease of the first settling time.

In accordance with these features, the F-AB can be defined and
designed by taking into account the following aspects:

- the F-ABI module adjusts the coefficient Kp, and the F-AB2 module
adjusts the coefficient K;; both modules of the F-AB admit as inputs
the LVs ¢; and Aey; each input LV has 3 or 5 LTs with triangular type



292 ADVANCES IN AUTOMATIC CONTROL

m.f.s having initial distribution with an overlap of 1 (Fig.6-b); the
specific parameters are {B,”, Bx. } and {B., Bx.'}, respectively;

—
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| . |
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Figure 6. CS with fuzzy adaptation of the parameters of a Q-C digital PI-C

- the LTs corresponding to the output LVs, Kp and K, respectively,
have regularly or non-regularly initially distributed singleton type
m.f:s (Fig.6-c); the specific tuning parameters are {By’, By", B"} and
{B,S, BM B/f }, respectively;

- the rule base has to be defined by taking into account the particular
features of the application involved.

5.2 PID fuzzy predictive controllers

The PID fuzzy predictive controllers (defined here in the sense given
by Tzafestas (1985)) can be developed by starting with the incremental
version of the Q-C digital PID controller (PID-C):

Au,=K,e, +K,Ne, +K,Ne,,
Ne, =Ae, —Ae,  =e, —2e, +e, ,, (19)

where A’¢; represents the second increment of control error, and {Kp, K,
Kp} are the parameters of the Q-C digital PID-C. These parameters can be
derived from the parameters of the conventional continuous PID-C by a
discretization method.

Two versions of PID fuzzy predictive controllers have been developed by
the authors, the PID fuzzy predictive controller with first order prediction,
and the PID fuzzy controller with second order prediction, based on the
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prediction of the control error. The approach is quite different from that
usually known under the name of fuzzy predictive control, which mainly deals
with the use of fuzzy goals and fuzzy constraints in predictive control
(Skrjanc, et al., 1996).

The PID fuzzy predictive controller with first order prediction is designed
by starting with the prediction of the control error defined by:

e,=2-e,_,—¢€,_,, (20)

and on the substitution of it into (19). The result is in the discrete time
equation (21):
Auy=Kp-(Aey  +f-e, ), (21)

with the parameters Kp; and  computed by Precup and Preitl (1994).

This version of PID fuzzy controller is characterised by the fact that (21)
is similar to the discrete time equation of a Q-C digital PI-C, (9). Therefore,
an FC approximately equivalent to the controller characterised by (21) can
be designed; this FC has two input LVs (e;; and Ae;_;) and one output LVs
(Auy), and the rest of elements are as in Sections 3 and 4.

The PID fuzzy predictive controller with first order prediction is designed
by starting with the prediction of the control error in terms of:

e, =25-¢e,_,-2-¢,_,+05-¢, ;. (21)
Then, the substitution of e; from (21) into (19) yields:
Au,=0.5-K,,-Ne, ,+K,-(Ae, ,+p-e,,), (22)

with Kpp as in (Precup and Preitl, 1994).

The equation (22) can be transposed in a fuzzy manner (for the sake of CS
performance enhancement) by two ways resulting in two versions of FCs:

- the first version: Au is obtained by the addition of the crisp term

Aui=05-K,, Ne,  tothe increment of control signal Au; given
by the PID fuzzy predictive controller with first order prediction
presented before;

- the second version: the term Au; can be provided by another FC
resulting in a parallel connection of two FCs.

Both PID fuzzy predictive controllers can be implemented in either

Mamdani versions or Takagi-Sugeno ones, and their design is performed by
using the results from Section 3 and Section 4.

6. Case study; implementation aspects

The case study corresponds to the class of CPs with the transfer
functions:
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Hp(s)=kp/[s(+sTs)] (a), Hp(s)=kp/[s(l+sT))(1+sTs)] (b),(23)

with 7y — small time constant or time constant corresponding to the sum of
parasitic time constants, 75 < 7, < Tj, which characterize well enough many
control applications with electrical drives playing the role of CPs.

The goal of the case study is to design a Takagi-Sugeno PI-FC based on
two methods for optimal tuning of controller parameters meant for
controlling the low order benchmarks (23) with integral character, by taking
into consideration the conventional CS structure (Fig.6, with a certain
controller in the framed part).

The classical design approach is the ESO method by Preitl and Precup
(1999) providing a PI or a PID controller that can ensure very good CS
performance. In both cases, the open-loop and closed-loop transfer functions
with respect to the reference input (w) have unified forms with the design
parameter S chosen by the designer as a compromise between desired all
control system performance.

An example of digital simulation results of the designed CSs with respect
to w ensured by the Takagi-Sugeno PI-FC in comparison with the PI-C is
illustrated in Fig.7 when controlling the benchmark (23), with kr=1 and T
=1 sec.

Regarding the adaptive control structure in Fig.6 employing Mamdani PI-
FC there appear problems at the implementation because the parameters of
the C are modified.

For ensuring a bump-less transfer from a digital PI-C to another one with
different parameter sets, there are previously computed the “past values”
which are necessary to the digital PI-C having the new set of parameters,
Fig.8, with (Preitl and Precup, 2001):

- for the old digital PI-C:

u,=u,  +(K,+K,)e, —-K,-e,,, (24)
- for the new digital PI-C:
ukzuk—l+(K;+K:)'ek_K;'ek—l’ (25)

where {Kp, K} represent the parameters of the old digital PI-C, {K, , K}

u....

r 5r ..., 12 3’_
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Figure 7. Digital simulation results for CSs with PI-C and Takagi-Sugeno PI-FC
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old digital
PLC

Figure 8. Transfer from the old digital PI-C to the new one

are the parameters of the new digital PI-C and {e; ., } stand for the new
initial conditions (“past values”).

This is a general implementation problem which appears also in variable
structure Mamdani FCs. As a matter of principle, in the case of Takagi-
Sugeno FCs this problem is reported to be guaranteed by the FC operation
principle itself. However, in the case of Mamdani FCs the relations (24) and
(25) can be seen as linear equivalents of the FCs over the past and actual
sampling interval (with appropriately computed parameters), and this is a
version to ensure a bump-less transfer from one FC to another.

7. Conclusions

The paper presents some aspects regarding attractive systematic design
approaches to the development of FCs with dynamics offering design and
implementation recommendations. For some applications the FCS
performance indices are approximately guaranteed by the design methods.

The presented transparent methods, focussed on PI-FCs, enable the
design of other FCs with dynamics including the PD and the PID ones. All
presented PI fuzzy controllers can be extended without any difficulties to
PID fuzzy controllers due to the fact that the conventional PID-C can be
expressed — in some conditions — as a series connection of two conventional
controllers, a PD one (implemented in fuzzy manner like the PI-FC but
without the integration of controller output) and a PI one; such a solution
reduces strongly the dimension of the rule base in comparison with the
situation of PID fuzzy controllers with three input LVs.

The case study can correspond to the speed control of a separately excited
DC drive, and validates the design approaches and controller structures.
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Abstract Linear canonical (Hamiltonian) systems are familiar to the engineering
community both from Rational Mechanics and Control. In Rational
Mechanics an “evergreen” problem is that of the A-zones of stability
in connection with parametric resonance while in Control these systems
belong to the field of Linear Quadratic Theory, being strongly connected
to Matrix Riccati Equation. In both cases some robustness problems
are met but they deal with different classes of systems: totally stable in
the first and hyperbolic in the second case.
The present survey gives an account of these topics especially of their
discrete-time counterpart.

Keywords: Hamiltonian systems, periodic coefficients, robustness

1. Introduction. Motivation and basic problems

Recently more attention is paid again to the theory of linear canon-
ical/Hamiltonian systems, with a special reference to the discrete time
case. There are several reasons for such an attention and we shall men-
tion here but a few. We start with a topic that is familiar to control
engineers - the linear quadratic control theory. More precisely, let us
consider the differential controlled system

&= A(t)z + B(t)u(t) , z(to) = zo, (1)

and an associated integral index

t1

Jrgulto tr) = [ F(t,u(t), z(t))dt + G(x(tr)), (2)

to

297
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where the quadratic forms F and G are defined as

F(tyu,z) = uw'K(@t)u+u L(t)* s+ 2*L(t)u + 2" M(t)x
G(x) = z"Gu,

the matrices K(t), M(t), G being Hermitian. The integral in (2) is

viewed as defined along the pairs (u , x) satisfying (1). Two basic
problems are stated for the system defined by (1), (2) and (3)

i) the Liapunov function problem : find a quadratic form V(t,z) =
x*H (t)x such that there exists some § > 0 in order that

x*H(t)x + (A()z + B(t)u)"H(t)x + 2" H(t)(A(t)x + B(t)u)
> —F(t,u,z) +0(|z]® + [ul?) , Vo € C", u e C™;(4)

ii) the optimization problem of minimizing (2) along all admissible

pairs satisfying (1).
These two problems, see, e.g. (Yakubovich, 1986;1991) are in fact con-
nected with some very actual problems in control theory : optimal sta-
bilization (problem ii) with G = 0 and ¢t; — o0), stability radius and
absolute stability, forced oscillations a.o..

The above mentioned topics are connected with matrix Riccati dif-
ferential equation and it is a well established fact that the Riccati dif-
ferential equation is associated to a linear canonical (Hamiltonian in
the complex coefficient case) system. The discrete-time counterparts of
these topics are also well known to the researchers, especially the Riccati
equation occurring from the dynamic programming approach to the op-
timization problem (Halanay, 1962; Halanay, 1963; Tou, 1963; Halanay
and Rasvan, 2000).

As pointed out by Yakubovich (1991) there are several other problems
leading to Hamiltonian systems : non-oscillatory/oscillatory behavior in
differential equations, some self-adjoint boundary value problems, total
stability of linear Hamiltonian systems, parametric resonance.

Especially oscillation and boundary value problems are now studied in
the discrete-time framework due to the efforts of Erbe and Yan (1992a;
1992b; 1993; 1995), Bohner(1996), Bohner and Dosly(1997), Bohner,
Dosly and Kratz (to appear); see also the books (Ahlbrandt and Peter-
son, 1996; Kratz, 1995).

Parametric resonance represents an interesting applied topic that has
to be viewed in the context of the extensions of the results concerning
Hill equation and of some classical results due to Zukovskii(1891/1893)
and Liapunov(1899a; 1899b).

These topics send all to the theory of A-zones of stability for lin-
ear Hamiltonian systems which has been considered in the monumen-
tal paper of M.G. Krein(1955). Other references are the survey of

(3)
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Krein and Yakubovich(1963) and the monograph by Yakubovich and
Starzinskii(1972).

The extension of the theory of A-zones to the discrete-time case is an
urgent task and it is in progress (Halanay and Rasvan, 1999; Réasvan,
2000; Rasvan, 2002).

The two main topics mentioned here - the one connected to the linear
quadratic theory and the other one concerned with A-zones - require
properties of the associated Hamiltonian systems that are quite different
in their nature. For this reason we shall present in this survey a model
problem for each case.

2. Forced oscilations in systems with sector
restricted nonlinearities

The study of forced oscillations in discrete-time affine systems is mo-
tivated by such applications as digital signal processing by nonlinear
signal processors (Wade, 1994). Here also the ”almost linear behav-
ior” i.e. existence of a unique bounded on the whole real axis solution
that is exponentially stable and of the same type as the forcing term
is of interest. We would like to insist on almost periodic signals since
they correspond to modulated signals; in the discrete-time case almost
periodic sequences (discrete signals) are obtained in a natural way by
sampling periodic signals when the sampling period and the period of the
continuous time signal are in an irrational ratio (Halanay and Wexler,
1968).

We shall consider here the system

T1 = Axrg — bror(crar) + f (5)
under the following basic assumptions: i) the matrix sequences {Ay},
the vector sequences {bp}r, {cx}r and the sequence {¢y(-)}r are N-
periodic sequences; ii) ¢ (o) are continuous with respect to o and satisfy

< x(01) = Or(02)
01— 02
for any o1 # 09 and k = 0, N — 1; iii) f; has bounded components for
all integers k, possibly periodic or almost periodic. Also in the periodic
case the period of fi may equal N, the period of system’s coefficients,
but this is not compulsory.
In order to state the main result on discrete-time systems, we need

introduction of the following linear discrete-time Hamiltonian system:

0 <® (6)

w1 = (A — 5506¢0) ek — ForbipE
(7)

_ 1 * 1 * ) *
Pr = — 75 CkCiTk + (A — ﬁbkck) Dkt 1-
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We may now state:

Theorem 1 Consider system (5) under the basic assumptions i) - i)
and assume additionally the following: iv) the multipliers of Ay are in-
side the unit disk D1 of the complex plane i.e. Ay defines an exponentially
stable evolution; v) the triple (Ay,by,cr) and ® are such that

1
det(Ay — ﬁbkCZ) #0,0<k<N-1 (8)

vi) the Hamiltonian system (7) is exponentially dichotomic and strongly
disconjugate (non-oscillatory).

Then there exists a bounded sequence satisfying (5) for all k € Z,
which is periodic if fi is periodic and almost periodic if fi is almost
periodic. Moreover this solution of (5) is exponentially stable.

An explanation of the terms is here necessary : a linear periodic
Hamiltonian system with the general form

Y1 — Yk = Bryr + Dizit
k1 — 2k = —Apyr — Biziy , Ax = Ay, Dy = Dy,

9)

is called exponentially dichotomic if its multipliers are not located on the
unit circle. Let y, z be m-dimensional and consider the m linearly in-
dependent solutions xi, ... ,x}* corresponding to the multipliers which
are located inside the unit disk (here z is the 2m-column vector hav-
ing y and z as component vectors). If the m x m matrix (yi ... ,y!)
has rank m for k = 0,1, ... , N — 1, the Hamiltonian is called strongly
disconjugate.

Let us remark that if the Hamiltonian system (7) is such (i.e. expo-
nentially dichotomic and strongly disconjugate) then it can be shown
(Halanay and Ionescu, 1994) that the associated discrete-time Riccati
matrix equation

Hy, — AZHkJrlAk —

—(3 — by Hy1by) 1(5% — Aka+1bk)(§Ck — ApHp b)) =0 (10)

has a N-periodic global solution such that

1

and this periodic solution is stabilizable in the following sense: if the
controlled system
Tpy1 = Apz + b gk (12)


Administrator
1.
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is considered, by choosing the control (input) sequence as follows

1 * 1,1 * *
Hi = —(3 — by Hy41b1) 1(5% — ApHp b))y, (13)

the ”closed loop” linear system
1 * -1 1 * *
CCk+1 = [Ak — bk(g — kak+1bk) (§Ck; — Aka+1bk) ]IEk (14)

is exponentially stable.

Let us remark also that exponential dichotomy and strong discon-
jugacy are robust with respect to system’s coefficients perturbations
(Yakubovich, 1990; 1991). This property is important for computa-
tional purposes: the matrix Riccati equation (9) may be replaced by the
discrete-time Riccati inequality

Hy — ApHp 1 Ay —

1 1 1
—(3 — bZHkku)*l(ick - AZHk+1bk)(§Ck — ApHp1by)* > 61 (15)

and this inequality by a Linear Matrix inequality (LMI)

Hk - AZH/H-lAk %Ck; - Asz-‘rlbk
< (3er — AfHpaby)* % — b} Hy 1 bg >0l 41 (16)

together with the condition Hy = Hy. In fact this is a Dynamic Linear
Matrix Inequality but since we assumed tht Hy is N-periodic, a simple
dimension augmentation reduces (16) to a N(n+1)x N(n+1) LMI that
may be solved using the existing software.

3. Total stability and A-zones. The second order
system

Total stability means boundedness of all solutions on R (Z). For linear
canonical systems total stability analysis goes back to Zukovskii(1891 /
1893) and Liapunov(1899a; 1899b) who considered the simplest case of
a scalar equation

Y+ Np(t)y =0, (17)

where p(t) is T-periodic and X is real. Obviously this reduces to the
simplest canonical system.

We call Ay a A-point of stability of (17) if for A = Ag all solutions of
(17) are bounded on R. If moreover all solutions of any equation of (17)
type but with p(¢) replaced by p;(t) sufficiently close to p(t) (in some
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sense) are also bounded for A = Xy then )\ is called a A-point of strong
(robust) stability.

Remark that we might take p;(¢) = Ap(t) with A # Ag. In this case it
was established by Liapunov himself(Liapunov, 1899a; 1899b) that the
set of the A-points of strong stability of (17) is open and if it is nonempty
it decomposes into a system of disjoint open intervals called A-zones of
strong stability.

Equation (17) belongs to the more general class of linear periodic
Hamiltonian systems described by

&= \NH(t)z (18)

with H(t) a T-periodic Hermitian 2m x 2m matrix and

0 I,

(5 ) (19)
For this system the results of Liapunov have been generalized by M.
G. Krein (1955), Gelfand and Lidskii (1955), V. A. Yakubovich and
many other; the final part of this long line of research was the book
of Yakubovich and Starzinskii(1972). As pointed out by Krein and
Yakubovich(1963) this research is motivated by various problems in con-
temporary physics and engineering (e.g. dynamic stability of structures,
parametric resonance both in Mechanical and Electrical Engineering,
Quantum-Mechanical treatment of the motion of the electron in a peri-
odic field - see the book of Eastham(1973) - and other).

There exist discrete counterparts of the results concerning total stabil-
ity and A-zones; the research is in progress (Halanay and Rasvan, 1999;
Réasvan, 2000; Rasvan, 2002).

Let us remark that the development of this research which follows
closely the line of M.G. Krein is top-down i.e. from most general frame-
work to its applications. Here we shall present one of the simplest cases
aiming to a better understanding of various generalizations. Consider
the real scalar version of (9) but with a parameter A

Yk+1 — Y = MNOryr + dpzis1)
o1 — 2 = —Magyrk + bpzips1)

with ag, b, di, being real and N-periodic. If we denote = = col(y , z)
then (20) may be written as the recurrence zg1 = Ci(\)xy with Ci(X)
defined by

—1
(1 —\dy, L+ Abe  0)
Cr(A) = <0 1+ )\bk) < —Aak 1) = 1)
. 1 (1 + )\bk)2 — )\2dkak Adj
14 Ay —\ak 1)

(20)
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Obviously this is a matrix with rational items, having a real pole at
A = —1/bg. At the same time det Ci(\) = 1 hence it is an unimodular
matriz. As known, for periodic systems the structure and the stabil-
ity properties are given by system’s multipliers - the eigenvalues of the
monodromy matriz Un(A) = Cy_1(A)...C1(N)Co(A). As a product of
rational unimodular matrices Uy () is also rational and unimodular (un-
like the continuous-time case when it is an entire matriz function). It
follows that the characteristic equation of Uy () in this case is

0? —2A(N)o+1=0, (22)

where 2A(A) = tr(Un(X)) - the trace of the unimodular monodromy
matrix of (20); the functionA(\) is called characteristic function of the
canonical system. Its properties are essential for defining and computing
the X - zones. In the continuous time case A(\) is an entire function while
in the case of (20) it is a rational function with its poles the real numbers
—1/bg,k = 0, N — 1 (these poles may not be distinct). In the following
we shall see, once more, that not all properties of A(\) in the continuous
time case are valid mutatis mutandis in the discrete time case.

In the following we shall assume that (20) is of positive type in the
sense of Krein (1955) i.e. Hj > O,Vk‘,Zé\Ll H; > 0. This positivity
assumption allows obtaining some basic properties of the characteristic
function A(A) and of system’s multipliers - the roots of (22)

i) all zeros of the rational function A(\) — a, where || < 1, are real

and for |a| # 1 are simple i.e. A'(\) # 0 for those A such that
|A(M\)| < 1; the roots of A(A) £ 1 are at most double ;

ii) the non-real multipliers with |g| = 1 (but ¢ # £1) are of definite
type in the sense of Krein (1955) i.e. (Ju,u) # 0 where ( , )
denotes the usual Euclidean scalar product, u is the eigenvector
associated to the multiplier and J, defined by (19), is taken for
m = 1.

Since the two non-real multipliers are conjugate, their eigenvectors are
such: if p(\) has u as eigenvector, then o(\) has u as eigenvector. We
deduce that one multiplier is K-positive i.e. with j(Ju,w) > 0 while the
other one is K-negative i.e. with j(Ju,u) < 0. (The term of K-positive
was coined by Ekeland(1991); the original terms of Krein were 1st kind
for K-positive and 2nd kind for K-negative).

There are also other properties of A(\) and of F(\) = A%(\)—1 which
depend strongly on the structure of these functions. Generally speaking,
the elements of Uy (\) - the monodromy matrix - are rational functions
with —b;l as real poles. Using the analysis of A(\) and F(\) around
A = 0 and the properties mentioned above we obtain
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(1=Xa)(1 =N ag)...(1 =) ak)
(1+ Aby)A1 (14 Abg)#2 ... (1 + Ab, )i

(23)
1-— )\/)\1)”1(1 _ )\/)\2)112 o (1 _ )\/)\q)uq
(14 Abp)r (14 Abg)k2 ... (1 + A, )Hr

where ag < 0, v; <2 and > ] u; = N. We shall have

F(\) = A*()\)-1= ag)\Q(

d? ATNAQ) = (AN _
axe (A = (AN)? -
K r

:_Z —a12+21: 1+)\b

1
If A, is a critical point of A()) i.e. A'(\,) =0 then

1"

d? A (M) A(N)
Fivi (In A(N)) [a=r.= TTADDE

From now on we have to consider two different cases.
i) pj =0, Vjli.e. A(X)and F()) are entire functions of polynomial

type; this was also the case for continuous time Hamiltonian systems
analyzed by Krein (1955), Yakubovich (e.g. Yakubovich and Starzinskii,
1972) and others. For any critical point we shall have A" (A, )A(\) < 0;
the critical points are extrema - maxima or minima - and |A(\.)| > 1;
remark that in any case A\, = 0 is a maximum of A(\), A(0) = 1.

Let the non-zero roots of F(\) with their multiplicities (at most 2
each) be ordered as follows

<AL < A3 < A9 <A <0< < <3< y<.L. (24)

the sequence being obviously finite. The graphic of A()\) is as in fig. 1
and its properties may be summarized as follows

Theorem 2 Let by = 0, Vk; all zeros of the polynomial A%2(\) — 1 are
real and among them at least one is positive and one negative. These
zeros may be indexed as in (24) and we have F(X) as in fig.1. On any in-
terval (Aak, Aaks1), k>0 or (Aog_1, Aak), k <0 the function (—1)FA(N)
is increasing and —1 < A(X\) < 1. On any interval (Agg—1,Aok), k > 1
or (Aog—2, Aak_1), k <0 two cases are possible : either (—1)FA()\) > 1
on that interval and the interval contains a mazimum of (—1)*A(X\) and
only one, or Aog—1 = Aak(Aog—2 = Aok—1) and then the mazimum is

(—DFA(Nop—q) = 1.
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A A()\)

>v

Figure 1. The graphic of an entire A(\)

If we use the formulae for the multipliers - roots of (22) - namely
012(N) = A(X) £ /A%2(\) —1

it is obvious that the intervals (Aog, Aog+1), & > 0 or (Aog—1, Aak), £ <0
correspond to stability zones (—1 < A(A) < 1 imply 012(\) = a £
W1 —a, |p;j(A)| = 1) while the other ones correspond to instability
zones; the “degenerate” intervals described by o1 = Aop(Aog—o =
Aop_1) are included in the stability zones.

ii) pj > 1]i.e. assume that A(\) and F'(\) are rational functions

with real poles. This situation is specific for discrete-time systems, show-
ing that not all properties of continuous-time systems migrate mutatis-
mutandis to discrete-time ones. Nevertheless some properties of A(\)
and F'(X\) from the previous case are indeed valid now also: the absence
of critical points of A(\) within (—1,1) and the multiplicity of the zeros
of F(A) which is at most 2. But the poles of A(A) induce the fact that
the behavior of A(\) outside (—1,1) might be more complicated than
previously. The fact that A()\) is monotonic on (—1,1) implies the al-
ternance of stability and instability zones in this case also. The central
zone - around the maximum A(0) = 1 - keeps its form and it is a stability
zone. Also any pole belongs to an instability zone but an instability zone
may contain more than one pole; instability zones without poles are also
possible as well as more than one critical point in the stability zone. A
possible representation of A(\) is given in fig. 2. We may state

Theorem 3. Assume some by # 0. All zeros of A*>(\) — 1 are real,
among them being at least one positive and one negative. The non-zero
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roots of F'(\) - which are at most of multiplicity 2 - may be ordered as
in (24), their sequence being finite, and the representations of (23) are
valid. On any interval (Aog, Aogt1), k >0 or (Aogp—_1, k), & <0 A(N)
is monotone and —1 < A(\) <1 . On any interval (Agg—1, Aox), k >1
or (Aag—2,\ok—1), k < 0 one of the following situations may occur :
a) the interval does not contain any pole of A(X) and |A(N)| > 1 but
with finite values; if the interval is just a point (Aox, = Aog+1, k >0 or
Aok = Aok—1, k < 0) this point corresponds to an extremum equal to +1;
b) the interval contains at least a pole of A(N\) and such an interval may
contain extrema of A(N\) (but not compulsory).

A A()\)

1 W
A A Ay Az Ay /

AL Al | X

>v

Figure 2. The graphic of A()\) having real poles

4. Multipliers’ “Traffic rules”

The term “multiplier motion” was introduced by M. G. Krein and
reflects a property called by him strong stability and which turns out
to represent for the contemporary control engineer a special (and very
interesting) case of robust stability (for a class of linear systems).

For a better explanation we shall start from the well known problem
of robust stability (in the sense of Liapunov) of some linear systems with
constant coefficients. The necessary and sufficient condition of stability
is given by the location of the roots of system’s characteristic equation
in C~ (for continuous-time systems) or inside the unit disk D; C C (for
discrete-time systems). A well known fact - the continuous dependence
of the roots of a polynomial on its coefficients - is the basis of another
well known fact : sufficiently small perturbations of the coefficients do
not modify the half-plane to which the roots belong (or, in the other case,
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the roots do not leave the interior or the exterior of Dy) ; for this reason
the exponential stability of linear systems with constant coefficients is
robust.

The same type of analysis is valid for linear systems with periodic
coefficients (both continuous and discrete-time) since their solutions also
have a structure which is defined by the roots of a certain characteristic
equation - the characteristic equation of the monodromy matrix - the
multipliers of the system. In both cases - continuous and discrete-time
- the multipliers have to be located inside the unit disk Dy C C in order
to have exponential stability.

Let us turn now to the Hamiltonian systems with periodic coefficients.
Here the multipliers have a certain symmetry: they occur in pairs - one
inside Dy, another outside D . Consequently exponential stability is
not possible but only boundedness on R (Z) otherwise the system has
an exponential dichotomy (half of its linearly independent solutions tend
exponentially to 0 for
t — oo while half tend exponentially to 0 for ¢ — —o0). This bound-
edness of solutions on R (Z) is called stability and, due to linearity,
it corresponds to (non-asymptotic) stability. Therefore all multipliers
have to be located on the unit circle, being either simple or of simple
type (with simple elementary divisors).

Generally speaking such a location is not robust with respect to per-
turbations of the coefficients: the roots of the equation have to jump
either inside D1 or outside D7 . But the symmetry which is specific to
Hamiltonian systems introduces some corrections to these simple facts.
Indeed, if the multipliers are all simple the stability is robust since they
cannot leave the circle under small perturbations because this would
break the above mentioned symmetry.

If in some point of the unit circle 9Dy = {z € C|z = e/} there is a
multiplier of multiplicity larger than 1 it could leave the circle without
affecting the symmetry since the multiple multiplier would split. But
this representation is far of being complete: speaking about multiplier
“motion” we viewed them just as points in C - a purely geometric vision.
In fact it is necessary that these points (complex numbers) were mul-
tipliers of a neighboring Hamiltonian system with respect to the basic
one. But such a perturbation is not always possible; in fact we require
existence of sufficiently small perturbations which preserve the Hamil-
tonian character of the system and this requirement depends essentially
on the kind of the multipliers that coincide at some point of 0.

If these multipliers are of different kinds - such perturbed Hamilto-
nians do exist. But if they are of the same kind i.e. the non-simple
multiplier is definite (K-positive or K-negative, as well as its conjugate
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which has the opposite kind) then such a perturbed Hamiltonian - which
would imply the leaving of the unit circle 9Dy - cannot exist.

We deduce that if one would imagine a continuous perturbation of
the Hamiltonian leading to an “encounter” of multipliers of the same
kind on 9Dy, they could not “jump” from the circle; on the contrary,
if the “encounter” is of multipliers of different kinds resulting in a non-
simple multiplier of mixed type, a certain perturbation (whose existence
is now ensured) would imply leaving of the circle and destabilizing the
Hamiltonian system.

We may conceive some kind of kinematic representation: since any
2m - dimensional strongly stable Hamiltonian system has exactly m
multipliers of one kind and m of the opposite, they might be numbered in
such a way that a multiplier with given number (“label”) would “move”
continuously on 0D; when the Hamiltonian would be perturbed by some
admissible perturbation. In their motion on the circle (fig. 3a) these
multipliers obey the so-called “multipliers’ traffic rules” formulated by
Krein (1955) :

k1) if two multipliers of the same kind “cross” on dD; they cannot
“jump” from the circle since, due to the spectral symmetry (Lia-
punov - Poincaré theorem) they should reach one the inside and
the other the outside of Dy ; but since they are of the same kind
they could reach only one side. This is a direct consequence of
Theorem 1.2 of (Krein, 1955) which gives also a sufficient condi-
tion of strong stability : all multipliers should be located on the
unit circle and be of definite kind (the necessity of this condition
has been proved later by Gelfand and Lidskii (1955).

k2) if two multipliers of different kinds “cross” on 9D; then spectral
symmetry does not restrict any longer the “leave” of the unit circle.

5. The multiplier traffic in the scalar case

We consider again the second order system of Section 3. This system
has 2 multipliers and if A belongs to a stability zone i.e. |[A()\)| < 1 then
one of them is K-positive and the other one K-negative. Let A > 0 and
A € (Aak, Aogt1). For the K-positive multiplier we shall have (Yakubovich
and Starzinskii, 1972; Rasvan, 2002)

N—-1
AN = Gy & [P + 2RI ()
0

+ dk\z;H(A)rZ] (25)
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and therefore @) (\) < 0 ; here ¢1()\) is the phase of the multiplier
01(A) = exp(yp1(A)). It follows that the multiplier moves clockwise on
the lower semi-circle of D; , from +1 to —1 if A(\) decreases from +1
to —1 and on the upper semi-circle from —1 to +1 if A()\) increases
from —1 to +1. The K-negative multiplier moves counter-clockwise on
the complementary semi-circle.

Let now A belong to an instability zone ie. |A(A)| > 1. The two
multipliers are real, given by the formulae of Section 3 ; moreover

d@l A dQQ A
=1t 2 =1 < 0. 2
1 + A2_1>0, 1 A2_1<0 (26)

These equations show that the multipliers move on the real axis outside
or inside the unit disk, keeping the well known symmetry with respect
to the unit circle. We have now to consider separately the two cases
analyzed previously at Section 3:

i) if A(XA) is a polynomial then in any instability zone (Agg_1, Aok)
it has a unique extremum. When A\ covers this instability zone the
multipliers leave the encounter point (A(Agx—1),0) from 9D; to move
outside and inside the unit disk on the real axis up to some extremal
positions and further to return to the same point of the circle since
(A(A2k—1),0) = (A(A2k),0). Then the motion will continue on the circle
since a new stability zone follows. Since a stability zone with increasing
A(N) is followed by an instability zone and next by another stability
zone with decreasing A(\) a.s.o. it is obtained the image of a continuous
motion of the two multipliers which move each on its own semi-circle,
meet in (£1,0), leave the circle remaining on the real axis inside and
outside the unit disk, return to the same point and follow the motion on
the other semi-circle preserving the sense of motion (fig.3b). If Ay is an
extremum i.e. A/()\zk) = 0 the multipliers continue the motion on the
circle since A remains in a stability zone;

ii) if A(\) is rational then an instability zone may contain poles or may
be pole-free. Assume first that the instability zone is such : in this case
the multiplier traffic is exactly as previously.

Let now be a single pole of even multiplicity in the instability zone.
This case is much alike to the pole-free case but the “extremum” is in-
finite. The multiplier of first kind may reach the origin while that of
second kind may reach £oo returning to the splitting point and contin-
uing on the corresponding semi-circles.

If the single pole within the instability zone is of odd multiplicity
then the multiplier of first kind crosses the origin, the one of second
kind “jumps from one infinity to the other” and the two multipliers
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=
4

a. General picture b. Polynomial A(A)
c. Rational A(A), even multiplicity d. Rational A(A), odd multiplicity
pole pole

Figure 3. Multiplier “traffic” (scalar case)

return to the point of the circle which is the diametrically opposed on
the real axis to the splitting one.

If within the instability zone there are several poles of A(A) the mul-
tipliers may oscillate on the real axis in the sense that they tend to +oo
(and 0), return approaching the circle, move away again etc. It is quite
clear the essential role of the summarized multiplicity of the poles within
the instability zone : if it is even the return to the circle passes through
the splitting point (fig.3c) and if it is odd - through the diametrically
opposed on the real axis (fig.3d).

6. The scalar equation

The discretized version of (17) is obtained by taking the symmetric
difference which preserves the Hamiltonian character

Ykl — 2Uk + Yk—1 + \pryx = 0. (27)

We may introduce

Yk+1 — Yk = AZk41
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to obtain the system

Ykt1 — Yk = AZk41

(28)
2yl — 2k = —ADEYk

which is alike (20) but with by = 0; in this case A(\) is polynomial and
we may refer to fig.1 and to considerations made at Section 5, Case i).
Moreover, as pointed out in (Rasvan, 2002), the end points of the central
stability zone being the first(largest) negative and the first (smallest)
positive characteristic numbers of the skew -periodic boundary value
problem defined by (28) and the boundary conditions yo = —yn, 20 =
—zn the estimates for the width of the central stability zone of Krein
type given in (Rasvan, 2002) are valid. Among them we would like
to mention the discrete version of the well known Liapunov criterion
formulated for (17)(Liapunov, 1899a).

Proposition 1 (Rasvan, 2002) All solutions of (27) are bounded pro-
vided py, > 0, évflpk >0 and \? < 4/]\7(26\771;0;3).

In this way all assertions of Liapunov’s paper (Liapunov, 1899a) have
been extended to the discrete-time case using the general framework
developed in (Krein, 1955). Worth mentioning that even in this case the
Liapunov criterion is only a sufficient estimate of the stability zone while
not very conservative. The exact width of the central stability zone is
given by the inequality (Halanay and Rasvan, 1999).

N-1

2 < W/N(Z Dk)-
0

As pointed out by Krein (1955), the results of Liapunov for the central
stability zone of (17) have been extended to the case when p(t) has values
of both signs (Liapunov, 1899b) but the cited reference contained no
proofs. The proofs are to be found following the line of (Krein, 1955)(see
Section 9 of this reference or (Yakubovich and Starzinskii, 1972)); the
discrete version can be obtained in an analogous way following the hints
contained in the cited references and using the results of (Halanay and
Réasvan, 1999).

7. Concluding remarks

We have surveyed throughout the paper some basic results on discrete-
time periodic Hamiltonian systems with particular reference to robust-
ness. The field is filled up with open problems. We do not have a com-
plete discrete analogue of the theorem of Yakubovich on linear quadratic
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theory (Yakubovich, 1986) and many of the Krein type results for the
theory of A-zones and its applications are still under research for the
discrete-time case e.g. discrete-time parametric resonance.
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Abstract In this work, some of the recent developments concerning stability and
robust stability analysis of neutral systems with uncertain parameters
and uncertain delays are presented. Then, solutions and specific stabil-
ity properties of neutral systems are discussed. The aim of this chapter,
without being completely exhaustive, is to present important tools used
to derive stability and robust stability properties for neutral systems.

Keywords: time-delay system, neutral system, stability, robust stability

1. Introduction

A great variety of systems can be modeled by time-delay systems
(Kolmanovskii 1996), i.e. the "future” states depend not only on the
?present” states, but also on the ”delayed” states

T (t) = ft,z).
Indeed, the delay naturally occurs in the dynamical behavior of systems
in many fields: mechanics, physics, etc. Even if the systems themselves
do not have internal delays, closed loop systems may involve delay phe-
nomena, because of actuators, sensors and computation time.

A neutral system is a general class of "time-delay systems” charac-
terized by the fact that the behavior of the system depends both on the
?delayed state” and on its derivative

T (t) = f(t,z, ).

Some examples of such neutral systems are given in (Brayton 1976),
(Niculescu and Brogliato 1995), (Logemann and Townley 1996), (Mounier
et al., 1997), (Bellen et al., 1999), (Hu and Davinson 2000). Neutral sys-
tems represent a very general class which includes as particular cases,
ordinary time-delay systems. In this chapter, we will focus on linear
neutral systems.

315
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After the publication of two seminal papers (Hale and Cruz 1970),
(Cruz and Hale 1970) which gave strong mathematical basis as well as
some stability results, many studies have been dealt with time-delay
systems of neutral type. In the last years, interesting works have been
concerned with neutral systems see e.g. , (Logemann and Townley
1996), (Dugard and Verriest 1997), (Bellen et al., 1999), (Tchangani
et al.,1999), (Niculescu 2001), (Hale and Verduyn Lunel 2002), (Loiscau
et al., 2002), (Fridman and Shaked 2002).

Several works have been focused on the stability analysis of neutral
systems either in the time domain approach, see for example (Infante and
Castelan 1978), (Hale and Verduyn Lunel 1993), (Verriest and Niculescu
1997), or in the frequency domain approach, see for example (Chen
1995), (Verriest and Niculescu 1997). In these studies, the attention was
mainly focused in giving conditions for delay independent stability (i.e.
stability for any value of the time delay), which are rather conservative
when the delays are unknown. It is then of interest to consider delay-
dependent stability analysis, see (Chen 1995), (Ivanescu et al., 2003),
(Rodriguez et al., 2001), (Rodriguez et al., 2002).

In practice, model parameters are not precisely known, leading to the
study of the robustness of the stability w.r.t. parameter uncertainties,
see (Kharitonov 1998). Some physical systems can be represented by
uncertain neutral models: for example, lossless transmission line models
(Kolmanovskii and Myshkis 1999). It is then of interest to consider here
uncertain neutral systems models.

The content of this chapter is as follows: in section 2, introductory
example and the initial value problem are presented for neutral systems.
Section 3 is devoted to stability analysis; some model transformations
that allow to perform stability analysis are detailed; finally some delay-
independent and delay-dependent stability results are given. Some con-
cluding remarks end the chapter.

Notation. By I,,, we denote the identity matrix of dimension m. Let
vector x € R™, then (x| denotes the Euclidean norm of the vector. Let
C ([a,b] ,R™) = Cla,b] the space of continuous functions from [a,b] (in
general we take [a,b] = [—r,0]) to R™, with norm

lelle = sup [le ().
a<f<h

Lo [—7,0] is the space of Lebesgue square integrable functions defined
on [—r,0] and W} [—r,0] is the Sobolev space of absolutely continuous
vector functions with p-th power integrable derivative.“.” on the variable
denotes the right-hand derivative at ¢, “’ ” on the variable denote the

upper right-hand derivative at ¢ respectively. The functions z; and z;
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denote the restriction of z (¢) and x (¢) to interval [t — 7], so that x;
is an element of C defined by z:(6) = x(t + 6), 8 € [-r,0], and 2;is an
element of W2 or z (t) is differentiable defined by z; (§) =z (¢t + 6) for
0 € [-r0l.

2. Neutral systems

In this section we introduce time-delay and neutral systems, then we
present in a detailed way one example, we emphasize the functional
initial condition value problem, and we introduce the mathematical de-
scription proposed in (Hale and Verduyn Lunel 1993).

A time delay system is a system of retarded type in which the deriva-
tive of the "state” at the present time is specified as a function of the
past values of the "state” in some interval, for example:

z(t)=Azx(t)+Bx(t—7r),t>0,r>0.

A neutral time delay system is a system in which the derivative of the
7state” at the present time is specified not only as a function of the past
values of the 7state” in some interval but also of the derivative of the
7state”, for example:

z(t)=Az(t)+ Bx(t—r)+Cx(t—r),t>0,r>0.

Some times, open loop systems z (t) = Az (¢) + Bu(t) do not have
internal delays but in closed loop, they may have: z (¢) = Ax(¥) +
Bx(t—r),t > 0, 7 > 0, because of actuators, sensors and computer
time. However in practice, many time-delay systems are obtained from
models with partial differential equations of parabolic type, while time-
delay systems of neutral type (or neutral systems) are obtained from
models with partial differential equations of hyperbolic type. In this
section, this fact is stressed with one example.

2.1. Lossless transmission line

Consider the following example, similar to the one given in (Brayton
1976), (Kolmanovskii and Myshkis 1999) which is a lossless transmission
line, at the end (x = 0) of which there is an external source of constant
voltage E, while the other end (z = 1) is grounded by means of a tunnel
diode (such diodes are widely used in high-frequency amplifiers of elec-
tronic oscillators for example). The current i (-, -) and voltage v (-, ) are
functions of ¢ and x, and they satisfy the system of telegraph equations

0t Ov ov 01

i -7 — - — = < g <
Lgitan =0 G T =0 120, 0sest, 0
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with boundary conditions

ov (t,1)

E = Ryi(t,0) + v (t,0), i(t, 1) =C T

+ g (U (t>l))v (2)

where [ is the length of the line, L, C' are the inductance and capacity
of the conductor per length, R is the resistance at the input, Cj is the
capacity at the output, ig (v) is the current-voltage characteristic of the
diode (a nonlinear polynomial function).

The equilibrium points (vg, i) satisfy

E = vy + Ryig , ioZid(Uo).

Suppose that the working point given by the first order approximation
is

i(vg) = i(vg) +m(vg—vg), m= constant > 0.

The general solution of (1.1) is given by the d’Alembert’s formula

v(t,z) —vg = @(t—>bx)+v(t+bx),
i(t,z)—ip = Z7'[p(t—bx)—(t+bx)],
b+ =vVLC, Z:=VLCT,

with the first boundary condition (1.2) leading to
¢(t)=(Ro—Z)(Ro+2)"' ¢ (1)
The second condition (1.2) gives the following linear neutral system

W ()~ OV (€~ ) = Ab () + Bu (€~ 7). )
(VEro)(mvE)  _ (VE-R)

c
thrcA:mC\e/L,B:f — , = ——+~ 7 =
<\/é+Ro>Cl <\/é+R0>
2v/LCI. This shows a transformation from the partial differential equa-
tion (1.1) of hyperbolic type to the time-delay system of neutral type
(1.3).

Now an ”impulse response” for the lossless transmission line is given in
the figure 1.1. The initial condition is ¢ () = 0 for £ < 0 and ¥ (0) = 1.
It shows that the dynamics for linear neutral systems are very different
from time-delay systems or linear time invariant systems.

Now some classical results about the initial value problem for neutral
system are given.
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Figure 1. An impulse response for the lossless transmission line

2.2. The initial value problem and solutions

As equation (1.3) can be written in the form [ (€) — Cy (£ —7)] =
A (€)+ B (€ — 1), we present neutral systems in the Hale’s form (Hale
and Cruz 1970), (Kolmanovskii and Myshkis 1999) and the solutions in
the simple space of continuous functions C[—r,0]. So there are other
spaces in which the initial value problem may be considered, for exam-
ple in the Sobolev space of absolutely continuous functions W}% [—7, 0]
in which ¢ (§) is differentiable almost everywhere (see (Kolmanovskii
and Nosov 1986) for Wj and (Henry 1974) for WY, and W), or in
the product space M, = R™ x LP[—r,0], in which only the difference
[¢ (&) — C (€ — 1)] is differentiable almost everywhere.

Let @ be an open set in RxC. Consider the following neutral sys-
tem, written in the form proposed by (Hale and Cruz 1970), (Hale and
Verduyn Lunel 1993), :

d

D0z =F(t,z), t>to, (4)

with the difference operator
D(t)p:=[p(0) =Gt ), (5)
and initial condition
Q?tOEQb(Q),QSEC,—TSHSO, (6)

where F, G : Q@ — R™ are supposed to be continuous, |F (¢, ¢)|, |G (¢, ¢)|
are bounded uniformly in ¢ for ¢ in compact sets of C, with F' (¢,0) =0,
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G (t,0) = 0 so that x = 0 is a solution of the System (1.4)-(1.6), and in
order to have a well posed neutral system suppose G (¢, ¢) non-atomic at
zero (Hale and Cruz 1970). In particular, if G (¢, ) depends only upon
values of ¢ (0) for —r < 6 < —e < 0, then G (¢, ¢) is non-atomic at zero.

Remark 1. In this approach, the state is z; (0) = z(t +0) € C, —r <
6 < 0, and not x (¢t) € R. This is natural because the system is infinite
dimensional. [

Under the previous conditions, there is a unique solution x;, to the sys-
tem (1.4)-(1.6), that needs not be differentiable since only the difference
operator D (-) is differentiable on (g, 00) (and right hand differentiable
at to).

An important class of neutral systems concerns generalized linear au-
tonomous neutral systems:

d
E [DCCt] = LfL‘t y t > O, (7)

0
Doi=p(0)~ [ du(®)2(0),

where D and L are bounded linear maps from C into R™. The initial data

is given by (1.6) and p is continuous at zero. For example, the following

neutral system is a particular case of (1.7)

%[l‘(t)—Cm(t—T)]:A:c(t)+B:c(t—r),tZO,T>O. (8)

where A, B, are n X n constant matrices.

In practice, model parameters are not precisely known, leading to the
study of the robustness of the stability w.r.t. parameter uncertainties,
see (Kharitonov 1998). It is then of interest to consider the following
uncertain neutral system:

%[x(t)—Cx(t—rl)—AC] — Az (1) + Br(t— 7o)+ Aa+ Ap,t >0,

(9)
where 71 > 0, ro > 0, and the uncertainty terms A4, Ap, A¢ will be
precised later.

Now we give some stability results for neutral systems.

3. Stability of neutral systems

In this section we introduce the different stability notions and illus-
trate with a simple example the notion of delay-dependent stability. We
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present the different model transformations which are used for the sta-
bility analysis and then focus on both cases, delay-dependent stability
and delay-independent stability.

3.1. Stability

Let us recall some basic facts about stability.

Definition 1. The trivial solution z(t) = 0 of (1.4)-(1.6) is said to
be stable if for any ¢ > 0, tp € R, there is § = §(e,tg) such that
llelle < 8 (e, to) implies ||z (¢;£9, ¢)|| < €. The zero solution of (1.4)-(1.6)
is said to be asymptotically stable if it is stable and x (¢;tg,¢) — 0 as
t — 00. The solution z (¢t) = 0 of (1.4)-(1.6) is said to be exponentially
stable if there exist & > 0, § > 1 such that every solution z (¢;¢g, ¢) of
(1.4)-(1.6) with initial condition ¢ satisfies the inequality

Iz (t;t0, )| < Bll@llo e,V t > to.0

The system (1.7) is exponentially stable if its characteristic function
(Hale and Verduyn Lunel 1993) given by

h(s) = det <s (I— /0 e (t)]> —/0 et (t)]> CseC, (10)

has no zero with nonnegative real parts. For example, the system (1.8)
is exponentially stable if its characteristic function

P (s,e_m) = det (3 (I — Ce—”f”s) A Be—rs) (11)
satisfies

sup {Re (s) : det (s (I —Ce™™) — A— Be ™) =0} < 0.

Remark 2. [Hale and Verduyn Lunel 2002] For some linear neutral
systems, asymptotic stability does not imply exponential stability as it
happens for time-delay systems (Kharitonov 1998). For example (Hale
and Verduyn Lunel 2002)

S ()~ a(t -] = ~ax(t), £ 20, (12

zo = ¢ €C,

with @ > 0 implies z — 0 as ¢ — oo, but system (1.12) is not exponen-
tially stable. (I
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Now consider the following equation
D(t)zy =D (to) ¢+ H (t) — H(to) , t = to, (13)

Tty = ¢ (14)

H € C([ty,¢),R™), ¢ € C([-7,0),R") and a quasilinear difference
operator D (t) satisfying all the conditions given in section 1.2.3.

Definition 2. [Cruz and Hale 1970] Suppose that H C C ([tg, c0) ,R™).
The difference operator is uniformly stable with respect to H if there
are constants K, A such that for any ¢ € C, tg € R, and H in H, the
solution x (to;t, ¢, H) of (1.13)-(1.14) satisfies

[l (to; ¢, ¢, H)|| < K [|9]lc + At sup ||H (r) — H (to)|| , £ = t0.00 (15)

0<7‘<t

When the difference operator is independent of #, condition (1.15)
implies that the roots of the equation

det <I - /0 [y (0)] p9> =0

have modulii < (1 —¢), £ > 0.

Then the difference operator Dy := ¢ (0) — Cp (1) for (1.8) is stable
if and only if C is a stable Schur-Cohn matrix (eigenvalues inside the
unit circle).

Let V : [tg,o0) x C €— RT be a continuous functional; the upper
right-hand derivative of V along the solution of the system (1.4)-(1.6) is
defined by

. . 1
V (ta ¢) = }llli)l%)sup E [V (t + h7 Tit+h (ta ¢)) -V (t7 (b)] .
Recall the following Lyapunov-Krasovskii functional approach:

Theorem 1 [Cruz and Hale 1970 | Consider the Neutral System (1.4)-
(1.6). Assume that D(t) is uniformly stable with respect to C and that
there exist non decreasing continuous functions v; : Rt — RT,3=1,2,3
such that v;(0) = 0 and vi(s) > 0, for all s > 0 and i = 1,2,3. Then,
the zero solution of (1.4)-(1.6) is asymptotically stable if there exists a
continuous functional V : [tg,00) x C — R such that:

u([[D@)ell) <V (E9) < valllelle)

Vit ze) < —os([| D(B)a)) .V £ > to.
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Now we show with a simple example how stability of time-delay sys-
tems depends on the systems parameters and may depend or not on the
delays. Consider the following simple scalar time-delay system

z(t)=—ax(t)—bzx(t—r),t>0,7r>0, (a,b) e RxR.

Under appropriate initial conditions, the characteristic equation associ-
ated to this system is

s+a+be st =0,

it is a transcendental equation having an infinite number of solutions.
The use of the D-decomposition method (Kolmanovskii and Nosov
1986) gives a parametrization of the space (a,b) in several regions, each
region being characterized by the same number of roots with positive
real parts (see also (Niculescu et al., 1997), (El'sgots and Norkin 1973)).
Furthermore, each region is bounded by a "hypersurface” (here a first
order one), in which at least one root of the characteristic equation lies
on the imaginary axis for the corresponding parameters a, b, r. Simple
computation proves that the corresponding regions are as shown in Fig-
ure 2. In S, the stability is ensured independently of the size of the

4

I -

|

.

Figure 2. Stability regions, S, and S

delay and in S, U S, the stability is ensured for the delay less than or
equal to 7. Then, in a general framework, given a criteria for stability
of system (1.4), it can be classified into: delay-independent stability or
delay-dependent stability, according to their dependence upon the size
of delays (Dugard and Verriest 1997).
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3.2. Transformations

In this part, we present some transformations in the frequency and in
the time domain approaches that are used by many authors, see (Reka-
sius 1980), (Gu and Niculescu 1999) in order to prove stability or to
deduce some important properties.

3.2.1. Transformation in the frequency domain

First, consider the time delay system obtained from (1.8) when C' = 0,
z(t)=Ax(t)+Bx(t—r), t > 0. (16)

The stability properties can be studied by the analysis of the transfer
matrix

Hyu(s) = (sI - A)7'B, (17)

associated to the simple linear time invariant system:

z (t) = Az (t) + Bu(t), t > 0. (18)

Another transformation is to transform the characteristic function

(1.10) by taking the Mobius transformation (Mathews and Howell 1996)

1—w

= C. 1
s 1+w,w€ (19)

It maps the left and right half planes of s to the inner and outer regions
of the unit circle of w, and the imaginary axis of s to the unit circle
lw| = 1.

Finally a two variable model is presented, in the variable s and in ”the
delay term” z = e~ "%. Then we can consider the characteristic polyno-
mial in (1.11), not in the variable s, but in two independent variables
(s,z), (Hu and Hu 1996)

p(s,z) =det ((sI—A)—(B+Cs)z), |z| <1, (s,z€C). (20)

3.2.2. Transformation in the time domain

Stability of time delay systems has been studied using model transfor-
mation under the assumption that the "state” is differentiable. In this
case, some authors introduce transformation to prove stability, for exam-
ple transform a time delay system of the form = (t) = >, Bz (t — h;),
h; > 0, into a neutral time delay system written in the Hale’s form, by
integration over one delay interval (Kolmanovskii and Richard 1998)

)+ BZ-/ (1) dTI => Bz (t). (21)
=0 Jth i=0

a
dt
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Note that this transformation is also applicable to the following neu-
tral system (1.22) with v = 0, 7, > 0, (see (Lien et al., 2000)); however
here we propose the 7inverse transformation”, i.e. transform a neutral
system into a time delay system. Consider the following neutral system

d m m
pr x (t) —;Cix(t—ri) = Aoz (t) +;Aix(t—ri)+u(t—r) ,
(22)
T, >0, t>tp,
with r := max {r;,7 = 1,2,...m} . Now, if we choose the feedback as

m m.

u(t—r)==3 [ACi+A]Y Ciz(t—ri—7), (23)

=1 =1

we obtain the following time delay system

() =Aoy )+ [ACi+ Ay (t—1), (24)
i=1
where y (t) ==z (t) — Y12, Cix (t — 1) .
Another possible transformation is obtained when the neutral system

T (t) = f (taxta‘ft) )

can be rewritten in the Hale’s form (1.4) (Kolmanovskii and Myshkis
1999).
Now we consider the Leibnitz'rule in the state x;

0
m(t)—m(t—r):/ B0V, t>0,0€[-r0,  (25)

-7
then, for example, the time delay system (1.16) with pointwise delays is
rewritten as a distributed system

i(t):(AJrB)x(t)—B/O (A2 (L +0)+ Ba(L+0—1)]do.  (26)

—T
However, the transfer function associated to (1.26) is the product

H(Q::@I—Afwf”B)<I—£:§:iB>,

i.e. the original transfer function associated to (1.16), (sI — A —e™*"B),
and the additional dynamics,

(I—~L:E:iB>, (27)

S
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introduced by the above transformation (Gu and Niculescu 1999). This
idea can be extended to neutral systems by the supposition that z (¢) is
differentiable i.e.

z(t)=Az(t)+Bz(t—r)+Cx(t—r),t>0, r>0, (28)

and (1.25) holds. Note that in this approach, the initial condition should
be differentiable (Ivanescu et al., 2003). This technical problem can be
avoided if the Leibnitz'rule in the difference operator D (t)x;, is used
(Rodriguez et al., 2002), (Carter and van Brunt 2000)

0 0 d

D) (@ —zir) = | do[D(t)zese] = /

., i (D (t) ze40] dO,  (29)

and the new system is given by

%Dmt = (A+B)z(t) - BCx(t—r)+ BCxz(t —2r)

0
—B/ Az (t+0) + BAz (t + 0 — )] dO.
-Tr

This is a more general class of problem since the solution x may have
discontinuities, as long as the difference [x (t) — Cz (¢t — r)] is differen-
tiable (Ivanescu et al., 2003). In fact, this transformations holds in many
interesting spaces (Rodriguez et al., 2003) where the initial value prob-
lem is well posed: W) ([—7,0],R") (Henry 1974), C ([-r,0],R") (Hale
and Verduyn Lunel 1993), R™ x LP ([—r,0] ,R™) (Burns et al., 1983).
So, after applying this transformation to the neutral system (1.8), the
transformed system has the same additional dynamics (1.27), as for the
time-delay case (Ivanescu et al., 2003).

In the next section, all the mentioned transformations in the frequency
and time domain are applied to derive delay-independent and delay de-
pendent stability results to neutral systems.

3.3. Delay-Independent Stability

In the last section, a transformation from neutral system (1.22)-(1.23)
into a time delay system (1.24) was proposed in a time domain frame-
work; here, its stability is studied.

Theorem 2 Consider the system (1.24). Suppose 0 < r; < r are real
numbers such that the ratios r;/r; are rational if m > 1 and all roots of

the equation
det [[ -3 C’ip_”] =0, (30)
i=1
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have modulii less than 1. Then, if the time delay system (1.24) is asymp-
totically stable (equivalently exponential stable (Kharitonov 1998)), then
the closed loop system (1.22)-(1.23) is uniformly stable.

Proof. If (1.24) is asymptotically stable, then ||y (; o, ¢)|| < 8|8l €™,
le.

w(t) = Ciz(t—r)

i=1

<Bldlee™™, >0, 5> 1.

Now since (1.30) holds, the difference operator
Dy =@ (0) = Cip(—ri)
i=1

is uniformly stable, with respect to C ([tg,0),R™) (see (Cruz and Hale
1970)), and then z (t) — 0 uniformly implies that the closed loop neutral
system (1.22)-(1.23) is uniformly stable. m

In theorem 2, it is supposed that the time-delay system (1.24) is stable
then the small gain theorem criteria can be invoked to prove stability
(Dugard and Verriest 1997), (Datko 1985).

Now, in the frequency domain approach, (Hu and Hu 1996) uses the
Mébius transformation (1.19) and the characteristic polynomial (1.20)
to prove the following lemma (see also (Siljak 1975)):

Lemma 1 Consider the two variable polynomial (1.20). If the condi-
tions that p (s,0) # 0 for s such that Re(s) > 0 and p(s,z) # 0 for (s, z)
such that Re(s) = 0 and |z| < 1 hold, then p(s,z) # 0 for (s,z) such
that Re(s) > 0 and |z| < 1.

This lemma can be considered as the extension to the neutral case of
proposition 10 in (Niculescu et al., 1997) to time delay systems (Hale et
al., 1985).

Also in (Hu and Hu 1996) some easy to check delay-independent sta-
bility results are proposed, one of them is the next theorem:

Theorem 3 [Hu and Hu 1996 | The system (1.28) is asymptotically
stable if the following two conditions hold

[CA[ +|CB|

w(A) +||B| +
@+ 18+ 1S

<0 |C] <1.

Here p(A) =lime_o L (||[I + €Al — 1), and ||| the matriz norm.

In the time domain or Lyapunov-Krasovskii approach (Lien et al.,
2000), one has the following delay-independent stability result:
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Theorem 4 [Lien et al., 2000 The system (1.22) with v = 0 is globally
uniformly asymptotzcally stable provided that Y " | [|Ci]| < 1 and that
there exist some matrices R; > 0, ¢ = 1,2,...m, such that

Ao+ A+ R A —AjCy - An— AJCn
Al —CT Ay ~CTA— o =C A,
-AJC1 - Ry
A C Ao —A;C’l o _CZTAm < 0.
A = G Ao —ANCy e O A
~AlCh — Ry,

3.4. Delay-Dependent Stability

In the time domain or Lyapunov-Krasovskii approach, the work pre-
sented in (Lien et al., 2000) uses the transformation (1.21) to neutral
system (1.22) with u = 0 to obtain the following delay-independent sta-
bility result:

Theorem 5 [Lien et al., 2000 The system (1.22) with v = 0 is globally
uniformly asymptotically stable provided that > .~ (|Csll + i | Ail]) < 1
and for some malrices Q > 0 and R; > 0, i = 1,2,...m, there exists a
solution P > 0 for the following Riccati equation

m APt pAt
Z[n%—ml R;+rA PAR YA PA+A PCR;'CTPA| = —q,

whereA—Ao—l—leAz,mz—Osz =0,m; =1if C; #0,i =
1,2,.

Now one presents the delay dependent robust stability problem. (Hu
and Davinson 2000) equation (1.9) is considered with 71 = 7o in the
frequency framework, where uncertainties Ay := E§;F;, J € {A,B,C}
and 64 € R™Pa g € R™*PB §» € R™*PC denote the perturbation
matrices, and E € R™ ™, F4 € RPAX™ Fp ¢ RPBX™  Fr € RPCX™ gre
known scaling matrices. Let ¢ := [d4, dp, 0c].

Definition 3. The real structured stability radius of (1.9) is
R (A, B,Ci B, Fu, Fp, Fc) ==
= inf {6(6) . § € RMXPatpepo) gnd (1.9) is unstable.}

Here o; (M), i = 1,2,...,min {n,(ps + pp + pc)} denotes the singular
values of M € C"*(Pa+pB+rc)  nonincreasingly ordered and o) (M) =
7(M).O
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Theorem 6 [Hu and Davinson 2000 | Let the nominal system (1.9) be
stable, then the real structured stability radius of (1.9) is given by

-1
: ReQ —vImQ })
= sup inf
T {Sé‘&wé?o,u Uz([vllmQ ReQ ’

where
Fa
Q(s):=1| Fp | (sI—A—Be™* — Cer15)—1 E e ¢r*patpetpc).
Fe

The proof of this theorem uses the main result of (Qiu et al., 1995)

Note that in theorem 6, the nominal system (1.9) is assumed to be
stable; it is a common practice in the study of robust stability. The next
result uses the same assumption.

In (Kharitonov et al., 2002), a constructive time domain approach
was proposed to build a Lypunov-Krasovskii funtional to neutral system
(1.28), in the space WJ for the initial condition ¢.

Lemma 2 [Kharitonov et al., 2002 | Let the system (1.28) be stable.
Given positive definite n X n matrices Wi, Wo, W3, one can define the
functional

0
w(p) = ¢ (0)W19(0) + / ) ¢ (0)Wap(0)dO + ¢ (—h)Wsg(—h). (31)

Then the Lyapunov-Krasovskii functional v(x:) defined by
v(z) =2 (O[U0) — CTU(r) = U (r)C + CTU0)C)z(t)+

4227 (1) / 0T+ 8) — CTUT(8)) [Balt + 8) + Cik{t 1 6)] db+-

—Tr

+/0T /(1 [Bx(t + 01) + Ci(t +¢91)]T U0y — 02)[Bx(t + 02)+

+Ci(t + 02)]|dO1db, + /0 2T (t+0)[(r + 0)Wo + Walz(t + 6)d6.

e

is solution of
d

%’U(%t)\(ms) = —w(xy), (32)

along the solutions of the system (1.28). Here

U(e) = /0 T KT ()Wy + W + WalK (7 + €)dr (33)
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is the Lyapunov matriz valued function for equation (1.28) and K is the
fundamental matriz associated to equation (1.28) (Bellman and Cooke
1963). Since the neutral system (1.28) is stable, such a functional always
exists and satisfies the following bounds

wi (le(O)) < wle) < w2 ([lelw) - (34)

In (Rodriguez et al., 2003 bis) the delay-dependent robust stability is
given with the help of this Lypunov-Krasovskii funtional.

Theorem 7 [Rodriguez et al., 2003 bis | Let the system (1.28) be expo-
nentially stable, then the perturbed system (1.9) (with r1 =re, Ac =0)
remains stable for all unceriainties satisfying

ATVRAA A < paly , (35)

ATLRpAp < pply,

if the matriz C is Schur-Cohn stable and if there exist positive matrices
W1, Wo, W3, and a positive scalar p such that

i) Wi > pU(0) (R + R5') U(0) + 2 (pal + parl);

i) Wo > uBTU0 +7) (Ry' + R ) UT(0 +r)B+
+uCTU (@ + 1) (RL + R [U(0 + )T C, V0 € (—-1,0);
iii) Ws > pCTU(0) (Ry' + Rp') U(0)C + 2 (pgl + pprl).

(36)

Finally consider the neutral system (1.9) with initial condition (1.6)
and bounds satisfying the following assumptions by

Aa(t,0(0) :=Eada(t,¢(0)),
54 (£ (0)) 4 (8,0 (0)) < T (0) WiWap(0),
Ap (t, ¢ (—T2)) —EBéB(t,w( r2))
0% (1,0 (=12)) 6B (t,p (—12)) < @7 (—ra) WEWB@ (—12),  (37)
Ac(t,p(—r1)) = Ecéc( ) (=r1),
We £ 6c(t) >0,
V(t,p) € RT xC,

and suppose also that A¢ (¢, ) depends only upon values of ¢ (6) for
—r <6 < —e <0, see (Hale and Cruz 1970).
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The matrices F4, Fp and Eo = I, are known, and the matrices Wy,
Wp and W are given weighting matrices. The unknown mappings 4,
dp satisfy the conditions

854 (t,0)=0, 85 (t,0) = 0, (38)

so that z = 0 is a solution of the neutral differential equation (1.9)
with initial condition (1.6). Then we have the following result (close to
(Rodriguez et al., 2002)):

Theorem 8 [Rodriguez et al., 2003 ] The Neutral System (1.9), (1.6),
(1.38) is robustly delay-dependent asymptotically stable for any ro < 3

if
1 Ay := A+ B is a Hurwitz stable matrix;
2 The difference operator D (t) ¢ = [p(0) — Cp(—r1) + Ac (¢, )]
15 linear in @, continuous and uniformly stable with respect to C
and Ac¢ (t, @) is nonatomic at zero; vspace-0.25¢cm

3 there exist a real positive number r3 and positive definite matrices
P, S, >0,1i=1,7 such that the following LMIs hold:

Q(r3) 2 0 Dy S(r3)
QL 9w 0 0 0

=10 0 Q33 0 0 <0, (39)
Qf, 0 0 Qu 0
S'e5 0 0 0 R
2 5
S=WAiWa+d Si+r3y Si>0, (40)
i=1 =3

where

Q)= +5(r3) RIS (r}), (41)

Qup = PA + Al P+2S —S(r5) RIS (r8) (42)
g(?‘;) = ( gl gg (T’;) ), (43)

S1:=( PA, V2PB PE4 PEg), (44)
(45)

Sy (ry) :==+/r3( PBE4 PBEp PBA PB?), 45
—Igp 0 0
R™!.= 0 -Sgt 0 : (46)

0 0 -5t
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2 5
Qg = (PA FWAWA+D Si+75) SZ-> C, (47)

=1 =3
Qop := 2W We — S1 + S7 + CTSC + 3W/ SWe
Qg3 1= WgWB - S+ T>2k‘967
Q44 = W(—,l*—WC’ - ‘977

(
(
(
Q4 := PBC. (

51)

Notice that condition 1 is necessary and directly follows from the
satisfaction of condition 3. If Ag = 0 then E¢ = 0, then (1.39) is a
LMI equivalent to the one given in (Rodriguez et al., 2002); however if
A¢ # 0, the result given in (Rodriguez et al., 2002) cannot be checked
by using LMI Tools (Boyd et et al., 1994). Condition 2 consists in
checking the uniformly stability of the difference operator D (t) ¢ =
(¢ (0) — C(—r1) + Ac (t, ¢)] with respect to C ([0, 00) ,R™) , see Section
1.3.

Remark 3. Theorem (8) does not suppose that the nominal system is
stable as theorems (6) and (2). O

4. Concluding remarks

This work covers a part of the large number of contributions in mod-
eling, delay-dependent stability and delay-independent stability of lin-
ear neutral systems. Two approaches are presented: the frequency do-
main and the time domain. Important practical tools (Lyapunov ma-
trix, LMIs, measure matrix, Riccati equation, ...) are given in order to
conclude stability and robust stability results via some model transfor-
mations.

An effort has been made to present a difficult subject in a comprehen-
sive manner with an example, while giving a fairly wide bibliography on
the subject.
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Abstract Recent advances in the SLICOT Library for computer-aided control systems
analysis and design (CACSD) computations are addressed. Functional and per-
formance capabilities of the SLICOT algorithms and software are presented.
The main emphasis is put on the reliability, accuracy, and efficiency of the com-
putational tools. For many basic control problems, SLICOT calculations are
performed several times faster than with the currently used MATLAB toolboxes,
at comparable accuracy, and with increased reliability.
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1. Introduction

Many relevant practical control problems have high dimensionality and of-
ten involve ill-conditioned subproblems, causing failures of the theoretically
well-developed, traditional methods. Moreover, for large-scale problems, it is
extremely important to achieve the best computational efficiency, by exploiting
any special structure, and by using the potential of modern high-performance
computer architectures. Therefore, developing reliable and efficient algorithms
for control systems analysis and design is an objective of primary importance.
Recent advances in systems and control theory, numerical linear algebra, and
scientific computations should be taken into account in order to achieve this
objective.

Improved routines (in terms of numerical stability, efficiency, and func-
tionality) implementing basic algorithms for computer-aided control system
design—CACSD—have been recently developed and incorporated in the For-
tran 77 Subroutine Library in Control Theory—SLICOT'— [4], within the
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European “Numerics in Control” network. Initially developed by the Work-
ing Group on Software (WGS), partly with external contributors, the first two
SLICOT releases, [16, 17], based on the NAG mathematical library, have been
commercial versions, distributed by the Numerical Algorithms Group, Ltd.
(NAG). Starting with Release 3 (1997) on, SLICOT became copyrighted free-
ware and can be downloaded from the Internet addresses ftp://wgs.esat.
kuleuven.ac.be/, directory pub/WGS/SLICOT/, or http://www.
win.tue.nl /niconet/. On line .html documentation files are avail-
able.

SLICOT library is currently built on a nucleus of basic numerical linear al-
gebra subroutines from the state-of-the-art software packages LAPACK (Lin-
ear Algebra Package) [1] and the three levels of BLAS (Basic Linear Algebra
Subprograms) [6, 7, 13], and partly on their extensions for parallel computers,
ScaLAPACK and PBLAS. Besides the inherited capabilities to exploit some
modern high-performance computer architectures, new algorithmic develop-
ments for the control systems analysis and design have been included. The
conversion of the library to a public-domain software package offered the op-
portunity to improve the modularity, functionality, reliability, as well as the
performance of the codes, e.g., by using calls to BLAS Level 3 and LAPACK
block algorithms whenever possible, and/or by exploiting any special prob-
lem structure. Moreover, an impressive number of new routines have been
added since 1998, and interfaces to MATLAB [15] and Scilab [9] are provided
for many typical CACSD calculations. These features turned SLICOT into a
powerful and convenient computational engine for control-related applications,
covering system identification, analysis, model reduction, system transforma-
tions, and control synthesis. Often, SLICOT computations are several times
faster than MATLAB computations, at comparable or better accuracy.

This paper presents an overview of the current version of the SLICOT Li-
brary. Its functional capabilities are summarized, and typical performance re-
sults are given.

2. Reliability and accuracy

Current research in numerical algorithms focuses on the exploitation of any
structural information of the underlying computational problem. Structure-
preserving algorithms ensure that structural properties of a problem are pre-
served during finite precision computations. Therefore, the computed result
can be thought as the exact solution of the original problem with perturbed
input data. Besides increasing the reliability of the returned results, this often
improves their accuracy, as shown below.
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Table 1. Results computed using MATLAB eig and SLICOT routines

Ex. MATLAB SLICOT

(D) 1.999999999999996¢+1 2.000000000000000e+01
—2.642122482758924e-16+1.258258465000505e-7i 0.000000000000000e+00
—2.642122482758924e-16-1.258258465000505¢e-7i 0.000000000000000e+00
—2.000000000000000e+1 —2.000000000000000e+01

(2) -1.414213562373094e+1 1.414213562373095e+01
—1.694239404281922¢-16+7.465277149295360¢-8i 0.000000000000000e+00
—1.694239404281922e-16-7.465277149295360e-8i 0.000000000000000e+00

1.414213562373095e+1 —1.414213562373095e+01
(3) -1.282269210672000e+1 —1.282269210672000e+01
1.282269210672000e+1 1.282269210672000e+01

—2.220446049250313¢-16+7.837182712157440e-0i 7.837182712157435e+01
—2.220446049250313e-16-7.837182712157440e-0i  —7.837182712157435e+0i

Example 1. Consider the real matrices

A F 0 I,

1=(g ) =1 7))
where 4, F, Q@ € IR™ " and F and ) are symmetric matrices, F = F7,
Q = QY. Matrix H satisfies JH = (JH)T; such matrices are called Hamil-
tonian. But JTHTJ = —H, since J© = —J = J~1. Hence, —H has the
same eigenvalues as H T and H, and so, if A € A(H), the set of eigenvalues
of H, then —\ € A\(H), with the same (algebraic) multiplicity. However, if
the eigenvalues are computed numerically with a standard eigensolver (for in-
stance, eig from MATLAB, or DGEES from LAPACK), this pairing property
can no longer be guaranteed, as shown for the three very simple numerical
examples below:

10 10 0 1
00 10 0 10
1=(00) F=(ww) @=(ny) ©
01 10 0 0 10
A_(l 1>’ F‘(o 10>’ Q_<10 10)' )
Table 1 presents the results computed in double precision arithmetic on
an IBM-PC computer (machine accuracy about 2.22 - 10~') using eig and
SLICOT routines MB04 2D and MBO3SD, based on a structure-preserving al-
gorithm [25].

While the results produced by eiqg are relatively close to the exact eigen-
values for each example (1)—(3), the complex conjugate pair is qualitatively

] ()
= =
OO O O
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wrong, since both real parts have the same sign. Of course, in such very sim-
ple cases, the real parts could be set to zero, but for larger problems there could
be no clue on how the computed eigenvalues should be paired to have mean-
ingful results. On the other hand, SLICOT results are always qualitatively
good, since they follow the needed pattern. This is important, e.g., for Riccati
equation solvers (see, e.g., [19]).

Another example refers t0 Grammian mairices and Hankel singular values.
These values are input-output invariants of stable linear time-invariant (LTT)
systems and play a fundamental role in finding balanced realizations and in
model reduction. They are defined as the square roots of the eigenvalues of a
product P.P,, where P. and F, are the non-negative definite controllability and
observability Grammians, respectively. For instance, for a stable state-space
realization (A, B,C), A € IR™*"™, B € R™™, C € IRP*", of a discrete-time
LTI system, the Grammians are given by the solutions of the discrete-time
Lyapunov equations, also called Stein equations

AP AT — p,= -BBT, ATpA—pP,=-C"C. (4)

As the eigenvalues of P.P, are all real non-negative, so are the Hankel singu-
lar values. By solving the equations (4) without exploiting the symmetry and
semi-definiteness of the solutions, round-off errors can cause the computed
Grammians to become nonsymmetric and/or nondefinite. This can then result
in negative or even complex Hankel singular values—a complete nonsense re-
garding the system-theoretic properties.

Example 2. For the following discrete-time system matrices

0.01954 —0.00773 —0.0083 —0.23571
A= -002273 -0.01274 -0.0161 |, B= 0.81074 |,
—0.03394  0.01878 0.05661 2.41953
C = (1 0.29033 0.33462 —2.40456 ),

eig (Pc*Po) gives (with 5 significant digits) 3.1865e+1, -1.2801e-15,
4.2270e-5. Hence, the computed Hankel “singular values” are the positive
square roots of these eigenvalues, i.e., 5.6449e+0, 3.5778e-8i, 6.5015¢-3. On
the other hand, the SLICOT function AB13AD returned the following values
5.6449¢e+0, 6.5015¢-3, 2.7081e-8, by exploiting the fact that the Hankel singu-
lar values can be equivalently computed as the singular values of the product
R.R,, where the upper triangular matrices E. and R, are the Cholesky factors
of the Grammians, satisfying P, = RCRFT and P, = RZRO. Here, R. and R,
are obtained by solving the equations (4) directly for these factors using the
algorithm in [10].

An essential feature of reliable algorithms is to allow an assessment of the
accuracy of computed results. The SLICOT codes provide some upper bounds,
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in terms of condition numbers, on the errors of the computed solutions for basic
computational problems in control theory, including Lyapunov and algebraic
Riccati equations (AREs).

3. Functional capabilities

The SLICOT Library currently covers the following chapters: Analysis
Routines, Benchmark and Test Problems, Data Analysis, Filtering, Identifi-
cation, Mathematical Routines, Synthesis Routines, Transformation Routines,
and Utility Routines. A chapter-by-chapter SLICOT Library contents (with
sections and subsections) is given in [24]. A summary follows.

System analysis routines perform various tasks, such as: finding reduced
forms revealing structural properties; invariant zeros of a system; various sys-
tem norms; model reduction [26]. Analysis of generalized state-space systems
is also covered.

Benchmark and test problems routines generate benchmark examples for
LTI dynamical systems, as well as for (generalized) Lyapunov and algebraic
Riccati equations.

Data analysis routines include convolution or deconvolution of two signals
and various transforms of real or complex signals.

Filtering routines cover several time-varying or time-invariant filters, in-
cluding the conventional Kalman filter and fast recursive least-squares filter.

Identification routines deal with both LTI state-space systems and Wiener
systems, and include fast solvers (see, e.g., [21, 20]).

Mathematical routines implement special algorithms for computations en-
countered in many applications (not only in CACSD), which are not available
in LAPACK or similar packages. Examples are (structured) matrix factoriza-
tions, including those for (block) Toeplitz matrices, evaluation of matrix ex-
ponentials, solving (structured) nonlinear least-squares problems, and calcula-
tions related to (matrix) polynomials.

System synthesis routines cover the computational problems in control sys-
tems design: pole assignment; solution of continuous-time or discrete-time
algebraic Riccati equations, using the Schur vector method [12], the method
of deflating subspaces [23], or—for continuous-time equations—the matrix sign
function method [5]; solution of continuous-time or discrete-time Lyapunov
equations [3, 2]; factored solution of stable non-negative definite continuous-
time or discrete-time Lyapunov equations [10]; solution of generalized Lya-
punov equations [18], using extensions of Bartels/Stewart and Hammarling’s
methods; solution of the continuous-time or discrete-time Sylvester equations
AX+XB =C, AXB+X = C, using the Hessenberg-Schur method [8]; so-
lution (for R and ) of the generalized Sylvester equation [11] AR— LB = C,
DR—LFE = F; minimum norm feedback matrix for “deadbeat control”; spec-
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tral factorization of transfer-function matrices; H, (sub)optimal, and Hs opti-
mal state controller, as well as positive feedback controller for both continuous-
time and discrete-time systems.

Transformation routines mainly cover conversions between various system
representations: conversions between state-space representations, such as bal-
ancing a system matrix corresponding to a triplet (A4, B, C), calculation of the
controller or observer Hessenberg form, or minimal block Hessenberg real-
ization for a state-space representation; transformations from a given repre-
sentation to another representation, e.g., state-space to polynomial, or rational
matrix representation (or conversely), polynomial representation to frequency
response, etc. Generalized state-space transformations for descriptor systems
are also included.

The functional flexibility of the basic computational tools is illustrated with
an example: the solver for stable non-negative definite Lyapunov equations
based on [10]. Using op(M) to denote either the matrix M or its transpose,
M, this solver computes the factored solution, X = op(U) 7 op(U), with U
upper triangular, of either stable continuous-time Lyapunov equation

op(4) "X + X op(A) = —o?op(B) " op(B), (5)
or convergent discrete-time Lyapunov equation
op(4) "X op(4) — X =~ op(B) " op(B). (6)

where the scalar o is a scaling factor, set less than or (usally) equal to one, in
order to prevent solution overflowing. Note that both forms of op(A) in (5)
or (6) could be needed in an application, for instance, in Example 2, for solving
the equations (4). The solver ability to deal with the op(-) operator is advanta-
geous in this context since only one reduction to the real Schur form is needed
to solve both equations.

Similar capabilities are implemented in other solvers. The codes for solving
algebraic Riccati equations have options for various scaling strategies, and for
sorting the eigenvalues (also anti-stabilizing Riccati solutions can be obtained);
linear quadratic optimization problems with coupling terms can be optionally
solved. Special cases of matrices in real Schur form, and/or Hessenberg form
can efficiently be dealt with by some solvers. Estimates of the reciprocal con-
dition numbers for Riccati and Lyapunov equations can be computed.

The current version of the SLICOT Library includes

= 379 documented routines, user-callable or programmer-callable, plus 36
partially documented routines for low level computations;
193 example programs, with associated files with data and results;
41 MATLAB/Scilab MEX-files;
196 MATLAB/Scilab M-files.
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The compressed files slicot.tar.gz (for Unix platforms), and slicotPC.zip (for
Windows platforms) each contain over 2250 files.

4. MaTLAB-Gateways

The essential functionality and performance of SLICOT routines are made
accessible from the high-level software environments MATLAB and Scilab by
a large collection of MEX- and M-function gateways developed during the
SLICOT implementation process. These MEX- and M-functions are used
as interfaces between the powerful Fortran routines and these popular user-
friendly design environments. There are multiple, conflicting requirements the
CACSD software should satisfy, such as, functionality — simplicity, flexibility —
easy-of-use, complexity — performance, etc. The basic strategy used to ensure
the needed trade-off between these objectives was to develop a reduced num-
ber of MEX-function interfaces, each covering an extended functionality, and
several M-function interfaces, each solving a specific control systems analysis
or design problem. Each MEX-function calls several related SLICOT routines,
while each M-function calls the appropriate MEX-function to perform its spe-
cific task. For instance, the MEX-function aresol calls SLICOT routines
SB02MD, SB0O2MT, SBO2ND, and SB020D, for solving either continuous-
time or discrete-time algebraic Riccati equations (CARE/DARE) using stan-
dard or generalized Schur vector methods applied on suitably built Hamil-
tonian or symplectic matrices or matrix pencils, while the M-functions
slcaregs, slcares, sldaregs, sldares, and sldaregsv call
aresol to solve a specific CARE or DARE equation using a certain method.
Allocatable Fortran 90 arrays are employed in the MEX-files, to reduce the
storage requirements. The MEX interfaces are necessarily quite complex, to
cope with the extended functionality and flexibility, and so, they are primarily
intended for expert use and further software developments. On the other hand,
the M interfaces are much simpler, hiding any computational details, and there-
fore they are destined to all categories of users. A minimal input data has to
be specified, and default option values are automatically set. For convenience,
demonstration packages for PC-Windows platforms are made available on the
SLICOT ftp or Web sites.

A partial list of the currently available SLICOT M-functions is given below.
The functions related to benchmarks (5 functions), data analysis (7 functions),
structured matrix factorizations (7 functions), model and controller reduction
(20 functions), test functions, etc., are omitted due to lake of space.
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Canonical forms and system transformations

slconf
slobsf
slminr
slsbal

slsdec

slsorsf

slsrsf

Controllability staircase form of a system (A, B, C).

Observability staircase form of a system (A, B, C').

Minimal realization of a system (A, B, C').

Balance the system matrix for a state-space system (A4, B, C).

Additive spectral decomposition of a system (A, B, C') with respect to a
given stability domain.

Transform the state matrix of a state space system to a specified eigenvalue-
ordered real Schur form.

Transform the state matrix A to a real Schur form.

Riccati equations

slcaregs Solve CARE with generalized Schur method on an extended pencil.
slcares Solve CARE with Schur method.

slcaresc Solve CARE with refined Schur method and estimate condition.
sldaregs Solve DARE with generalized Schur method on an extended pencil.
sldares Solve DARE with Schur method.

sldaresc Solve DARE with refined Schur method and estimate condition.
sldaregsv ~ Solve DARE with generalized Schur method on a symplectic pencil.
slgcare Solve a descriptor CARE with generalized Schur method.

slgdare Solve a descriptor DARE with generalized Schur method.

carecond  Estimate reciprocal condition number of a CARE.

darecond  Estimate reciprocal condition number of a DARE.

Svlvester and Lyapunov-like equations

slsylv
sldsyl
sllyap
slstei
slstly
slstst
slgesg
slgely
slgest
slgsly
slgsst
lyapcond
steicond

Solve continuous-time Sylvester equations.

Solve discrete-time Sylvester equations.

Solve continuous-time Lyapunov equations.

Solve Stein equations.

Solve stable continuous-time Lyapunov equations.

Solve stable Stein equations.

Solve generalized linear matrix equation pairs.

Solve generalized continuous-time Lyapunov equations.

Solve generalized Stein equations.

Solve stable generalized continuous-time Lyapunov equations.
Solve stable generalized Stein equations.

Estimate reciprocal condition number of a Lyapunov equation.
Estimate reciprocal condition number of a Stein equation.

Discrete-time LTI and Wiener multivariable state-space systems
identification

slmoen4d  Find the system matrices and the Kalman gain of a discrete-time system,

using combined MOESP and N4SID subspace identification techniques.
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slmoesm Idem, using combined MOESP and simulation techniques.

slmoesp Idem, using the MOESP technique.

sindsid Idem, using the N4SID technique.

findR Preprocess the input-output data using Cholesky, QR, or fast QR factoriza-
tion [14], and estimate the system order.

findAC Find the system matrices A and C of a system, given the system order n

and the relevant part of the R factor of the QR factorization.

findBDK Find the system matrices B and D and the Kalman gain of a system, given
n, the matrices A and C, and the relevant part of the R factor.

findABCD  Find the system matrices and the Kalman gain, given n and the relevant part
of the R factor.

findxOBD  Estimate the initial state and/or the matrices B and D of a system, given the
system matrices A, C, and a set of input/output data.

inistate Estimate the initial state of a system, given the (estimated) system matrices,
and a set of input/output data.

NNout Compute the output of a set of neural networks used to model the nonlinear
part of a Wiener system.

dsim Compute the output response of a linear discrete-time system (much faster
than the MATLAB function Isim).

02s Transform a linear discrete-time system given in the output normal form to
a state-space representation.

s20 Transform a state-space representation of a linear discrete-time system into

the output normal form.

Miscellaneous functions

slinorm Compute the L-infinity system norm.
slH2norm  Compute the H2/L2 norm of a system.
slHknorm  Compute the Hankel-norm of a stable projection of a system.

slstabr Compute the complex stability radius.

Hameig Compute the eigenvalues of a Hamiltonian matrix.

pass Perform (partial) pole assignment.

persch Compute the periodic Hessenberg or periodic Schur decomposition of a ma-

trix product.

5. Performance results

This section presents typical performance results for the SLICOT Sylvester
solver, in comparison with equivalent computations performed by the MATLAB
function sylv. The calculations have been done on an IBM PC computer
at 500 MHz, with 128 Mb memory, using Compaq Visual Fortran 6.5, non-
optimized BLAS, and MATLAB 6.5 (R13). Other performance results for spe-
cific analysis and synthesis tasks appeared, e.g., in [4, 22, 24]. The results
show that, at comparable accuracy, SLICOT gateways are several times faster
than MATLAB computations.

Figure 1 shows the execution times in seconds for SLICOT function s1sylv
and MATLAB function sylv, for solving ten randomly generated Sylvester
equations, AX + X B = C, with known solutions, A € IR™*"", B € IR"™*™,
with n = 30 : 30 : 300, and m = n. In the right hand side, the equations
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have the matrices A and B in real Schur form. Clearly, s1sylv is impress-
ibly much faster than sy1v in this case, since it could exploit the problem
structure.

45

40
2
35
30

25

Time

20

6 6
Example # Example #

Figure 1. Timing comparison: SLICOT slsylv versus MATLAB sylv for random
Sylvester equations with n = 30 : 30 : 300, and m = n. Left: general matrices; Right:
A and B are in real Schur form.

Figure 2 shows the relative residuals of the solutions of the same Sylvester
equations. These residuals are almost always better for s1sylv than for
sylv.

x107* x107™

| rwm socot | | socot |
Y Matlab Y Matlab

Relative Residuals
Relative Residuals

6 6
Example # Example #
Figure 2. Relative residuals of solutions of the same Sylvester equations as in Fig. 1.

Figure 3 shows the relative error of the solutions of the same Sylvester equa-
tions.

Other SLICOT calculations reveal similar performances, or even larger speed-
up factors, when fast algorithms are used.



Relative Errors

SLICOT-based Advanced Automatic Control Computations 347
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Figure 3. Relative error of solutions of the same Sylvester equations as in Fig. 1.

6. Conclusions

Algorithmic improvements in systems and control computations have been
incorporated into the freely-available version of the Subroutine Library in Con-
trol Theory, SLICOT. This library enables to exploit the potential of modern
high-performance computer architectures. Performance comparisons of some
SLICOT components and equivalent MATLAB functions show that SLICOT
computations are several times faster than MATLAB computations, at compa-
rable accuracy.

Future work could include the development of a parallel version of the
SLICOT Library for massively parallel architectures, based on the ScaLAPACK
version of the LAPACK package. This is partly done for model reduction rou-
tines.
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1. Introduction

The H™ theory captured a major interest in control engineering and in
applied mathematics over the last two and half decades. This interest is
determined by the fact that the H* optimization provides elegant solutions
for many practical problems. Robust control, tracking, filtering, fault
detection and identification are only some of the most known areas of
applications. From an historical perspective, there were several directions
in which the study of this problem has been orientated. Among them one
can mention the methods based on operator theory and interpolation,
mostly used in the early period (Adamjan et al., 1978), (Ball and Helton,
1983), reduction to Nehari problems (Francis, 1986), polynomial
approaches (Kwakernaak, 1986). A major contribution is brought by the
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state-space results derived in (Glover and Doyle, 1988), (Doyle et al.,
1989) providing necessary and sufficient solvability conditions for the so-
called nonsingular H* control problem. These conditions are expressed in
terms of the stabilizing solutions of some game-theoretic algebraic Riccati
equations (ARE). Explicit formulae and parameterization of the set of all
solutions have been also obtained. State-space solutions for the nonsingular
H* control problem are also derived by a different technique using the
generalized Popov-Yakubovich theory in (Ionescu et al., 1999), (Ionescu
and Stoica, 1999). The singular H* control problem arises from the
nonsingular case by removing some assumptions. The approaches develop
in (Gahinet and Apkarian, 1994), (Boyd et al, 1994), (Iwasaki and
Skelton, 1994) use a different methodology, based on the Bounded Real
Lemma in inequality form. In this case the solvability conditions are
expressed in terms of the feasibility of some specific linear matrix
inequalities (LMI). In contrast with the nonsingular H“ control problem
where the solvability conditions and the solution are derived starting from
some particular problems fully exploiting the nonsingularity assumptions,
in the singular case the developments are easily performed directly for the
general case. Although efficient numerical algorithms to determine the
solutions of the corresponding LMI have been developed, there are
applications when ill conditioned numerical computations and instabilities
occur (see e.g. (Gahinet and Apkarian, 1994)). In such cases it is preferable
to replace, if possible, the conditions based on Riccati inequalities by
Riccati equations for which several alternative algorithms to compute their
stabilizing solutions are available.

The aim of this paper is to present some connections between the
solvability conditions expressed in terms of LMI and the ones using ARE.
It is shown that the general methodology based on the Bounded Real
Lemma, mainly used in the singular H*control theory, can be
successfully employed in nonsingular problems, providing solvability
conditions in terms of the stabilizing solutions to ARE.

2. Problem formulation and preliminary results

Consider the generalized two-input, two-output system T with the state
space equations:

x(t) = Ax(t)+ By (£)+ By, (t)
Y (t)=C1x(t)+D11ul(z‘)+Dlzu2 (t) (1)
¥, (t) = sz(t) + D, uy, (t),

where x(¢) € R” is the state vector, u,(f) € R™ is the external input vector,
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u,(t) e R™ denotes the control variable, y,(#) e R” includes the regulated
output variables and y, (t) € R?2 is the measured outputs vector. Then, the

H?” control problem consists in finding a controller K such that the
resulting system obtained by (1) taking u, =Ky, is internally stable and

T

uy

<y, where y>0 is a given level of attenuation. T,, denotes the

transfer function from u, to y, of the resulting system and the H* norm of
a stable system with the transfer function G(s) is defined as
|G (5)], =SUP i a2 (G (—j®)G(j®)), Ay () denoting  the
maximal eigenvalue of (-). In the following, two preliminary results are
stated. The first one is also known as the Bounded Real Lemma and an early
proof of it is given in (Anderson and Vongpanitlerd, 1973).

Lemma 1 (Bounded Real Lemma) Let H (s)::(A,B,C,D) be a stable

system with A€ R, Be R"™ CeR”" and D e RP". Then the following
assertions are equivalent:

i) ||H(S)||oo <v;
ii) There exists X >0 such that:

A"X+XA XB CT
B'X  —I, D' |<0;

m

C D —yl
iii) y*I,,— D™D > 0 and the Riccati equation
ATX + XA+(XB+C"D)(y21,, - D'D) " (B'X +D'C)+C"C=0

has a stabilizing solution.

Based on the above result, the following theorem providing necessary and
sufficient solvability conditions to the H® control problem is proved in
(Gahinet and Apkarian, 1994):

Theorem 1 Consider the generalized system (1) and a scalar y>0. Then

the following assertions are equivalent:
i) It exists an ny-order controller such that the resulting system T, , is

stable and

7:41Y1 HOC <V

ii) There exist the symmetric matrices R,S € R”",R>0, S >0, such that:
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N, 0 |4R+RA" RC” B, |[N, 0
N, 0 CR —yI, D, |[N, 0 |<0 2)

Iz

0 1 B’ D, Y, 0 L

N, 0] |47S+54 SB, C' [N, 0

Ny 0 B'S =, D" [N, 0 ]<0 3)
01, G Dy -y, 0 1,
R I, R I,
>0, rank <n+n, (4)
IS IS

Niy Ny :
where and denotes bases of the null spaces of the matrices

12 2
[BZT DIZT} and [C, D,,], respectively.

A crucial role for the further developments is played by the next
proposition which proof can be found for example in (Gahinet, 1992):

Proposition 1 If the pair (C,A) where AeR™",C € RP" has no imaginary

unobservable modes then the following assertions are equivalent:
i) The Riccati type inequality

AR+ RA” + RCTCR+(0<0 (5)
with Q =BIBIT —BZBZT e R™" symmetric has a symmetric matrix solution
R>0;

ii) The Riccati equation

ATX + XA+ XO0X +CTC=0 (6)
has a stabilizing solution X.

If the conditions i) or ii) are accomplished then 0< X < R

3. The nonsingular #~ control problem

In this section it is shown that the solvability conditions in the

nonsingular H* case expressed in terms of Riccati equations can be directly
recovered via Proposition 1 by the general result stated in Theorem 1.

Theorem 2 Assume that the following conditions hold:
Al) rankDuTD12 =m, and ranszlDZIT =p,;
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A2) The system (A,BZ,CI,DIZ) has no invariant zero on the imaginary axis,
that is:

A-—jol B
rank{ JOh 2

}=n+m2,VmeR .
G Dy,

A3) The system (A,BI,CZ,DZI) has no invariant zero on the imaginary axis,
that is:

}=n+p2,VmeR.

{A — jol, B,
rank
C2 D 21

Then the H* control problem has an n-order solution if and only if:
Yzlpl > DAllbuT and Yzlml > DIITDII (7)

and the game-theoretic Riccati equations:

m

~ == T, ~ o=\ o - ~ o=\

A+BD, (L, -DiDy") G |v+|4+BD, (v1, -D,Dy") G |¥
=T ( 5 A AR = 25 (2 ~ = \ler

+Y| G (Y ]ml_DllDll ) G -G G |Y+y B1(Y11_D11 Dll) B =0

have the stabilizing solutions X >0 and Y >0 respectively, satisfying the
condition:

p(XY) <2, (10)
where p() denotes the spectral radius of () and:
A=A-B,D,"'C,, B, =B, -B,D,,"D,,, B, =B,D,,"
=(1, ~DuDy" )G Dry= (1, = DDy ) Dy,

O»

(11)

N

=A-BD,C,, B =B ([m1 ~Dy"'D,, )»

C :=C —D,D,'C,, C,:=D,"C,, Ell =Dy, (Iml _D21+D21)-
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Proof. The proof is based on Proposition 1 and on Theorem 1. Thus,
Theorem 1 shows that the general H® problem has a solution if and only if

conditions (2)-(4) hold. In the particular case of the nonsingular H®~
problem studied in this section, a basis of the null space of the matrix

[BZT DIZTJ is given by:

{Nﬂ}{ b 0}, (12)
Nol |-Dy" By Uy

where U,, denotes a basis of the null space of DIZT , that is D12TU12 =0.
Then the inequality (2) yields:

AR+ RA" —yB,B," (RCT +vB,)U, B,
U, (CIR + YBZT) yU,"U,, Uy, Dy, |<0 (13)

B1T DHTU12 =1,

my

with R > 0. Further two properties of the matrix U,, are further presented.
According with the Singular Value Decomposition Theorem, it exists a
unitary matrix U € R?*” such that

X
D,=U 0 ’ (14)
(p1—my )xm,
where, by virtue of assumption Al, X' is nonsingular. Thus it results that:
+ —
D12 :|:2 : Omzx(pl—mz):|UT (15)
and
0
U,=U . (16)
I,
Py

Taking into account that U is unitary, by the above equation it follows
that

U12TU12 :Ip]—m2 (17)
and
U12U12T =[_D12D12+- (18)
On the other hand, by (13) one deduces that
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_YUlzTUlz U12TD11
’ <0.
Dy Uy, _Y[ml

Writing the Schur complement of the element (1,1) and taking into
account (17) and (18), from the above inequality one obtains:

-l + Y_1D11T (]p1 - D12D12+)D11 <0.
Based on the general properties of the pseudo-inverse one deduces that
T
]pl - Dllez+ = (]pl - D12D12+) (]pl - D12D12+) 5 (19)

which shows that the above inequality is equivalent with the first inequality
(7). On the other hand, notice that l§2U12 =0. Using (17) and (18), the Schur

complement of the element (2,2) of the matrix in the left side of (13)
becomes:

AR+ RAT —yB,B,"
+1'RC (I, = Dy,D," JCR L
................... 0 <0.

B +y'RC/ (Ip1 - D12D12+)D11

Taking into account (19) and the notations (11) one directly obtains that
the above inequality is equivalent with:

AR+ RA” - Yézézr + Y_lRélrélR él + Y_lRélTD“ 0 (20)
) > . |<o.
31T + Y_1D11TC1R I, + Y_1D11TD11

The Schur complement of the element (2,2) of the matrix in the left side
of the above inequality has the property:

N UAAT AATYA S UAAT Aoyt AT
{A+BID“ (v*1, -Diiy,") CI}R+R[A+BID“ (v*1, -DuDy") Cl}
A A A -1 A ~ A A -1 A A A
+YRC1T (VZIA _D11D11T) C1R+Y[B1(Y21pl _D11D11T) 31T _BszT} <0.

Denoting R:= y~'R, from the above inequality one obtains that:
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S DN T(.2 AATilAAAAAATz AATil"T
A+BD (v, -DuDy ) G |\R+R A+ BD (v, -DiD,) G

21)
A A A A -1 A A A A -1 A A A
+y2RC1T(y21pl —D”D“T) C1R+Bl(y21pl —D“D“T) BT -BB" <0.

In the following one shows that the pair:

R A A s
[(Yzlpl _DllDllT) 2C,A+BD, (Yzlpl _DllDllT) Cl] (22)

has no unobservable modes on the imaginary axis. Indeed, assuming that it
exists m € R such that

. AA AT A oA )7l
Jjol, —A-BD,, (“/zlpl - Dy, Dy, )

G
rank

X <n,
A TV A
(Yzlpl - Dy, Dy, ) e
by the above condition it results that:
1 A AAT PR N
I, BID“T(yz]pl —D“D“T) 2 || jol, = A= B\Dy, (Yzlpl =Dy, D, ) G
rank 1

0 (vr,-DD) (v*1, -D,L 1

jol, — A
=rank K <n.
G

Using the definitions of 4 and él it results that:
jol, —A+B,D,,"C,
rank . <n
(Ipl =Dy, Dy, )Cl

or equivalently, there exists ve R”, v# 0 such that

jol, — A+ B,D,,"C,

([p1 - D12D12+ )Cl V=

On the other hand, from the above equation it follows that:
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{— jol, +A-B,D,"C, B, }m »
Cl _D12D12+C1 D12 0
that is,
—jol, +4 B, I, 0
. =0. (23)
G Dy, || =Dy, C 1m2
Since the vector:
]l’l O v v
wi= N = . #0,
-D, C, 1, |0 -D, Cyv
by (23) it results that
{— jol +A B, }
rank <n+my,
Cl D12

contradicting thus the assumption A2. Therefore the pair (22) has no
imaginary unobservable modes and then, applying Proposition 1 for the
inequality (21) it follows that the Riccati equation (8) has a stabilizing
solution X >0.

The proof of the fact that the Riccati equation (9) has a stabilizing
solution is similar and it is based on Proposition 1 together with the
assumption A3. On the other hand, by Proposition 1 it also results that

0<X<R'=yR'and 0<Y<S'=yS'. The first condition (4) in
Theorem 2 is equivalent with RS —1, >0, from which (10) directly follows.
The second condition (4) is automatically fulfilled for the case n, =n. The

sufficiency part of the theorem simply results by the same steps of the
necessity part, in reversed order. m

4. A class of 7= controllers

The result presented in this section is inspired by the paper (Sampei et al.,
1990). It gives a strictly proper solution to the H* control problem and it

may be applied both in the singular and in the nonsingular case.

Theorem 3 [t exists an n-order strictly proper controller H* controller
K :=(Ak,Bk,Ck,O) if and only if the two following conditions are
accomplished

v, -D,'D,, >0, and
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ii) There exist the matrices F € R™" and K € R™P such that:
a) Either the Riccati equations:

R (X)=0 (24)
and

8 (Y)=0, (25)
where

R, (X) ::(A+BZF)TX+X(A+BZF)+[)ﬂ;l +(C+D,FY D”}
(26)

T

1
X(Yzlm1 _D11TD11) [XBF"(Cl"'Dle)TDu} +(C1+D12F)T(C1+D12F)
and

8¢ (Y)=(4+KGC,) Y +Y(4+KG,) +[YC1T +(B, +KDZI)D11T]

T\ ' [yT " T @7)
x(v1, ~DuDy") [YC +(B+ KDy )y | +(B+ KDy, ) (B +KD,)

have the stabilizing solutions X >0 and Y >0 such that

p(X7)<y? (28)
or, equivalently
b) The Riccati inequalities

R (X ) <0 (29)
and

8« (Y)<0 (30)

have the solutions X >0 and Y >0 satisfying the condition

A A

p(XY)<y2. 31)

Moreover, if the conditions i) and ii) are satisfied then an H* controller has
the following realization in terms of the solutions to the Riccati inequalities
(29) and (30)

A =A+BF+(y1, - ?f()_l (vkC, - M)
B =—>(y1,~¥X) K (32)

C, =F,

where
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M=F|B/X+D,(C +DyF)]

-1

* [(yzln B );j() I}(Bszl -B)+ FDlzTDn} (33)
x(v’L,, - Dy Dy, )_1 | B/ X+D,(C+D,F)|-Re (X)

Proof. Necessity. The condition i) immediately follows taking into account
that |7,,,

<y implies

- [CR (—jol — 4y) ' By + DRT [CR (jooI - A4y) " By + DRJ <y,

V weRU{tw}, from which making ®—>o, it results that
D, Dy < v?1, . Since Dy =Dy, i) directly follows. Further one proves ii).

Assume that it exists a strictly proper controller (D, =0) solving the H*

control problem for the generalized system (1). Then according with the
Bounded Real Lemma it follows that it exists X >0 such that:

<0, (34)
where
T T T\
M= Ay X+ X oy +( X Be + C' D )(v*1,, =D Dr )
(35)
x(B Xy + Dy Co )+ G G
and

dp=| A PG g | B Cy=[Ci D,C.], Dy=D;. (36)
R — BkC2 Ak > FR T BkD21 > YR T LM 12%k 1> =R — 11

Consider the partitions:

X SN g §er™ and X, = = M| R Rerm (37)
= ~ 15 §,85€ an = ~|; R,Re .
FOINT S A MT R

Without reducing the generality of the reasoning one 